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We let $C^{k}$ denote complex Euclidean space, and we consider birational maps $f$ : $C^{k}--*$

$C^{k}$ of the form
$f=f_{\alpha,\beta}(x_{1}, \ldots, x_{k})=(x_{2},$

$\ldots,$ $x_{k},$ $\frac{\alpha\cdot x}{\beta\cdot x})$ (1)

where $\alpha\cdot x=\sum\alpha_{j}x_{j}$ and $\beta\cdot x=\sum\beta_{j}x_{j}$ . One feature of these maps is that they seem to be
the simplest possible nonlinear maps. Something which has interested us is the question of
periodicities: What are the constants $\alpha=(\alpha_{1}, \ldots, \alpha_{k})$ and $\beta=(\beta_{1}, \ldots, \beta_{k})$ for which $f_{\alpha,\beta}$

is periodic’;’ By periodic we mean that $f^{N}=fo\cdots of$ is the identity map for some $N$ . We
refer to [GL] and [KL] for further discussion. This question remains unsolved in general, but
there is one observation we have made with Kyounghee Kim (see [BK2]):

Theorem 1. If $a=(-1)^{1/k}$ and

$\beta=(a^{k-1},1,0, \ldots, 0)$ and $\alpha=(a^{k-2}/(1-a), 0, a^{k-2}, \ldots, a^{2}, a, 1)$ (2)

then $f_{\alpha,\beta}$ is periodic with period $4k$ .

Thus for each $k$ , there are $k$ different maps of the form (1) which have period $4k$ . We
remark that the proof given in [BK2] is somewhat indirect. Namely, we consider $f_{\alpha,\beta}$ as a
map of $P^{k}$ . Then we construct a blowup space $\pi$ : $Xarrow P^{k}$ and study the induced map
$f_{X}$ $:=\pi^{-1}\circ fo\pi$ : $X–*X$ . We then determine the induced map $f_{X}^{*}$ on $H^{1,1}(X)$ . We show
that the eigenvalues of $f_{X}^{*}$ are roots of unity and that $f_{X}^{*}$ has period $4k$ . After this, we show
that $f^{4k}$ is the identity.

Let us recall the situation for dimension 2 (see [BKl]):

Theorem 2. If $k=2$ , then the only possible (nontrivial) periods for maps (1) are 6, 5, 8,
12, 18, an$d30$.

In this case, it is possible to enumerate all the possible values of $\alpha$ and $\beta$ and to verify
directly that specific examples have the stated periods. The more difficult issue is to show
that these are the only periodic possibilities.

We also consider the case of dimension 3 (see [BK3]):

Theorem 3. If $k=3$ , then the only possi $ble$ (nontrivial) periods for maps (1) are 8 and 12.

The maps of period 12 which arise in Theorem 3 correspond to the maps in the case
$k=3$ in Theorem 1. The period 8 maps are given by:

$f(x)=(x_{2},$ $x_{3},$ $\frac{1+x_{2}+x_{3}}{x_{1}})$ , $f(x)=(x_{2},$ $x_{3},$ $\frac{-1-x_{2}+x_{3}}{x_{1}})$

We note that the maps that had been observed earlier were the ones of period 8. The first of
these was found by Lyness [Ly], and the second one is due to Cs\"ornyei and Laczkovic [CL].
The behavior of the maps (1) is more complicated in dimension 3 than it was in dimension 2.
One explanation for this is that the difficulties arise $hom$ blow-down and blow-up behaviors.
In dimension 2, all such behavior is either a curve blowing down to a point or a point blowing
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up to a curve. In dimension 3, a hypersurface can blow down either to a curve or to a point,
and vice versa. Further, there can be blow-up behavior without blow-down behavior. For
instance, we can have a birational map $g:X–*Y$ and curves $C\subset X$ and $C’\subset Y$ such that
$g:X-Carrow Y-C’$ is a biholomorphism, but each point of $C$ blows up to $C$‘. The difference
with dimension 2 is that the Jacobian of $g$ is nonsingular (invertible) at each point of $X-C$ .

We know little about the case $k\geq 4$ . In particular, we do not know whether there are
nontrivial periods other than the ones given by the maps in Theorem 1 when $k\geq 4$ .

