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1. INTRODUCTION

In the study of dynamical systems, it is often important to study the be-
havior of orbits of “most” points. For complex rational maps in one vari-
able, it is well-known that the orbit of almost every point in the Julia set
accumulates to the post-critical set.

Shishikura and the author [IS] introduced a class of maps $9_{1}$ with a par-
abolic fixed point, which is invariant under parabolic and near-parabolic
renormalization operators. This allows us to construct a decreasing se-
quence of neighborhoods of the fixed point containing the post-critical set
of a given infinitely renormalizable quadratic polynomials in the sense of
near-parabolic renormalization [BC]. Therefore, almost all points in the
Julia set eventually enters those neighborhoods and never escapes.

This type of argument is often used in proving no invariant line field for
infinitely renormalizable maps. To do this, we need to pullback (parts of)
those neighborhoods univalently near a given point with some properties
holding for almost every point in the Julia set. To get such injective pull-
backs, it is important to know how an orbit enters to those neighborhoods.

Our result, combined with Shishikura’s constmction of such neighbor-
hoods for perturbations of maps in $F_{1}$ , gives a control of such entrance to
neighborhoods:

Theorem 1.1. If the parameter $\eta$ in the definition of $\mathcal{F}_{1}’$ satisfies $6<\eta<$
$13$ , then the pambolic renormalization opemtor $R_{0}$ : $\mathcal{F}_{1}’arrow r_{1}$ defined
in [IS] satisfies that for any $f\in F_{1}$ , the domain Dom $R(f)$ and the mnge
Range $R(f)$ satisfies

Dom $R_{0}(f)\Subset$ Range $R_{C}(f)$ .
Since the near-parabolic renormalization operator $R_{\alpha}$ for small $\alpha$ with

$| \arg\alpha|<\frac{\pi}{4}$ or $| \arg\alpha|<-\frac{\pi}{4}$ , depends continuously on $\alpha$ and $\mathbb{R}_{\alpha}arrow \mathcal{R}_{0}$ as
$\alphaarrow 0$ , we immediately have the following:
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Corollary 1.2. Under the same assumption, the same conclusion holdsfor
near-pambolic renomalization opemtor $\mathbb{R}_{\alpha}$ : $\mathcal{F}_{1}’arrow r_{1}$ when $\alpha$ is suffi-
ciently small.

For $f\in \mathcal{F}_{1}’$ and an appropriate $\alpha\in \mathbb{R}/\mathbb{Q}$ (precisely, the coefficients of
the continued fraction of $\alpha$ are uniformly bounded from below by some
universal constant), $f_{\alpha}=e^{2\pi i\alpha}f$ for $f\in \mathcal{F}_{1}’$ has an irrationally indifferent
fixed point at $0$ . Shishikura consmlcted an abstract Riemann surface $S_{n}$

and a univalent map $\iota_{n}$ : $S_{n}arrow \mathbb{C}$ such that the image $\Omega_{n}^{*}=\iota_{n}(S_{n})$ is a
punctured neighborhood of $0$ containing the post-critical set. Furthermore,
$S_{n}$ is constmcted by cutting and gluing a lot of copies of the domain and the
range of the n-th near parabolic renormalization of $f_{\alpha}$ in an appropriate way.
Therefore by the above corollary, we have $f_{\alpha}(\Omega_{n})\supset\Omega_{n}$ and the “entrance”

$f_{\alpha}^{arrow 1}(f_{\alpha}(\Omega_{n}))\cap\Omega_{n-1}\backslash \Omega_{n}$

is contained in $N_{n}\backslash N_{n}’$ , where $N_{n}\supset N_{n}’$ are small neighborhoods of the
critical point, defined in terms of the abstract Riemann surfaces $S_{n-1}$ and
$S_{n}$ .

2. DYNAMICS NEAR A PARABOLIC FIXED POINT

2.1. Fatou coordinates. Let $f(z)=z+a_{2}z^{2}+O(z^{3})$ be a germ of holomor-
phic maps at the origin. We only consider the case $a_{2}\neq 0$ . By changing the
coordinate by $z=- \frac{1}{a_{2}w}$ , it is conjugate to

(2.1) $F(w)=w+1+ \frac{b_{1}}{z}+O(\frac{1}{z^{2}})$ .

me value $1-b_{1}$ is called the holomorphic index of $f$ at $0$ . For a general
definition, see e.g., [M].

