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ABSTRACT. According to Sullivan’s dictionary [9], the Julia sets for iter-
ations of rational mappings and the limit sets of Kleinian groups are in
a close relationship. In [2], we proposed a hamework which unifies these
dynamical systems and explains the dictionary. More concretely, notions of
pseudosemigroups and their Fatou-Julia decompositions are introduced. In
this article, we will introduce a result that the action of a pseudosemigroup
on the Fatou set is non-expanding with respect to a Hermitian metric or a
volume form on the Fatou set, and give a rough sketch of the proof. This
article is an announcement of [2] and is a sequel to [3]. This is also based on
a talk given at $f2010$ Complex Dynamics conference–Integrated Research
on Complex Dynamics and its Related $Fields-\dot{}$ heId at Kyoto University.

Introduction

According to Sullivan $s$ dictionary [9], the Julia sets for iterations of rational
mappings and the limit sets of Kleinian groups are in a close relationship. The
Julia sets can be also defined for transversely holomorphic foliations of complex
codimension one [4], [6], [1]. Properties of the Julia sets of foliations are not yet
clear, however, the Fatou sets enjoy similar properties as classical ones. In [2],
we proposed a framework which unifies these dynamical systems and explains
the dictionary. More concretely, notions of pseudosemigroups and their Fatou-
Julia decompositions are introduced. Properties of Julia sets are still difficult
to study. On the other hand, we can show under a certain condition that there
exists a Hermitian metric or a volume form on the Fatou set which is ‘semi-
invariant’ (non-expanding, and invariant under locally invertible elements. See
Definition 2.2) under the action of the pseudosemigroup. In this sense, the
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action is tame on the Fatou sets. In this article, we will give a rough sketch of
the proof. This article an announcement of [2] and is a sequel to [3].
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1. Pseudosemigroups and Fatou-Julia decompositions

We first recall notions of pseudosemigroups and their Fatou-Julia decompos-

itions. The notion of pseudosemigroups has already appeared (cf. [8], [11]

and [7] $)$ . We will make use of a similar but different one.

Definition 1.1. Let $T$ be a topological space and $\Gamma$ be a family of continuous
mappings from open subsets of $T$ into $T$ . Then, $\Gamma$ is a pseudosemigroup (psg

for short) if the following conditions are satisfied.

1 $)$ $id_{T}\in\Gamma$ , where $id_{T}$ denotes the identity map of $T$ .
2 $)$ If $\gamma\in\Gamma$ , then $\gamma|_{U}\in\Gamma$ for any open subset $U$ of dom $\gamma$ .
3 $)$ If $\gamma_{1},$ $\gamma_{2}\in\Gamma$ and range $\gamma_{1}\subset$ dom $\gamma_{2}$ , then $\gamma_{2}0\gamma_{1}\in\Gamma$ , where dom $\gamma$ and

range $\gamma$ denotes the domain and the range of $\gamma$ , respectively.
4 $)$ Let $U$ be an open subset of $T$ and $\gamma$ continuous mapping defined on $U$ .

If for each $x\in U$ , there is an open neighborhood, say $U_{x}$ , of $x$ such that
$\gamma|_{U_{x}}$ belongs to $\Gamma$ , then $\gamma\in\Gamma$ .

If in addition $\Gamma$ consists of local homeomorphisms, namely, homeomorphisms
from domains to ranges, then $\Gamma$ is a pseudogroup (pg for short) if $\Gamma$ satisfies
1 $)$ , 2), 3) and the following conditions.

4‘ $)$ Let $U$ be an open subset of $T$ and $\gamma$ a homeomorphism from $U$ to $\gamma(U)$ .
If for each $x\in U$ , there is an open neighborhood, say $U_{x}$ , of $x$ such that
$\gamma|_{U_{x}}$ belongs to $\Gamma$ , then $\gamma\in\Gamma$ .

5 $)$ If $\gamma\in\Gamma$ , then $\gamma^{-1}\in\Gamma$ .

If $\Gamma$ is either a psg or pg, then we set for $x\in T$

$\Gamma_{x}=\{\gamma_{x}|x\in$ dom $\gamma\}$ .
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By abuse of notation, an element of $\Gamma_{x}$ is considered as an element of $\Gamma$ defined
on a neighborhood of $x$ .

In short, a psg is a pg but the inverse is not necessarily defined. One mmight
expect that a pg is a psg but it is not always the case.

