
Analysis of a learning algorithm for a single
phasor neuron

東京大学生産技術研究所 田中 剛平 (Gouhei Tanaka)
Institute of Industrial Science, The University of Tokyo

Abstract

Numerical methods for computational intelligence are often de-
scribed by dynamical systems. For instance, a learning algorithm for
complex-valued neural networks can be regarded as a dynamical sys-
tem with complex variables. Especially when the state of a complex-
valued neuron is defined on the unit circle in the complex domain, it
is called a phasor neuron, which is a special class of a complex-valued
neuron. We have recently derived a supervised learning algorithm for
multilayer feedforward phasor neural networks, by recursively updat-
ing complex-valued weight parameters. As a first step towards under-
standing the dynamics of the algorithm, the case of a single phasor
neuron is examined in this report.

1 Introduction
In engineering and computer science, a variety of numerical algorithms have
been presented to solve mathematical problems which are difficult to address
analytically. Even with developments of computers in the several decades,
there are still problems for which a rigorous solution can be found only with
unrealistically much computation time. Therefore, efficient numerical tech-
niques have been explored to obtain a good solution in a feasible computation
time even if it is not the best one.

Some numerical methods represented by a recursive formula are closely
related to discrete-time dynamical systems. One of such algorithms is the
gradient method to find a local optimum of a nonlinear function. Let us
consider the following nonlinear scholar function:

$y$ $=$ $f(x)$ , (1)

数理解析研究所講究録
第 1762巻 2011年 1-12 1



where $x=(x_{1}, \ldots, x_{n})^{T}$ is an n-dimensional real vector and the function $f$ is
differentiable with respect to $x$ . Then, the gradient vector of $f$ , represented
as

$\nabla f$ $=$ $( \frac{\partial f}{\partial x_{1}}$ , . . . , $\frac{\partial f}{\partial x_{n}}))$ (2)

is the normal vector to the constant-level surface of $f$ . As the state $x$ is moved
in this direction, the function most increases. To reduce the functional value,
it is valid to move the state in its inverse direction. Based on this notion,
the steepest (gradient) descent method is summarized as follows:

$\bullet$ Step. 1: Set an initial condition $x_{0}$ and $k=0$ .

$\bullet$ Step. 2: If $\nabla f(x_{k})=0^{T}$ , then end.

$\bullet$ Step. 3: The state is updated as follows:

$x_{k+1}$ $=x_{k}-\alpha(\nabla f(x_{k}))^{T}$ (3)

where $\alpha$ is the parameter corresponding to the step size of each update.

$\bullet$ Step. 4: $k:=k+1$ and go to Step. 2.

This algorithm guarantees that the functional value monotonically decreases
and the state converges to one of the local minima of the nonlinear function
$f$ . The iterative formula (3) can be regarded as a discrete-time dynamical
system. When $\alpha$ is too small, the convergence time would be very long. The
initial condition is also a key component which influences the convergence
time and the probability that the global minimum is found.

The backpropagation learning algorithm for artificial neural networks,
which is the most popular one, is also based on the above gradient method.
We have recently derived a backpropagation algorithm with multilayer feed-
forward phasor neural networks for learning circular data [1]. As a first
step towards understanding the dynamics of the algorithm, we analyze the
learning method for a single phasor neuron in this report.

2 Learning algorithm for circular data
The gradient descent method has been applied to a learning algorithm for a
neural network. The error backpropagation algorithm [2] based on a gradient
descent method has provided a general method to optimize weight and bias
parameters for minimizing the errors between a network output and a desired

2



one. Since the algorithm requires a gradient vector, the activation function
of a neuron must be continuous and differentiable. Therefore, instead of the
step function with discrete nonlinearity, the sigmoid activation function with
continuous nonlinearity has been typically employed for learning algorithms
of ordinary real-valued neural networks.