One feature that has attracted us to the maps (1) is that the are in some sense the
simplest nonlinear maps. Both $f$ and its inverse have degree 2. That is, on $P^{k}$ , the maps (1),
as well as their inverses, are both written in terms of homogeneous polynomials of degree 2.
In general, however, when $k=3$ the inverse of a quadratic map can have degree 2, 3, or 4.
The degree of a mapping, however, is not invariant under birational conjugacy. That is, if $L$

is linear (and thus of degree 1), and if $\varphi$ is birational, then $\varphi^{-1}\circ L\circ\varphi$ can be nonlinear and
have degree higher than one. We now define the dynamical degree, which is more natural as
a dynamical invariant.

If $f$ : $X–*Y$ is a rational map, then there is a well-defined pullback on cohomology
$f^{*}:H^{p,q}(Y)arrow H^{p,q}(X)$ (see [G]). Using this, we may define the dynamical degrees as
follows. We then define the $\ell-$th dynamical degree as

$\delta_{l}(f):=\lim_{narrow\infty}||(f^{n})^{*}|_{H^{\ell,\ell}(X)}||^{1/n}$ (3)

Thus $\delta_{p}(f)$ measures the exponential rate of growth of $f$ on $H^{\ell,\ell}(X)$ , which, loosely speaking,
corresponds to objects of codimension $2\ell$ . $\delta_{k}$ corresponds to the topological (mapping) degree
of $f$ . If $X=P^{k}$ , then $H^{1,1}(P^{k}, Z)\cong Z$ , and $f^{*}|_{H^{1,1}(P^{k})}=deg$ , where $deg$ denotes the usual
degree in the representation of $f$ in terms of homogeneous polynomials. That is, if $H=$
$\{\sum c_{j}x_{j}=0\}$ is the class of a hyperplane in $P^{k}$ , then $f^{*}H= \{\sum c_{j}f_{j}=0\}=(deg)H$ . $\delta_{k}$

corresponds to the topological (mapping) degree of $f$ . The dynamical degree is an important
measure of complexity for a rational dynamical systerm, and the quantity $\delta_{\ell}(f)$ was shown
to be an invariant of birational conjugacy by Dinh and Sibony [DS].

We note that our search for periodicities in the family (1) is essentially a process of
eliminating the non-periodic maps. Our original approach was to find the $\alpha$ and $\beta$ for which
$\delta_{1}(f_{\alpha,\beta})>1$ . Obviously, if the degree growth is exponential, then the map is not periodic.
With this approach, our study of the maps (1) quickly becomes an analysis of the critical
maps; we will say that $f_{\alpha,\beta}$ is critical if $\beta_{2}=\beta_{3}=0$ and $\beta_{1}\alpha_{2}\alpha_{3}\neq 0$ .

Theorem 4. For a generic critical map, the first dynamical degree $\delta_{1}(f_{\alpha,\beta})\sim 1.32472$ , the
largest root of $x^{3}-x-1$ .

For $1<\ell<k$ , the dynamical degree $\delta_{\ell}$ is not well understood. Of course, if $f$ is in fact
holomorphic, then $\delta_{\ell}$ is the spectral radius of the map $f^{*}|_{H^{\ell,\ell}(X)}$ . However, when $f$ is not
holomorphic, a class $\eta\in H^{\ell,\ell}$ might be carried by a cycle inside the indeterminacy locus, so
the interpretation of $f^{*}\eta$ is not obviously gotten by pulling back the cycle defining $\eta$ .

In the case of dimension 3, we have the Poincar\’e duality $\{$ ., $\cdot$ $\}$ between $H^{1,1}(X)$ and
$H^{2,2}(X)$ and thus an adjoint $f_{*}$ acting on $H^{2,2}$ . That is, for $\xi\in H^{1,1}(X)$ and $\eta\in H^{2,2}(X)$ ,
we have $\langle f^{*}\eta,$ $\xi\}=\{\eta,$ $f_{*}\xi\rangle$ . Since $f$ is birational, we also have the pullback of $f^{-1}$ : $X–*X$
acting on $H^{1,1}(X)$ . Thus the pullback $(f^{-1})^{*}|_{H^{1,1}}$ is equivalent under this duality to $f^{*}|_{H^{2,2}}$ .
This gives us that $\delta_{2}(f)=\delta_{1}(f^{-1})$ .
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This leads to the question whether there is any family of rational maps for which it is
possible to determine $\delta_{\ell}$ for $1<\ell<k$ . At present, the only general family for which $\delta_{\ell}$ is
known is the family of monomial maps. That is, we let $A=(a_{i,j})$ be a $k\cross k$ matrix with
integer entries. (The interesting case here is when $A$ contains negative entries.) Then we
define a rational map $g_{A}$ : $C^{k}--\prec C^{k}$ by setting

