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1 Introduction
We consider Axiom A regular polynomial skew products on $\mathbb{C}^{2}$ . It is of the
form : $f(z, w)=(p(z), q(z, w))$ , where $p(z)=z^{d}+\cdots$ and $q_{z}(w)=q(z, w)=$

$w^{d}+\cdots$ are polynomials of degree $d\geq 2$ . Then its k-th iterate is expressed
by :

$f^{ok}(z, w)=(p^{ok}(z), q_{p^{k-1}(z)}o\cdots oq_{z}(w))=:(p^{ok}(z), Q_{z}^{ok}(w))$ .
Hence it preserves the family of fibers $\{z\}\cross \mathbb{C}$ and this makes it possible to
study its dynamics more precisely. Let $K$ be the set of points with bounded
orbits and set $K_{z}:=\{w\in \mathbb{C};(z, w)\in K\}$ and $K_{J_{p}}$ $:=K\cap(J_{p}\cross \mathbb{C})$ . The fiber
Julia set $J_{z}$ is the boundary of $K_{z}$ .

Let $\Omega$ be the set of non-wandering points for $f$ . Then $f$ is said to be
Axiom $A$ if $\Omega$ is compact, hyperbolic and periodic points are dense in $\Omega$ . For
polynomial skew products, Jonsson [J2] has shown that $f$ is Axiom A if and
only if the following three conditions are satisfied :

(a) $p$ is hyperbolic,
(b) $f$ is vertically expanding over $J_{p}$ ,
(c) $f$ is vertically expanding over $A_{p}:=$ {attracting periodic points of $p$}.
Here $f$ is vertically expanding over $Z\subset \mathbb{C}$ with $p(Z)\subset Z$ if there exist $\lambda>1$

and $C>0$ such that $|(Q_{z}^{ok})’(w)|\geq C\lambda^{k}$ holds for any $z\in Z,$ $w\in J_{z}$ and $k\geq 0$ .
We are interested in the dynamics of $f$ on $J_{p}\cross \mathbb{C}$ because the dynamics

outside $J_{p}\cross \mathbb{C}$ is fairly simple. Consider the critical set

$C_{J_{p}}=\{(z, w)\in J_{p}\cross \mathbb{C};q_{z}’(w)=0\}$

over the base Julia set $J_{p}$ . Let $\mu$ be the ergodic measure of maximal entropy
for $f$ (see Fornaess and Sibony [FSl]). Its support $J_{2}$ is called the second Julia
set of $f$ . Let $D_{J_{p}}$ $:= \bigcup_{n\geq 1}f^{on}(C_{J_{p}})$ be the postcritical set of $C_{J_{p}}$ . Jonsson [J2]
has shown that

(d) $J_{2}=\overline{\bigcup_{z\in J_{p}}\{z\}\cross J_{z}}$,
(e) the condition $(b)\Leftrightarrow D_{J_{p}}\cap J_{2}=\emptyset$ ,
(f) $J_{2}$ is the closure of the set of repelling periodic points of $f$ .
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By the Birkhoff ergodic theorem, $\mu-a.e$ . $x$ has a dense orbit in $J_{2}$ . Es-
pecially, $J_{2}=supp\mu$ is transitive. Hence $J_{2}$ coincides with the basic set of
unstable dimension two. See also [FS2].

For any subset $X$ in $\mathbb{C}^{2}$ , its accumulation set is defined by

$A(X)= \bigcap_{N\geq 0}\overline{\bigcup_{n\geq N}f^{on}(X)}$ .

DeMarco & Hruska [DHl] defined the pointwise and component-wise accumu-
lation sets of $C_{J_{p}}$ respectively by

$A_{pt}(C_{J_{p}})=\overline{\bigcup_{x\in C_{J_{p}}}A(x)}$ and $A_{cc}(C_{J_{p}})=\overline{\bigcup_{C\in C(C_{J_{p}})}A(C)}$ ,

where $C(C_{J_{p}})$ denotes the collection of connected components of $C_{J_{p}}$ . It follows
from the definition that

$A_{pt}(C_{J_{\rho}})\subset A_{cc}(C_{j_{p}})\subset A(C_{J_{p}})$ .