Recently, a growing attention has been paid to neural networks which are
able to address information with special properties. For instance, complex-
valued neural networks are useful for complex-valued information with am-
plitude and phase components, as found in wave phenomena. For deriving
a backpropagation algorithm, the complex activation function requires to
be bounded and holomorphic. However, such an entire function is limited
to a constant function due to Liouville‘s theorem. Thus, activation func-
tions which are bounded but not holomorphic in some singular points have
been applied practically so far. In fact, the learning algorithms for complex-
valued neural networks with real-imaginary type activation functions [3, 4]
and amplitude-phase type ones [5, 6] have been presented.

Some data involved with spatial direction and time periodicity are called
circular data. For dealing with circular data without amplitude components,
the data is represented by a complex variable which is defined not on the
whole complex domain but on the unit circle in the complex domain. The
phasor neuron proposed by Noest [7, 8] enables such a topologically appro-
priate information representation and belongs to a special class of a complex-
valued neuron. We have presented a backpropagation learning algorithm for
multilayer feedforward phasor neural networks to learn circular data. The
error function of this algorithm is given by the angular distance. In this
sense, the phasor neural network is different from circular node networks [9]
with an error function based on Euclidean distance.

In the remaining $\cdot$ of this section, we review the algorithm for learning
circular data [1]. The forward propagation is used to calculate the output
of each neuron for a given input to the network and evaluate the output
error. The backward propagation is used to optimize the weight and bias
parameters for minimizing the output error. The forward and backward
propagations are repeated for each sample data until the output error falls
below a small threshold.

Figure 1 (a) shows a schematic illustration of a single phasor neuron, which
receives the sum of weighted inputs:

$re^{i\varphi}$
$\equiv$

$w_{0}+ \sum_{j}w_{j}e^{i\theta_{j}}$
. (4)

Here $w_{j}$ denotes the weight parameter and $w_{0}$ denotes the bias parameter.
These parameters are assumed to be complex numbers. The single phasor

3



Input Hidden Output
layer layer layer

(b)

Figure 1: (a) A single phasor neuron. (b) A multilayer phasor neural network.

neuron operates only on the phase component $\varphi$ of the above summation.
The output of the neuron is given by

$\theta$ $=$ $f(\varphi)$ , (5)

where $f$ determines the characteristic of the phasor neuron. We assume that
the function $f$ is continuous and differentiable with respect to $\varphi$ , to derive a
gradient descent backpropagation algorithm. In the multilayer feedforward
phasor neural network as illustrated in Fig. l(b), input data is given to
the first input layer and then the outputs of each layer are transmitted to
the neurons in the next layer sequentially. Once the outputs of a layer are
obtained, the outputs of the next layer can be calculated. As a result of
sequential operations (forward propagation of the information), we finally
obtain the network output.

We summarize the forward propagation for an L-layer phasor neural net-
work. The number of neurons in the lth layer $(l=1, \ldots , L)$ is denoted by $N_{l}$ .
The state of the jth neuron in the lth layer is denoted by $\theta_{j}^{l}(j=1, \ldots, N_{l})$ .
The weight parameter between the jth neuron in the $(l-1)$th layer and the
kth neuron in the lth layer is denoted by $w_{kj}^{(l)}(j=1, \ldots, N_{l-1}, k=1, \ldots, N_{l})$ .
The bias constant parameters for the kth neuron in the lth layer are denoted
by $w_{k0}^{(l)}(k=1, \ldots, N_{l})$ . The weight and bias parameters are assumed to be
complex numbers. We focus on the kth neuron in the lth layer. It receives
the sum of weighted inputs from the previous layer as follows:

$r_{k}^{(l)}\exp(i\varphi_{k}^{(l)})$ $\equiv w_{k0}^{(l)}+\sum_{j=1}^{N_{l-1}}w_{kj}^{(l)}\exp(i\theta_{j}^{(l-1)})$ , $k=1,$ $\ldots,$
$N_{l}$ . (6)

By using an activation function $f$ : $S^{1}arrow S^{1}$ , the output of the neuron is

4



given by

$\theta_{k}^{(l)}$ $=$ $f(\varphi_{k}^{(l)}))$ $k=1,$ $\ldots,$
$N_{l}$ . (7)

When the weight and bias parameter values are randomly assigned, the net-
work output obtained by the forward propagation is generally different from
the desired output.