Example 1.2. Let $T=\mathbb{C}P^{1}=\mathbb{C}\cup\{\infty\}$ and define an automorphism $f$ of
$\mathbb{C}P^{1}$ by $f(z)=-z$. We denote by $\Gamma$ the pg generated by $f$ , that is, the
smallest pg which contains $f$ . Let $U=\{z\in \mathbb{C}||z-2|<1\}$ and $V=f(U)$ . If
we set $\gamma=f|_{V}$ , then $\gamma\cup$ id: $V\cup Uarrow U$ is not an element of $\Gamma$ , because $\gamma\cup$ id
is not a homeomorphism. If $\Gamma$ were a psg, then $\gamma\cup$ id $\in\Gamma$ by the condition 4).

Definition 1.3. Let $(\Gamma, T)$ be a psg. We denote by $\mathscr{T}$ the family of relatively
compact open subsets of $T$ . If $T^{l}\in \mathscr{T}$ , then the restriction of $\Gamma$ to $T’$ is
defined by

$\Gamma_{T’}=$ { $\gamma\in\Gamma|$ dom $\gamma\subseteq T’$ and range $\gamma\subset T’$ }.

If $(\Gamma, T)$ is compactly generated, then we may assume that $(\Gamma_{T’}, T’)$ is equiva-
lent to $(\Gamma, T)$ . Roughly speaking, ‘compactly generated’ means that the dy-
namics of $(\Gamma, T)$ corresponds to a dynamical system on a closed manifold, and
‘equivalent’ means that two psg’s correspond to the same dynamical system.
For example, if $(\Gamma, T)$ is generated by a holonomy pseudogroup of a foliation
of a closed manifold, then $(\Gamma, T)$ is compactly generated. We need to choose
a complete transversal (transversal discs which are disjointly embedded in the
ambient manifold and which meet every leaf) in order to define a holonomy
pseudogroup. If we change the choice of complete transversals, then we obtain
pseudogroups which are equivalent. Another source of compactly generated
psg’s are rational mappings on $\mathbb{C}P^{1}$ . $(\Gamma, T)$ is also compactly generated if
$T=\mathbb{C}P^{1}$ and $\Gamma$ is generated by a rational semigroup [10] acting on $\mathbb{C}P^{1}$ . See
[2] for details.

Assumption 1.4. We assume that $\Gamma$ is generated by local biholomorphic
diffeomorphism of $\mathbb{C}^{q},$ $q>1$ , or by local biholomorphic diffeomorphisms of $\mathbb{C}$

or ramified coverings, where a holomorphic map, say $f$ , from an open set of $\mathbb{C}$ to
$\mathbb{C}$ is said to be ramified covering if there exist biholomorphic diffeomorphisms
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$\varphi$ from dom $f$ to a domain in $\mathbb{C}$ and $\psi$ from range $f$ to a domain in $\mathbb{C}$ such
that $\psi ofo\varphi^{-1}(z)=z^{n}$ holds for some positive integer $n$ , where $z\in$ range $\varphi$ .

Note that under our assumption, $\Gamma$ consists of holomorphic open mappings.

Definition 1.5. Let $T^{l}\in \mathscr{T}$ .
1 $)$ A connected open subset $U$ of $T’$ is a wF-open set (weak ‘Fatou‘ $-$ open

set) if the following conditions are satisfied:
(a) If $\gamma_{x}$ is the germ of an element of $\Gamma_{T’}$ at $x,$ $\gamma$ is defined on $U$ as an

element of $\Gamma$ , where $(\Gamma_{T’}, T’)$ is the restriction of $\Gamma$ to $T’$ .
(b) Let $\Gamma^{U}$ be the subset of $\Gamma$ which consists of elements of $\Gamma$ obtained

as in (a). Then $\Gamma^{U}$ is a normal family.
2 $)$ A connected open subset $V$ of $T’$ is an F-open set ( Fatou‘-open set) if

$\gamma\in\Gamma’$ and if dom $\gamma\subset V$ , then range $\gamma$ is a union of wF-open sets.