$g_{A}(x_{1}, \ldots,x_{k})=(\prod_{j}x_{j}^{a_{1,j}},\ldots$ , $II$ $x_{j}^{a_{k,j}})$ (4)

which, heuristically, is $g_{A}=e^{A\log x}$ . A basic property is that iteration of the monomial map
corresponds to matrix multiplication: $(g_{A})^{n}=g_{A^{n}}$ . As we noted above, $\delta_{\ell}$ is a birational
invariant, so we can choose our space to work on. We choose to work on the manifold
$X=(P^{1})^{k}$ , which is the compactification of $C^{k}$ obtained by taking the product of the
compactifications of the factors C. It is evident that a basis for $H^{1,1}(X)$ is given by the
coordinate hyperplanes $\{x_{j}=0\}$ . Further, a basis of $H^{p,p}(X)$ is given by $\{x_{i_{1}}=\cdots=x_{i_{p}}=$

$0\}$ , where $1\leq i_{1}<\cdots<i_{p}\leq k$ consists of $p$ distinct indices. We also consider the following
matrix operation: Given a matrix $M=(m_{i,j})$ , we define $|M|=(|m_{i,j}|)$ to be the matrix
obtained by taking absolute values of all the entries. J-L Lin [Li] has shown that $g_{A}^{*}$ is given
by the exterior product of $A$ :

Proposition. With respect to this basis, $g_{A}^{*}|_{H^{p,p}}$ is given by $|\wedge^{p}A|$ .
Working from this Proposition, Lin [Li] obtained the following result, which was also

obtained independently using different methods by Favre and Wulcan [FW]:

Theorem 5. If $g_{A}$ is as in (4), then $\delta_{p}(g_{A})=|\mu_{1}\cdots\mu_{p}|$ , where $|\mu_{1}|\geq|\mu_{2}|\geq\cdots\geq|\mu_{p}|$ are
the eigenvalues of $A$ .

The family (1) also leads us to automorphisms. To say $f$ is an automorphism means
that there is a blowup space $\pi$ : $Xarrow P^{k}$ (perhaps involving iterated blowups) such that the
induced map $f_{X}$ $:=\pi^{-1}\circ fo\pi$ is an automorphism of $X$ . De Fernex and Ein $[dFE]$ have
shown that if a map is periodic (in any dimension), then it is an automorphism in the sense
above $($ see $[dFE])$ .

[BKl] showed that looking inside the 2-dimensional version of family (1) reveals a number
of rational surface automorphisms with positive entropy. When we go to higher dimension,
we must be more careful. For a general manifold $X$ of dimension $k$ , we follow Dolgachev
and Ortland [DO] and say that $f$ : $X$ –$ $X$ is a pseudo-automorphism if $f$ and $f^{-1}$ are
local diffeomorphisms at all points away from the indeterminacy locus. In dimension 2, $f$ is
a pseudo-automorphism if and only if it is an automorphism, but not in higher dimension.
In [BK3] we find that the family (1) contains pseudo-automorphisms of positive entropy on
spaces which are blowups of $P^{3}$ :

Theorem 6. Suppose that $\alpha=(a, 0, \omega, 1)$ and $\beta=(0,1,0,0)$ where $a\in C\backslash \{0\}$ and $\omega$ is a
non-real cube root of the unity. Then there is a modification $\pi$ : $Zarrow P^{3}$ such that $f_{Z}$ is a
pseudo-automorphism. The dynamical degrees $\delta_{1}(f)=\delta_{2}(f)\cong 1.28064>1$ are $eq$ual and
are given by the largest root of $t^{8}-t^{5}-t^{4}-t^{3}+1$ . The entropy of $f_{Z}$ is the logarithm of
the dynamical degree and is thus positive.