To estimate a system characterizing the sample data, we consider an error
function to evaluate the difference between a network output and a desired
output as follows:

$E_{p}$ $=$ $\frac{1}{2}\sum_{k=1}^{N_{L}}|e^{i\theta_{k}^{(L)}}-e^{i\hat{\theta}_{k}^{(L)}}|^{2}$

$=$ $\sum_{k=1}^{N_{L}}\{1-\cos(\theta_{k}^{(L)}-\hat{\theta}_{k}^{(L)})\}$ , (8)

which is based on the angular distance. The non-negative error function $E_{p}$

vanishes if and only if the current and desired outputs are the same.
The weight and bias parameters are corrected so that the error function

decreases, as follows:

$\tilde{w}_{kj}^{(l)}$ $=$ $w_{kj}^{(l)}- \eta(\frac{\partial E_{p}}{\partial w_{kj}^{(l)R}}+i\frac{\partial E_{p}}{\partial w_{kj}^{(l)I}})$ , (9)

where $w_{kj}^{(l)}=w_{kj}^{(l)R}+iw_{kj}^{(l)I}$ represents the current parameter value. The real
and imaginary parts of the complex numbers are indicated by the superscripts
$R$ and $I$ , respectively. The variation of the parameter is proportional to the
negative value of the gradient vector. The learning rate $\eta>0$ corresponds
to the step size of the weight updates. Using the chain rule, we obtain

$( \frac{\partial E_{p}}{\partial w_{kj}^{(l)R}}+i\frac{\partial E_{p}}{\partial w_{kj}^{(l)I}})=\frac{\partial E_{p}}{\partial\theta_{k}^{(l)}}f’(\varphi_{k}^{(l)})\exp\{i(\varphi_{k}^{(l)}-\theta_{j}^{(l-1)}+\pi/2)\}/r_{k}^{(l)},$(10)

The derivative $\partial E_{p}/\partial\theta_{k}^{(l)}$ is alocal error which can be computed from the local
errors in the post-layer. The local error is propagated backwards. Hence, this
is called a backpropagation algorithm. The local error is calculated by the
following recursive formula:

$\frac{\partial E_{p}}{\partial\theta_{k}^{(L)}}$ $=$ $\{\begin{array}{ll}\sin(\theta_{k}^{(L)}-\hat{\theta}_{k}^{(L)}) (l=L),\sum_{m=1}^{N_{i+1}}\frac{\partial E_{p}}{\partial\theta_{m}^{(l+1)}}\frac{\partial\theta_{m}^{(l+1)}}{\partial\theta_{k}^{(l)}} (l=L-1, \ldots, 1),\end{array}$ (11)

5



where

$\frac{\partial\theta_{m}^{(l+1)}}{\partial\theta_{k}^{(l)}}$
$=f’( \varphi_{m}^{(l+1)})\frac{w_{mk}^{(l+1)R}\cos(\varphi_{m}^{(l+1)}-\theta_{k}^{(l)})+w_{mk}^{(l+1)I}\sin(\varphi_{m}^{(l+1)}-\theta_{k}^{(l)})}{r_{m}^{(l+1)}}$ .

The forward propagation is used to calculate the current output error
and the backward propagation is used to calculate the local errors. The se-
quence of updates in every neuron is repeat$ed$ until the output error becomes
sufficiently small. The above algorithm is represented as a discrete-time dy-
namical system where weight and bias parameters are the state variables.
Since all the weight and bias parameters are updated, the total number of
the state variables is given by $\sum_{l=1}^{L}N_{l+1}(N_{l}+1)$ . Analyzing the system from
dynamical systems viewpoint could be useful to understand the performance
of the algorithm, e.g. convergence speed and effective initial conditions. How-
ever, the analysis is difficult when the number of state variables is large. To
get an insight into the dynamics of the algorithm, we consider the algorithm
for a single phasor neuron in the next section.