Definition 1.6. Let $(\Gamma, T)$ be a psg which fulfills Assumption 1.4. If $T’\in \mathscr{T}$ ,

then let $F(\Gamma_{T’})$ be the union of F-open subsets of $T’$ . Let $J(\Gamma_{T’})=T’\backslash F(\Gamma_{T’})$ ,
and $J_{0}( \Gamma)=\bigcup_{T\in F}J(\Gamma_{T’})$ . Let $J(\Gamma)$ be the closure of $J_{0}(\Gamma)$ and $F(\Gamma)=$

$T\backslash J(\Gamma)$ . We call $F(\Gamma)$ and $J(\Gamma)$ the Fatou set and the Julia set of $(\Gamma,T)$ ,
respectively.

Roughly speaking, $J(\Gamma)$ is defined as follows. We regard $(\Gamma_{T’}, T’)$ as an
approximation of $(\Gamma, T)$ , and define $J(\Gamma_{T’})$ . Indeed, it can be shown that if
$(\Gamma, T)$ is compactly generated, then $J(\Gamma_{T’})=J(\Gamma)\cap T’$ holds for sufficiently
large $T’$ . If $T’\subset T’’$ , then $J(\Gamma_{T’})\subset J(\Gamma_{T’’})\cap T’$ so that we take the union.
Finally by taking the closure, we will obtain a set which consists of points where
some ‘complicated dynamics’ occur in every neighborhood of that point.

Some of fundamental properties of the decomposition are as follows. First,
the Julia sets and the limit sets are unified as follows.

Theorem 1.7. If $\Gamma$ is a $psg$, then we denote by $J_{psg}(\Gamma)$ its Julia set in the
sense of Definition 1.6. Then we have the following.

1 $)$ If $f$ is a rational mapping on $\mathbb{C}P^{1}$ , then $J(f)=J_{psg}(\{f\rangle)$ , where $\{f\rangle$

denotes the pseudosemigroup genemted by $f$ . More generally, if $f_{1},$
$\ldots,$

$f_{r}$

are rational mappings on $\mathbb{C}P^{1}$ and if $G$ is the semigroup generated by
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$f_{1},$
$\ldots,$

$f_{r}$ , then $J(G)=J_{psg}(\langle f_{1}, \ldots, f_{r}\})_{f}$ where $(f_{1},$
$\ldots,$

$f_{r}\rangle$ denotes the
pseudosemigroup generated by $f_{1},$

$\ldots,$
$f_{r}$ (or by $G$).

2 $)$ If $f$ is an entire function, then let $(f\}$ be the pseudosemigroup genemted
by $f$ which acts on $\mathbb{C}P^{1}$ , where dom $f$ is considered to be $\mathbb{C}$ . Then,
$J(f)\cup\{\infty\}=J_{psg}(\{f\rangle)$ .

3 $)$ If $G$ is a finitely genemted Kleinian group, then $\Lambda(G)=J_{psg}(\Gamma)_{f}$ where
$\Gamma$ is the pseudosemigmup generated by $G$ and $\Lambda(G)$ denotes the limit
set of $G$ .

4 $)$ If $\Gamma$ is the holonomy pseudogroup of a complex codimension-one foliation
of a closed manifold with respect to a complete transversal. If we denote
by $\Gamma_{psg}$ the pseudosemigroup genemted by $\Gamma$ , then $J(\Gamma)=J_{psg}(\Gamma_{psg})_{f}$

where $J(\Gamma)$ is the Julia set of compactly genemted pseudogroup in the
sense of [1].

Theorem 1.7 can be seen as a refinement of Sullivan $s$ dictionary [9].
Pseudosemigroups in Theorem 1.7 are compactly generated except the case

3 $)$ . Other psg’s which are not necessarily compactly generated are obtained by
studying (transversely) holomorphic foliations of open manifolds, or singular
holomorphic foliations. A Fatou-Julia decomposition of these foliations can
be introduced by using the decomposition in the sense of Definition 1.6. In [2],
some properties of such decompositions are studied.

Some of common properties of the Julia sets and the limit sets can be
regarded as properties of Julia sets of compactly generated pseudosemigroups.
For example, we have the following.

Lemma 1.8. Let $\Gamma$ be a compactly generated pseudosemigroup. If we denote
by $F(\Gamma)$ and $J(\Gamma)$ Fatou and Julia sets of $\Gamma$ , then we have the following.