It also follows that $A_{pt}(C_{J_{p}})=A_{cc}(C_{J_{p}})$ if $J_{p}$ is a Cantor set and $A_{cc}(C_{J_{p}})=$

$A(C_{J_{p}})$ if $J_{p}$ is connected.
Let $\Lambda$ be the closure of the set of saddle periodic points in $J_{p}\cross$ C. It

decomposes into a disjoint union of saddle basic sets: $\Lambda=u_{i=1}^{m}\Lambda_{i}$ . Put
$\Lambda_{z}=\{w\in \mathbb{C};(z, w)\in\Lambda\}$ . The stable and unstable sets of $\Lambda$ , the local stabe
and local unstable manifolds of $x\in\Lambda$ and $\hat{x}\in\hat{\Lambda}$ are respectively defined by

$W^{s}(\Lambda)$ $=$ $\{y\in \mathbb{C}^{2};f^{ok}(y)arrow\Lambda\}$ ,
$W^{u}(\Lambda)$ $=$ { $y\in \mathbb{C}^{2};\exists$ backward orbit $\hat{y}=(y_{-k})$ tending to $\Lambda$ },

$W_{\delta}^{s}(x)$ $=$ $\{y\in \mathbb{C}^{2};||f^{ok}(y)-f^{ok}(x)||<\delta, \forall k\geq 0\}$ ,
$W_{\delta}^{s}(\hat{x})$ $=$ $\{y\in \mathbb{C}^{2};\exists\hat{y}s.t. ||y_{-k}-x_{-k}||<\delta,\forall k\geq 0\}$ .

On $\Lambda,$ $f$ is contracting in the fiber direction and

$W_{\delta}^{s}(x)\subset\{z\}\cross \mathbb{C},$ $x=(z, w)\in\Lambda$ .

Theorem A. ([DHl])

$A_{pt}(C_{J_{p}})=\Lambda$ , $A(C_{J_{p}})=W^{u}(\Lambda)\cap(J_{p}\cross \mathbb{C})$ .

Theorem B. ([DHl, DH2])

$A_{cc}(C_{J_{p}})=A_{pt}(C_{J_{p}})\Rightarrow\forall C\in C(C_{J_{p}}),$ $C\cap K=\emptyset$ or $C\subset K$ . (1)
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Theorem C. ([DHl, DH2])

$A(C_{J_{p}})=A_{pt}(C_{J_{p}})\Leftrightarrow$ the map $z\mapsto\Lambda_{z}$ is continuous in $J_{p}$ . (2)

Under the assumption $W^{u}(\Lambda)\cap W^{s}(\Lambda)=\Lambda$,

$A(C_{j_{p}})=A_{pt}(C_{J_{p}})\Leftrightarrow$ the map $z\mapsto K_{z}$ is continuous in $J_{p}$ . (3)

As for the assumption in the above theorem, we have

Lemma 1. $W^{u}(\Lambda)\cap W^{s}(\Lambda)=\Lambda\Leftrightarrow W^{u}(\Lambda_{i})\cap W^{s}(\Lambda_{j})=\emptyset$ if $i\neq j$ .

Sumi [S] gives an example of Axiom A polynomial skew product which does
not satisfy the condition in the above lemma. See the last section. It is also
(incorrectly) described as Example 5.10 in [DHl]. See also [DH2].

We define a relation $\succ$ among saddle basic sets by

$\Lambda_{i}\succ\Lambda_{j}$ if $(W^{u}(\Lambda_{i})\backslash \Lambda_{i})\cap(W^{s}(\Lambda_{j})\backslash \Lambda_{j})\neq\emptyset$.

A cycle is a chain of basic sets :

$\Lambda_{i_{1}}\succ\Lambda_{i_{2}}\succ\cdots\succ\Lambda_{i_{n}}=\Lambda_{i_{1}}$ .

For Axiom A open endomorphisms, there is no trivial cycle because $W^{u}(\Lambda_{i})\cap$

$W^{s}(\Lambda_{i})=\Lambda_{i}$ holds for any $i$ . See [J2], Proposition A.4. Jonsson has also
shown that, for Axiom A polynomial skew products on $\mathbb{C}^{2}$ , the non-wandering
set $\Omega$ coincides with the chain recurrent set $\mathcal{R}$ . This leads to the following
lemma.

Lemma 2. ([J2], Corollary 8.14) Axiom A polynomial skew products on $\mathbb{C}^{2}$

have no cycles.

Set $\Lambda_{0}:=\emptyset,$ $W^{s}(\Lambda_{0}):=(J_{p}\cross \mathbb{C})\backslash K$ and $C_{i}:=C_{J_{p}}\cap W^{s}(\Lambda_{i})(0\leq i\leq m)$ .
If we consider in $\mathbb{P}^{2},$ $\Lambda_{0}$ should be the superattracting fixed point $\{[0 : 1 : 0]\}$ .

We will give characterizations of the equalities $A_{cc}(C_{J_{p}})=A_{pt}(C_{J_{p}})$ and
$A_{pt}(C_{J_{p}})=A(C_{J_{p}})$ in terms of $C_{i}$ .

Lemma 3. $C_{J_{p}}=u_{i=0}^{m}C_{i}$ .