3 Analysis of the algorithm for a single pha-
sor neuron

3.1 System reduction
We consider a two-layer network with one input and one output, i.e. $N_{1}=$

$N_{2}=1$ . The nonlinear transformation of this network is essentially per-
formed by a single phasor neuron. We suppose that a single pair of input
pattern $\hat{\theta}_{1}^{(1)}=\theta_{in}$ and output one $\hat{\theta}_{1}^{(2)}=\theta_{out}$ is given. The weighted sum
transmitted to the neuron is given by

$r_{1}^{(2)}e^{i\varphi_{1}^{(2)}}$
$=$

$w_{10}^{(2)}+w_{11}^{(2)}e^{i\theta_{1}^{(1)}}$ (12)

By assuming $w_{10}^{(2)}=0$ , we obtain

$r_{1}^{(2)}$ $=$ $|w_{11}^{(2)}|$ , (13)
$\varphi_{1}^{(2)}$ $=$ $\arg(w_{11}^{(2)})+\theta_{1}^{(1)}$ . (14)

Hence, the output is given by

$\theta_{1}^{(2)}$ $=$ $\varphi_{1}^{(2)}=\arg(w_{11}^{(2)})+\theta_{1}^{(1)}$ . (15)

From Eqs. (9)$-(11)$ , the algorithm is written as

$\tilde{w}_{11}^{(2)}$ $=$ $w_{11}^{(2)}-i\eta\sin(\theta_{1}^{(2)}-\hat{\theta}_{1}^{(2)})\exp\{i(\varphi_{1}^{(2)}-\theta_{1}^{(1)})\}/r_{1}^{(2)}$. (16)

6



Substituting Eqs. (13)-(15) into the above equation, we get

$\tilde{w}_{11}^{(2)}$ $=w_{11}^{(2)}-i\eta\sin(\arg(w_{11}^{(2)})+\hat{\theta}_{1}^{(1)}-\hat{\theta}_{1}^{(2)})e^{i\arg(w_{11}^{(2)})}/|w_{11}^{(2)}|$ . (17)

By rewriting $w_{11}^{(2)}$ as $w_{k}$ to represent the weight parameter value after $k$

iterations and introducing $\delta\equiv\theta_{out}-\theta_{in}=\hat{\theta}_{1}^{(2)}-\hat{\theta}_{1}^{(1)}$ , the update scheme is
represented by the following dynamical system:

$w_{k+1}$ $=w_{k}-i\eta\sin(\arg(w_{k})-\delta)w_{k}/|w_{k}|^{2}$ . (18)

The learning rate $\eta>0$ and the input-output difference $\delta$ are the system
parameters. In the rest of this section, we analyze the system (18).

3.2 Stability analysis
To examine the dynamics of system (18) with any $\delta$ , it is enough to investigate
the case of $\delta=0$ . It is because the transformation of $w_{k}arrow w_{k}e^{i\theta}$ results in
the following system:

$w_{k+1}$ $=$ $w_{k}-i\eta\sin(\arg(w_{k}))w_{k}/|w_{k}|^{2}$ . (19)

Fixed points From Eq. (19), a fixed point $w^{*}$ satisfies

$i\eta\sin(\arg(w^{*}))w^{*}/|w^{*}|^{2}$ $=$ $0$ . (20)

Therefore, the set of fixed points is given by

$A^{+}$ $=$ $\{w^{*}|\arg(w^{*})=0\}$ , (21)
$A^{-}$ $=$ $\{w^{*}|\arg(w^{*})=\pi\}$ . (22)

It should be noted that a convergence to a fixed point in $A^{+}$ implies a suc-
cessful learning of the sample data.

Symmetric property The behavior of the system (19) is symmetric with
respect to the real axis. Suppose that $w_{k}=r_{k}e^{i\varphi_{k}}$ is transformed into
$w_{k}’=r_{k}e^{i\varphi_{k}’}=r_{k}e^{-i\varphi_{k}}$ . Then, it follows $w_{k}=r_{k}e^{-i\varphi_{k}’}$ . By substituting
this equation into Eq. (19), we obtain the equivalent dynamical system for
$w_{k}’$ . Hence, the system is invariant under the above transformation.