1 $)$ $F(\Gamma)$ is forward $\Gamma-inva\dot{n}$ant, i. e., $\Gamma(F(\Gamma))=\Gamma$ , where $\Gamma(F(\Gamma))=$

$\{x\in T|\exists\gamma\in\Gamma, \exists y\in F(\Gamma)s.t. x=\gamma(y)\}$ .
2 $)$ $J(\Gamma)$ is backward $\Gamma$-invariant, i. e., $\Gamma^{-1}(J(\Gamma))=J(\Gamma)=\{x\in T|\exists\gamma\in$

$\Gamma,$ $s.t$ . $\gamma(x)\in J(\Gamma)\}$ .
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2. Construction of the metric

An important property of the classical Fatou sets and the domains of dis-
continuity is that the action of (semi)group is tame on there. We will intro-
duce a result which suggests that the action of psg’s are also tame on the Julia
sets if psg’s satisfy a certain condition. In order to simplify the presentation,
we will assume that $\Gamma$ is generated by local biholomorphic diffeomorphisms or
ramified coverings defined on open sets of C. Under this assumption, we may
assume that $T$ is contained in $\mathbb{C}$ . If $(\Gamma, T)$ is a compactly generated pg, then
we can construct a Hermitian metric on $F(\Gamma)$ invariant under $\Gamma[1]$ . Note that
this cannot remain valid for psg’s. Indeed, if $z\in F(\Gamma),$ $\gamma\in\Gamma$ and $\gamma_{z}’=0$ , then
$(\gamma^{*}g)_{z}=0$ so that there is no $\Gamma$-invariant metric on $F(\Gamma)$ , where $\gamma_{z}’$ denotes
the derivative of $\gamma$ at $z$ . For example, let $T=\mathbb{C}$ and define $f:Tarrow T$ by
$f(z)=z^{2}$ . Then, the open unit disc is a connected component of the Fatou
set, however, $f$ cannot be an isometry of any metric.

Inspired by the Schwarz lemma on the Poincar\’e disc, we introduce the notion
of semi-invariant metrics as follows.

Definition 2.1. Let $g_{1}$ and $g_{2}$ be Hermitian metrics on $F(\Gamma)$ . If $z\in F(\Gamma)$ ,
then we denote by $(g_{1})_{z}$ the metric on $T_{z}F(\Gamma)$ . Suppose that we have $g_{1}=f_{1}^{2}g_{0}$

and $g_{2}=f_{2}^{2}g_{0}$ on a neighborhood of $z$ , where $g_{0}$ denotes the standard Hermitian
metric on $\mathbb{C}$ . If $f_{1}(z)\leq f_{2}(z)$ , then we write $(g_{1})_{z}\leq(g_{2})_{z}$ . Note that this
condition is independent of the choice of charts about $z$ . If $(g_{1})_{z}\leq(g_{2})_{z}$ holds
on $F(\Gamma)$ , then we write $g_{1}\leq g_{2}$ .

Definition 2.2. Let $g$ be a Hermitian metric on $F(\Gamma)$ . The metric $g$ is said
to be semi-invariant if $z\in F(\Gamma)$ and if $\gamma\in\Gamma$ is defined on a neighborhood of
$z$ , then $\gamma^{*}g\leq g$ holds on dom $\gamma$ .

Let $(\Gamma_{T’}, T’)$ be a restriction of $(\Gamma, T)$ to $T’\in \mathscr{T}$ . We may assume that
$T’=\coprod_{i=1}^{r}T_{i}’$ , where each $T!$ is the unit open ball in $\mathbb{C}^{q}$ . Let $\eta_{\epsilon},$

$0<\epsilon<1$ , be a
smooth non-negative function on $\mathbb{R}$ such that

1 $)$ $\eta_{\epsilon}(t)=1$ on (-00, $1-\epsilon]$ ,
2 $)$

$\eta_{\epsilon}$ is strictly decreasing on $[1-\epsilon, 1]$ ,

3 $)$ $\eta_{\epsilon}(t)=0$ on $[1,$ $+\infty)$ .
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Deflnition 2.3. Let $z_{i}$ be the standard coordinates on $T_{i}’$ and set $h_{i}(z_{i})=$

$\eta_{\epsilon}(\Vert z_{i}\Vert)$ , where $\Vert\cdot\Vert$ denotes the standard norm on $\mathbb{C}$ . The set of functions
$\{h_{i}\}$ is denoted by $h$ and considered as a function on $T’$ . We will represent
functions and differential forms on $T^{l}$ in the same way. We define a function
$f$ on $T’$ by

$f(z)= \sup_{\gamma\in(\Gamma^{l})_{z}}|\gamma_{z}’|h(\gamma(z))$
,

where $|\gamma_{z}’|$ denotes the absolute value of the derivative of $\gamma$ at $z$ . Finally we
set $g=f^{2}g_{0}$ .