Theorem 2.1. For a holomorphic map of the form (2.1) and for any $0<$

$k<1$ , There exist some $L>0$ and conformal maps
$\Phi_{attr}$ : $\{|{\rm Im} w|>L-k{\rm Re} w\}arrow \mathbb{C}$

$\Phi_{rep}$ : $\{|{\rm Im} w|>L+k{\rm Re} w\}arrow \mathbb{C}$

such that $\Phi_{*}(F(w))=\Phi_{*}(w)+1(*=attr$, rep$)$ where both sides are defined.
They are unique up to post-composition by tmnslation.

Furthemore, they have expansions

$\Phi_{attr}(w)=w-b_{1}\log w+c_{attr}+O(1)$ ,

$\Phi_{rep}(w)=w-b_{1}\log w+c_{rep}+O(1)$ .

Here we let the branches of the logarithm coincide in $({\rm Im} w>|{\rm Re} w|+L)$ .
Observe that they differ by $2\pi i$ in $\{-{\rm Im} w>|{\rm Re} w|+L\}$ .
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2.2. $Hom$ maps. By Theorem 2.1, there exists $L>0$ such that both $\Phi_{attr}$

and $\Phi_{rep}$ are defined on $\{w\in \mathbb{C};|{\rm Im} w|>L, 0<{\rm Re} w<2\}$ .

Deflnition. Define maps $E_{f}$ : $\Phi_{rep}(\{|{\rm Im} w|>L, 0<{\rm Re} w<2\})arrow \mathbb{C}$ by

$E_{f}=\Phi_{attr}\circ\Phi_{rep}^{-1}$ .
Lemma 2.2. The $E_{f}$ defined above satisfies the following:

(1) $E_{f}(w+1)=E_{f}(w)+1$ .
(2) $c_{\pm}=$ $\lim_{{\rm Im} warrow\pm\infty}$ $E_{f}(w)-w$ exists.
(3) When $F$ has the form (2.1), then $c_{+}-c_{-}=2\pi ib_{1}$ .

Observe that the condition (3) comes from the difference of the branches
of the logarithm.

Since $\Phi_{attr}$ and $\Phi_{rep}$ are unique only up to addition by constants, we can
normalize them so that $E_{f}(w)-warrow 0$ as ${\rm Im} warrow\infty$ ; in other words, we
may assume $c_{+}=0$ . Therefore we have $E_{f}(w)-warrow-2\pi ib_{1}$ as ${\rm Im} warrow$

$-\infty$ .
Let $Exp^{\#}(w)=\exp(2\pi iw)$ and Ex$p^{}$ $(w)=\exp(-2\pi iw)$ . For a map $F$ of

the form (2.1), let
$R^{\#}(F)=Exp^{\#}\circ E_{f}o(Exp^{\#})^{-1}$ ,

(2.2)
$R^{b}(F)=\exp(-4\pi^{2}b_{1})$ Ex$p^{}$

$\circ E_{f}\circ(Exp^{b})^{-1}$ .

By Lemma 2.2 (1), $R^{*}(F)$ are holomorphic maps defined on $\{0<|z|<e^{-2\pi L}\}$

for $*=\#,$ $b$ . Furthermore, by Lemma 2.2 (2), $0$ is a removable singularity
and $R^{*}(F)$ can be extended holomorphically so that $0$ is a fixed point of
multiplier 1 for both $R^{\#}(F)$ and $R^{b}(F)$ because of the normalization.

Although $R\#(F)$ and $R^{b}(F)$ are not dynamical systems, we consider those
as (”geometric limits” of) dynamical systems. So as a germ at the origin,
$R^{\#}(F)$ and $R^{b}(F)$ are determined uniquely up to linear conjugacy, by the
uniqueness of the Fatou coordinates.

3. PARABOLIC RENORMALIZATION

Let $P(z)=z(1+z)^{2}$ and let $U$ be a domain containing $0$ . Consider a
family

$r_{1}(U)=\{f=P\circ\varphi^{-1}:\varphi(U)arrow \mathbb{C}\varphi..Uarrow \mathbb{C}:univalent\varphi(0)=0,\varphi’(0)=l’\}\cdot$

Then Shishikura and the author [IS] proved the following:

Theorem 3.1 (Inou-Shishikura). There exist domains $V’\Supset V\ni O$ such that
for any $f\in \mathcal{F}_{1}’(V)$ , its pambolic renormalizations $R\#(f)$ and $R^{b}(f)$ can be
nonnalized and extended to holomorphic maps in $\mathcal{F}_{1}(V’)$ .
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$arrow^{\Phi_{\infty p}}$

$\downarrow Exp^{\#}$

$arrow^{\Phi_{attr}}$

$\downarrow Exp\#$

$R\#(f)$

FIGURE 1. Parabolic renormalization $R^{\#}(f)$ for $\eta=2$ . Since
$e^{4\pi}\approx 286751$ is too Iarge, some parts in the renormalized
pictures are too large or too small to see.