7



System decomposition The system (19) can be rewritten as follows:

$r_{k+1}e^{\varphi_{k+1}}$ $=$ $(1+d_{k}^{2})^{1/2}r_{k}e^{i(\varphi_{k}+\alpha_{k})}$ , (23)

where $d_{k}=\eta\sin\varphi_{k}/r_{k}^{2}$ and $\alpha_{k}$ is defined as an argument satisfying $\cos\alpha_{k}=$

$1/(1+d_{k}^{2})^{1/2}$ and $\sin\alpha_{k}=-d_{k}/(1+d_{k}^{2})^{1/2}$ . Hence, the amptitude and phase
components can be decomposed as follows:

$r_{k+1}$ $=$ $(r_{k}^{2}+ \frac{\eta^{2}\sin^{2}\varphi_{k}}{r_{k}^{2}})^{1/2}$ , (24)

$\varphi_{k+1}$ $=$ $\varphi_{k}+\alpha_{k}$ . (25)

Therefore, it is obvious that the radius of the orbit monotonically increases
unless the state is a fixed point. This fact can be confirmed in Fig. 2 where
the orbits starting from initial conditions with a fixed radius are shown. In
Figs. 2(a) and (b), all the orbits seem to stay in the one side of the real axis.
However, in Fig. 2(c), there is an orbit which changes the side with respect
to the real axis as marked by the filled circles. We investigate the condition
for the orbit to change the side before and after an update, by comparing
the signs of $\sin\varphi_{k+1}$ and $\sin\varphi_{k}$ . We obtain

$\frac{\sin\varphi_{k+1}}{\sin\varphi_{k}}=\frac{\sin(\varphi_{k}+\alpha_{k})}{\sin\varphi_{k}}$ $=$ $\frac{1}{(1+d_{k}^{2})^{1/2}}(1-\eta\cos\varphi_{k}/r_{k}^{2})$ . (26)

Therefore, the sign changes if $\cos\varphi_{k}>r_{k}^{2}/\eta$ . Such a region is shown in Fig. 3.
When $r_{0}>\sqrt{\eta}$ , the orbit holds the side until its convergence to a fixed point
because $r_{k}$ is monotonically increasing. This condition is satisfied by the
cases in Figs. 2(a) and (b), while not in Fig. 2(c).

Stability analysis The local stability of the fixed points in $A^{+}$ and $A^{-}$

is investigated. Suppose that a fixed point $w^{*}=r$ with $\arg(w^{*})=0$ is
perturbed by $\epsilon$ in the phase direction. By substituting $\varphi_{k}=0+\epsilon_{k}$ into
Eq. (25), we get

$\epsilon_{k+1}$ $\sim$ $\epsilon_{k}-\eta\sin\epsilon_{k}/r_{k}^{2}(1+d_{k}^{2})^{1/2}$ . (27)

Here we adopted an approximation $\alpha_{k}\sim\sin\alpha_{k}$ for $\alpha_{k}\ll 1$ . Since $\epsilon_{k}$ con-
verges to $0$ , the fixed point $r(\geq 0)$ is stable. Therefore, the set $A^{+}$ is
composed of stable fixed points.

Similarly, suppose that a fixed point $w^{*}=-r$ with $\arg(w^{*})=\pi$ is per-
turbed by $\epsilon$ in the phase direction. By substituting $\varphi_{k}=\pi+\epsilon_{k}$ into Eq. (25),
we get

$\epsilon_{k+1}$
$\sim$ $\epsilon_{k}+\eta\sin\epsilon_{k}/r_{k}^{2}(1+d_{k}^{2})^{1/2}$ . (28)

8



$-3$ $-2$ $-1$ $0$ 1
$w^{R}$

2 3

$-2$ $-1$ $0$ 1 2
$w^{R}$

-1012 3 4 5 6
$w^{R}$

Figure 2: Behavior of the dynamical system (18) with $\eta=1$ . The solid line
indicates the set $A^{+}$ of stable fixed points. In each panel, 50 initial conditions
are distributed on the circles with $|w_{0}|=2$ (top), $|w_{0}|=1$ (middle), and
$|w_{0}|=0.2$ (bottom).