It is easy to see that $g$ is semi-invariant under $\Gamma$ and that $g$ is lower-
semicontinuous. Let

$\Gamma^{\cross}=\{\gamma\in\Gamma\forall.z$

.
$\in dom\gamma\exists neighborhoodU_{z}ofzindom\gamma st\gamma|_{U_{z}}isahomeomorphismand(\gamma|_{U_{z}})^{-1}\in’\Gamma\}\cdot$

Theorem 2.4. 1) Suppose that $(\Gamma, T)$ is compactly generated, then the
metric $g$ is finite and locally Lipschitz continuous on $F(\Gamma)$ .

2 $)$ If $\Gamma^{\cross}=\Gamma$ , then $F(\Gamma)$ admits a Hermitian metric which is locally Lip-
schitz continuous and $\Gamma$ -invariant.

3 $)$ If $(\Gamma, T)$ is generated by a compactly genemted $pg$, then $F(\Gamma)$ admits a
Hermitian metric which is of class $C^{\omega}$ and $\Gamma$-semiinvariant.

Instead of giving a proof, we will describe an idea of the construction. See
[2] for details. In order to simplify the explanation, we will deal with norms.
First assume that $(\Gamma, T)$ is compactly generated. Then, we may assume that
$(\Gamma_{T’}, T^{l})$ is equivalent to $(\Gamma, T)$ , and it suffices to construct a metric on $F(\Gamma_{T’})$ .
Suppose that a Hermitian metric, say $g_{0}$ , on $F(\Gamma)$ is given (we do not assume
that $g_{0}$ is semi-invariant under $\Gamma$). Let $z\in F(\Gamma_{T’})$ and if $v\in T_{z}F(\Gamma_{T’})$ . If we
set

$\Vert v\Vert_{z}=\sup_{\gamma\in(\Gamma_{T})_{z}}\Vert\gamma_{*}v\Vert_{\gamma z}$
, then it is semi-invariant and lower-semicontinuous.

The semi-invariance is easy to see. In order to show the lower-semicontinuity,
we choose $\gamma\in\Gamma_{T’}$ such that $\Vert\gamma_{*}v\Vert_{\gamma z}$ is close enough to $\Vert v\Vert_{z}$ . We can make
use of $\gamma$ for estimating $\Vert v\Vert_{w}$ for $w\in F(\Gamma_{T^{l}})$ close enough to $z$ . When showing
upper-semicontinuity, we also choose $\gamma\in\Gamma_{T’}$ which gives an approximation
of $\Vert\cdot\Vert_{z}$ as above. Since $x\in F(\Gamma_{T’})$ , we may assume that $\gamma$ is well-defined
on a neighborhood, say $U$ , of $z$ . However, the extension is an element of
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$\Gamma$ so that $\gamma(U)$ needs not be contained in $T’$ . This prevents us from using
$U$ for estimating 1 $v’\Vert_{w},$ , where $w’\in U$ and $v’\in T_{w’}F(\Gamma_{T’})$ . In order to
avoid this difficulty, we modify the metric $g_{0}$ by multiplying the function $\eta$

in Definition 2.3 so that $\Vert\gamma_{*}v\Vert_{\gamma z}$ is small if $\gamma z$ is close to the boundary of $T’$ .
After the modificatiOn, the fact that $\Vert\gamma_{*}v\Vert_{\gamma z}$ approximates $\Vert v\Vert_{z}$ implies that
$\gamma z$ is contained in a compact subset of $T’$ . Since $\Gamma^{U}$ is a normal family, we may
now assume that $\gamma(U)$ is contained in $F(\Gamma_{T’})$ . Then, we can obtain a uniform
estimate of $\Vert v’\Vert_{w}$ for $w\in U$ and $v’\in T_{w}F(\Gamma_{T’})$ to show the local Lipschitz
continuity. If moreover $(\Gamma, T)$ is generated by a compactly generated pg, then
the metric is necessarily $\Gamma$-invariant. We can study a kind of the closure of $\Gamma^{U}$

(cf. [5]) and its action on $F(\Gamma)$ . By modifying arguments in [4] (and [6]), we
can classify the action and show the existence of an invariant metric of class
$C^{W}[1]$ . Next, we assume that $(\Gamma, T)$ is not necessarily compactly generated
but $\Gamma^{x}=\Gamma$ . In this case, we choose a sequence of restrictions $(\Gamma_{n}, T_{n})$ , where
$\{T_{n}\}\subset$ S7 such that $T_{n}\Subset T_{n+1},$ $\Gamma_{n}=\Gamma_{T_{n}}(n=1,2, \ldots)$ and $\bigcup_{n=1}^{\infty}T_{n}=T$.