Note that $A(C_{i})\supset A_{pt}(C_{i})=\Lambda_{i}$ for any $i\geq 0$ .
The author would like to thank Hiroki Sumi for helpful discussion on his

example.
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2 Results
Theorem 1.

$A_{cc}(C_{J_{p}})=A_{pt}(C_{J_{p}})=\forall C\in C(C_{J_{p}}),$ $0\leq\exists i\leq m$ such that $C\subset C_{i}$ . (4)

In terms of $C_{i}$ , the condition in (1) is expressed by

$\forall C\in C(C_{J_{p}})$ , $C\subset C_{0}$ or $C \subset\bigcup_{i=1}^{m}C_{i}$ .

Hence, if $m=1$ , that is, $\Lambda$ itself is a basic set, then the condition in (4)
coincides with that in (1). In general, the condition in (4) is stronger than
that in (1).

We have another characterization of $A_{pt}(C_{J_{p}})=A(C_{J_{p}})$ in terms of $C_{i}$ .

Theorem 2. For any $i\geq 0$ , we have

$A(C_{i})=\Lambda_{i}\Leftrightarrow C_{i}$ is closed. (5)

Consequently we have

$A_{pt}(C_{J_{p}})=A(C_{J_{p}})\Leftrightarrow C_{i}$ is closed for any $i\geq 0$ .

As for the condition in (3), we have

Theorem 3. The following three conditions are equivalent to each other.
$(a)C_{0}$ is closed,
$(b)A(C_{J_{p}})=W^{u}(\Lambda)\cap W^{s}(\Lambda)$ ,
$(c)$ the map $z\mapsto K_{z}$ is continuous in $J_{p}$ .

As a corollary, we get the following.

Corollary 1. $W^{u}(\Lambda)\cap W^{s}(\Lambda)=\Lambda\Leftrightarrow C_{i}$ is closed for any $i\geq 1$ .
As for the condition in (2), we have the following,

Theorem 4. For each $j\geq 1$ ,

$C_{j}$ is open in $C_{J_{p}}$ $\Leftrightarrow$ $W^{u}(\Lambda_{j})\cap(J_{p}\cross \mathbb{C})=\Lambda_{j}$

$\Leftrightarrow$ $z\mapsto\Lambda_{g,z}$ is continuous in $J_{p}$ .

Consequently,

$\forall j\geq 1,$ $C_{j}$ is open in $C_{J_{p}}$ $\Leftrightarrow$ $W^{u}(\Lambda)\cap(J_{p}\cross \mathbb{C})=\Lambda$

$\Leftrightarrow$ $z\mapsto\Lambda_{z}$ is continuous in $J_{p}$ .

Recall that $C_{0}=C_{J},$ $\backslash K$ is always open in $C_{J_{p}}$ .
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3 Sumi $s$ example
Sumi [S] considers the following example.

$f(z, w)=((z^{2}-R)^{on},$ $w^{2^{n}}+ \frac{z+\sqrt{R}}{2\sqrt{R}}t_{n,\epsilon}(w))$ .

Here $R\gg 1,0<\epsilon\ll 1,$ $n$ is even and large, and

$t_{n,\epsilon}(w)=((w-\epsilon)^{2}-1+\epsilon)^{on}-w^{2^{n}}$

Let $\alpha<0$ and $\beta>0$ be the fixed points of $z^{2}-R$ . It satisfies the following.

$\bullet$ $J_{p}$ is a Cantor set in $D(-\sqrt{R}, r)\cup D(\sqrt{R}, r)$ for some $r$ .

$\bullet$ $J_{\alpha}$ is a quasicircle, while $J_{\beta}$ is a basilica.

$\bullet$ $\Lambda=\Lambda_{1}u\Lambda_{2}$ , where $\Lambda_{1}\subset\{\beta\}\cross \mathbb{C}$ is a single point.

$\bullet$ $C_{J_{p}}\subset K$ , i.e. $C_{0}=\emptyset$ , hence $z\mapsto K_{z}$ is continuous in $J_{p}$ .

$\bullet$ $C_{1}\subset\{\beta\}\cross \mathbb{C}$ is a finite set.

$\bullet$ $C_{2}=C_{J_{p}}\backslash C_{1}$ is open in $C_{J_{p}}$ and $\overline{C_{2}}\supset C_{1}$ .

$\bullet W^{u}(\Lambda_{1})\cap W^{s}(\Lambda_{2})\backslash \Lambda\neq\emptyset,$ i.e. $\Lambda_{1}\succ\Lambda_{2}$ .

$\bullet$ The map $z\mapsto\Lambda_{2,z}$ is continuous in $J_{p}$ .

$\bullet$ $A_{pt}(C_{J_{p}})=A_{cc}(C_{J_{p}})\neq A(C_{J_{p}})$ .

$J_{\alpha}$
$J_{\beta}$
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