By abuse of notation, we also denote those extensions by $R^{*}(f)$ . The
figure 1 shows how to define the parabolic renormalization operator $R\#$ :
$F_{1}(V)arrow f_{1}(V’)$ .

The domain $V’$ in the theorem is defined as follows: Fix $\eta>0$ . Let $K$

be the component of $P^{-1}(\overline{D(0,\frac{4}{27}e^{-2\eta})})$ containing-l, where $D(c, r)$ be the
open disk of radius $r$ centered at $c$ . Let

$V’=P^{-1}(D(0,$ $\frac{4}{27}e^{2\pi\eta}))\backslash ((-\infty),-1]\cup K)$ .

In [IS], we gave a proof of the theorem when $\eta=2$ , but the proof works
for any $2\leq\eta\leq 13$ (see [IS, \S 5.$N(a)$]. Note that $V$‘ becomes bigger and
$f_{1}(V’)$ becomes smaller as $\eta$ increases).
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Let

$Q(z)=z \frac{(1+\frac{1}{z})^{6}}{(1-\frac{1}{z})^{4}}$ , $\psi_{1}(z)=-\frac{4z}{(1+z)^{2}}$ , $\psi_{0}(z)=-\frac{4}{z}$ .

Then we have $Q=\psi_{0}^{-1}\circ P\circ\psi_{1}$ .
By this coordinate change, we can identify $F_{1}(V)$ (precisely speaking for

$V\subset \mathbb{C}\backslash (-\infty, -1])$ with

$F_{1}^{Q}(V_{Q})= \{F=Q\circ\varphi^{-1}:\varphi(V_{Q})arrow\hat{\mathbb{C}}\varphi:V_{Q}arrow \mathbb{C}\backslash 0\frac{\varphi(z)}{z}arrow 1(z.arrow\infty)univalent,$ $\}\cdot$

where $V_{Q}=\psi_{1}^{-1}(V)\cap \mathbb{C}\backslash$ D. Namely, the map
$F_{1}(V)\ni f\mapsto F=\psi_{0}^{-1}\circ F\circ\psi_{0}\in F_{1}^{Q}(V^{Q})$

is a bijection.
The domain $V$ in Theorem 3.1 is defined as follows: Let

$V_{Q}= \{x+iy\in \mathbb{C};(\frac{x-x_{E}}{a_{E}})^{2}+(\frac{y}{b_{E}})^{2}>1\}$ ,

where $x_{E}=-0.18,$ $a_{E}=1.24,$ $b_{E}=1.04$ and let $V=\psi_{1}(V_{Q})\cup\{0\}$ . Then
we have $V\Subset V’\Subset \mathbb{C}\backslash (-\infty, -1]$ (see [IS, Proposition 5.2]).

By Koebe 1/4 theorem, we can give a lower estimate of the size of the
domain of definition of $f\in F_{1}(V)$ .
Lemma 3.2. Let $f\in r_{1}(V)$ . Then the domain $\varphi(V)$ ofdefinition of $fconrightarrow$

tains the disk $D(O, r_{0})$ where $r_{0}= \frac{1}{1.14}$ .
The following theorem follows from the construction of $R^{*}(f)$ for $f\in$

$F_{1}(V)$ :
Theorem 3.3. Let $V$ and $V’$ be as in Theorem 3.1. For $f\in \mathcal{F}_{1}(V)$, let
$F=\psi_{0}^{-1}ofo\psi_{0}\in \mathcal{F}_{1}^{\prime Q}(V_{Q})$ has the expansion

$F(z)=z+10-c_{0}+ \frac{49-c_{1}}{z}+O(z^{-2})$ .
near $z=\infty$ . Then we have the following:

(1) $R^{\cdot}(f)\in F_{1}(V’)$ . In particular, $R^{*}(f)=\varphi_{*}\circ P$ for some univalent
maps $\varphi_{*}:V’arrow$ C.

(2) Let $D_{*}=\varphi_{*}(V’)$ and let

$\tilde{D}_{b}=\{z\in\hat{\mathbb{C}};(\frac{4}{27})^{2}\frac{\exp(4\pi^{2}b_{1})}{z}\in D_{b}\}$ ,

where $b_{1}= \frac{49-c_{1}}{(10-c0)^{2}}$ . Then $D_{\#}$ and $\tilde{D}_{b}$ are disjoint.
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In fact, the first part is the main result of [IS]. Moreover, as in Figure 1,
$R\#(f)$ and $n^{b}\omega$ are constructed by taking appropriate backward images of
(subsets $oQ$ a fundamental domain of the attracting Fatou coordinate of $f$.
Since we take different backward branches of the same fundamental domain
to construct $R\#(f)$ and $R^{b}(f)$ , their domains are necessanily disjoint. Tliere-
fore, the second statement just follows by checking the difference between
$Exp^{\#}\circ\Phi_{rep}$ and Ex$p^{}$ $\circ\Phi_{rep}$ and see how the domain for $cR^{b}(f)$ is mapped by
$Exp^{\#}\circ\Phi_{rep}$ . By the equations (2.2), the difference can be written in terms of
the holomorphic index.