9



$-2$ $-1$ $0$ 1 2
$w^{R}$

Figure 3: The region (bounded by the solid curve) where the orbit moves to
the opposite side of the real axis by the next update.

Since $\epsilon_{k}$ does not converge to $0$ , the fixed $point-r(<0)$ is unstable. There-
fore, the set $A^{-}$ are composed of unstable fixed points.

In conclusion, any initial condition excluding the point at infinity con-
verges to the global attractor $A^{+}$ where the argument of $w$ is zero. This
means that the learning is successful for any initial condition in the original
system (18).

3.3 Convergence time
It has been guaranteed that the learning is successful for almost all initial
conditions. Next we focus on transient dynamics of the system (19). As
shown in Fig. 2, the time needed for an orbit to reach the stable fixed point
is dependent on the initial condition of the algorithm. The convergence time
is closely related to the learning performance of the phasor neural network.
Figure 4 shows the convergence time for different values of the learning rate
$\eta$ . We can see that the initial conditions close to the origin require a relatively
long time steps for convergence. As the learning rate $\eta$ increases, the area
of such initial conditions increases. Therefore, the weight parameters which
are initially randomly assigned should be distributed apart from the origin.
If a learning rate is changed, accordingly the initial weight parameter values
should also be appropriately given. The numerical result for a single phasor
neuron would be useful to improve the effectiveness of the backpropagation
algorithm for phasor neural networks.

10



$-0.2$ $-0.1$ $0$ 0.1
$w^{R}$

0.2

0.1

$-\geq$ $0$

$-0.1$

$-0.2$
$-0.2$ $-0.1$ $0$ 0.1 0.2

$w^{R}$

0.2

0. 1

$-\geq$ $0$

$-0.1$

$-0.2$
$-0.2$ $-0.1$ $0$ 0.1 0.2

$w^{R}$

Figure 4: Dependence of the convergence time on the initial conditions. (Top)
$\eta=0.2$ . (Middle) $\eta=1$ . (Bottom) $\eta=2$ .

11



4 Summary
We have investigated the performance of a learning algorithm for a phasor
neural network from the viewpoint of dynamical system. The analysis of
the simplest case has shown that the gradient descent algorithm has a set
of globally stable fixed points, where the learning error vanishes. Therefore,
the learning is successful for almost all initial conditions for the algorithm.
However, the convergence time is largely influenced by the initial condition.
We have demonstrated that the initial conditions close to the origin require
a very long convergence time. The numerical simulation has shown that the
area of such initial conditions increases as the learning rate increases.

References
[1] G. Tanaka and K. Aihara. Backpropagation learning algorithm for mul-

tilayer phasor neural networks. In Proc. 16th Int. Conf. Neural Infor-
mation Processing: Part 1, Lecture Notes in Computer Science, pages
484-493, 2009.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. Parallel Distributed Processing,
1:318-362, 1986.

[3] N. Benvenuto and F. Piazza. On the complex backpropagation algorithm.
IEEE Trans. Signal Processing, $40(4):967-969$ , 1992.

[4] T. Nitta. An extension of the back-propagation algorithm to complex
numbers. Neural Networks, 10: 1391-1415, 1997.

[5] G. M. Georgiou and C. Koutsougeras. Complex domain backpropagation.
IEEE Trans. CAS-II, $39(5):330-334$ , 1992.

[6] A. Hirose. Continuous complex-valued back-propagation learning. Elec-
tronics Lett., 28(20):1854-1855, 1992.

[7] A. J. Noest. Associative memory in sparse phasor neural networks. Eu-
rophys. Lett., 6(6):469-474, 1988.

[8] A. J. Noest. Discrete-state phasor neural networks. Phys. Rev. A,
38:2196-2199, 1988.

[9] M. J. Kirby and R. Miranda. Circular nodes in neural networks. Neu-
ral Comp., 8:390-402, 1996.

12