We can construct a $\Gamma_{1}$-invariant, locally Lipschitz continuous metric, say $g_{1}$ ,
on $F(\Gamma)\cap T_{1}$ by a similar method as above. Since $\Gamma=\Gamma^{x}$ , we can extend
$g_{1}$ to $F(\Gamma)\cap T_{2}$ by the $\Gamma_{2}$-action. Indeed, suppose that $z\in F(\Gamma)\cap T_{1}$ ,
$w\in F(\Gamma)\cap T_{2}$ and $\gamma_{1},$

$\gamma_{2}\in\Gamma_{2}$ satisfy $\gamma_{1}(z)=\gamma_{2}(z)=w$ . Then, we may
assume that $\gamma_{2}^{-1}\gamma_{1}\in\Gamma_{1}$ so that $|\gamma_{1}’|_{z}=|\gamma_{2}’|_{z}$ . Hence $(\gamma_{1}^{-1})^{*}g_{1z}=(\gamma_{2}^{-1})^{*}g_{2z}$

holds. Let $h_{2}$ be a metric on $T_{2}$ such that $h_{2}$ coincides with the extension of
$g_{1}$ on $\Gamma_{2}(F(\Gamma)\cap T_{1})$ . By repeating the above construction with replacing $g_{0}$

by $h_{2}$ , we can find a metric on $F(\Gamma)\cap T_{2}$ invariant under $\Gamma_{2}$ . In this way, we
can find an invariant metric on $F(\Gamma)$ .

Example 2.5 ([2, Example 4.21]). We define $\gamma:\mathbb{C}P^{1}arrow \mathbb{C}P^{1}$ by $\gamma(z)=z^{2}$ .
Then, $J(\gamma)=\{|z|=1\}$ . If we set

$f(z)=\{\begin{array}{ll}1 if |z|\leq_{1}\frac{1}{2},2^{k}|z|^{2^{k}-1} if 2^{-\mathcal{T}-T}\overline{2}\leq|z|\leq 2^{-\pi_{2}^{1}} ,2^{k}|z|^{-2^{k}-1}\overline{|z}|T1 if|z|\geq 2if2^{T_{2}^{1}}\leq|z|\leq 2\overline{2}\tau^{1}-\urcorner,\end{array}$

132



then $g=f^{2}|dz|^{2}$ gives a Hermitian metric on $\mathbb{C}P^{1}\backslash \{|z|=1\}$ which is locally
Lipschitz continuous and semi-invariant under the action of $\Gamma$ , where $\Gamma=\langle\gamma\rangle$ .
On the other hand, if we consider the Poincar\’e metric on the unit disc, then $\gamma$

is contracting by the Schwarz lemma. Hence the Poincar\’e metrics on the unit
disc and $\mathbb{C}P^{1}\backslash \{|z|\leq 1\}$ give rise to a Hermitian metric on $\mathbb{C}P^{1}\backslash \{|z|=1\}$

which is of class $C^{\omega}$ and semi-invariant under the action of $\Gamma$ . On the other
hand, there is no $\Gamma$-invariant metric on $F(\Gamma)$ . Indeed, $0\in F(\Gamma)$ but $(\gamma^{*}g)_{0}=0$

for any metric $g$ on $F(\Gamma)$ .
Let $\hat{\Gamma}$ be the psg generated by $\gamma|_{\mathbb{C}P^{1}\backslash \{0,\infty\}}$ and its local inverses. Then

$F(\Gamma)=\mathbb{C}\backslash (S^{1}\cup\{0\})$へ. An invariant metric on $F(\hat{\Gamma})$ is given by $|dz|^{2}/(|z|\log|z|)^{2}$

on $\{0<|z|<1\}$ . We can find on $\{1 <|z|\}$ a metric of the same kind.
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