4. PROOF OF THE THEOREM

First recall that $V\Supset V’$ . Hence for $f=Po\varphi^{-1}\in F_{1}(V)$ , its lower
parabolic renormalization $R^{b}(f)\in F_{1}(V‘)$ has the form $Q\circ(\varphi_{b})^{-1}$ where $\varphi_{b}$ :
$V’arrow \mathbb{C}$ is an univalent map. Therefore, $R^{b}(f)|_{\varphi_{b}(V)}$ : $\varphi_{b}(V)arrow \mathbb{C}\in F_{1}(V)$ is
an element of $r_{1}(V)$ . In particular, the domain $D_{b}$ of $R^{b}(f)contains\overline{D}(0, r_{0})$

by Lemma 3.2. Hence it follows that $\tilde{D}_{b}$ contains $\hat{\mathbb{C}}\backslash \overline{D}(0,r_{1})$ where

$r_{1}=( \frac{4}{27})^{2}\frac{\exp(4\pi^{2}{\rm Re} b_{1})}{r_{0}}$ .

Therefore, by Theorem 3.3, we have the following:

. Lemma 4.1. If$f\in F_{1}(V)$ satisfies the inequality

(4.1) $r_{1}< \frac{4}{27}e^{2\pi\eta}$ ,

then the domain $D_{\#}=Dom(R^{*}(f))$ of$R(f)$ is contained in the range Range$(R^{\cdot}(f))$ .
We need to check that the inequality (4.1) holds. To do this end, we first

give an estimate for $b_{1}$ .
Lemma 4.2. Let $\varphi$ : $V^{Q}arrow \mathbb{C}\backslash 0$ be a univalent map ofthe $fom$

(4.2) $\varphi(\zeta)=\zeta+c_{0}+\sum_{n=1}^{\infty}\frac{c_{n}}{\zeta^{n}}$ .

Then the following hold:
(1) $|c_{0}-c_{00}|<c_{01\max}$ where $c_{00}=0.18(=-x_{E})$ and $c_{01.\max}=2.28(=$

$2e_{1})$ .
(2) $|c_{1}|\leq(1.42)^{2}$ .

Proof. (1) is already proved in [IS, Lemma 5.22].
Since $V^{Q}\subset \mathbb{C}\backslash \overline{D}(0,1.42)$, it follows that a map $\hat{\varphi}(z)=\frac{1}{1.42}\varphi(1.42z)$ is a

univalent map defined on $\mathbb{C}\backslash$ ID having the form

$\hat{\varphi}(z)=z+\frac{c_{0}}{1.42}+\frac{c_{1}}{(1.42)^{2}z}+O(z^{-2})$.
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Therefore, (2) follows from the area theorem. $\square$

Corollary 4.3. Let $F=Qo\phi^{-1}\in F_{1}^{Q}(V^{Q})$ . If $\varphi$ is of the form (4.2), then

${\rm Re} b_{1} \leq\frac{49+(1.42)^{2}}{(10-2.46)^{2}}$ .
In particular,

$r_{1} \leq 1.14(\frac{4}{27})^{2}\exp(4\pi^{2}\frac{49+(1.42)^{2}}{(10-2.46)^{2}})$

for any $f\in F_{1}(V)$ .

Proof. It directly follows from Lemma 4.2 and $b_{0}= \frac{49-.1}{(10-c_{0})^{2}}$ . $\square$

Therefore, we have proved the following:
Theorem 4.4. If $\eta(\eta\leq 13)$ satisfies

$\eta>\frac{1}{2\pi}\log(\frac{4\cross 1.14}{27})+2\pi\frac{49+(1.42)^{2}}{(10-2.46)^{2}}$ ,

then the domain of $R^{*}(f)\in r_{1}(V‘)$ is contained in the range for any $f\in$

$\mathcal{F}_{1}(V)$ .
Rigorous numerical computation shows that the right hand side lies in the

interval
[5.355225163872033, 5.355225163872037].

In particular, the theorem follows when $\eta\geq 6$ .
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