In addition, there is a sort of integrability for these maps:
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Theorem 7. For the mappings in Theorem 1, there is a 1-parameter family of $s$urfaces
$S_{c}\subset Z,$ $c\in C$ which have th$e$ invariance $fS_{c}=S_{\omega c}$ . For generic $c,$ $S_{c}$ is $K3$ , and the
restriction $f^{3}|s_{c}$ is an automorphism. For generic $c$ and $c’$ , the surfaces $S_{c}$ and $S_{c’}$ are
biholomorphically inequivalent, and the automorphisms $f^{3}|_{S_{c}}$ and $f^{3}|s_{c}$ , are not $sm$oothly
conjugate.

The surface $S_{0}$ is invariant, and the restriction $f_{S_{0}}$ is an automorphism which has the
same entropy as $f$ . This is smaller than the entropy of the automorphism constructed
in [$M$ , Theorem 1.2] and is thus the smallest known entropy for a projective $K3$ surface
automorphism.

Let us write $f_{c}:=f|_{S_{c}}$ for the restriction to $S_{c}$ . The automorphisms of $K3$ surfaces were
studied by Cantat [C]. In our case, it follows that there are positive, closed currents $\mu_{c}^{\pm}$ on
$S_{c}$ such that $f_{c}^{3*}\mu_{c}^{\pm}=\delta^{\pm 3}\mu_{c}^{\pm}$ , and $\mu_{c}$

$:=\mu_{c}^{+}\wedge\mu_{\overline{c}}$ is the unique measure of maximal entropy.
We let $\alpha^{+}\in H^{1,1}(Z)$ denote the class which is expanded by $f_{Z}^{*}$ . If $\alpha^{+}$ is nef, then by

Diller and Guedj [DG] there is an invariant current $T^{+}$ in $\alpha^{+}$ which is invariant (expanded
by $f_{Z}^{*})$ and which has the “attractor” property that for all smooth currents $\Xi^{+}$ in the class of
$\alpha^{+}$ , the normalized pullbacks $\delta^{-n}f_{Z}^{*n}\Xi^{+}arrow T^{+}$ . Inspired by Bayraktar [B], we can construct
$Z$ such that $\alpha^{+}$ to be nef. Similarly, we have a corresponding current $T_{Z}^{-}$ , and we may
wedge these two currents to obtain an invariant (2,2)-current $T:=T+\wedge T^{-}$ , which satisfies
$f^{*}T=T$ . These currents have properties analogous to the bifurcation currents studied
by Dujardin and Favre $[DuF]$ . That is, their slices by the invariant $K3$ surfaces give the
corresponding invariant currents/measures for $(f_{c}, S_{c}):T^{+}|_{S_{c}}=\mu_{c}^{+}$ , and $T|_{S_{c}}=\mu_{c}$ .

The following mappings have quadratic degree growth and complete integrability:
Theorem 8. Suppose that $\beta=(0,1,0,0)$ and either $\alpha=(0,0, \omega, 1)$ or $\alpha=(a, 0,1,1)$ where
$a\in C\backslash \{1\},$ $\omega\neq 1$ , and $\omega^{3}=1$ , Then the degree of $f^{n}$ grows quadratically in $n$ . Further,
there is a modification $\pi$ : $Zarrow P^{3}$ such that $f_{Z}$ is a pseudo-automorphism. There is a
two-parameter family of $s$urfaces $S_{c},$ $c=(c_{1}, c_{2})\in C^{2}$ which are invarian$t$ under $f^{3}$ . For
generic $c$ and $c’,$ $S_{c}$ is a smooth $K3$ surface, and $S_{c}\cap S_{c’}$ is a smooth elliptic curve.

For the mappings in Theorems 4 and 8, $f$ is reversible on the level of cohomology: $f_{Z}^{*}$

is conjugate to $(f_{Z}^{-1})^{*}=(f_{Z}^{*})^{-1}$ . The identity $\delta_{1}(f)=\delta_{2}(f)$ for such maps is a consequence
of the duality between $H^{1,1}$ and $H^{2,2}$ , so they are not cohomologically hyperbolic, in the
terminology of [G]. If any of the maps of Theorems 6 and 8 acts on $P^{3}$ , then it is evident
that the variety $\mathcal{R}_{0}=\{x_{0}x_{1}x_{2}x_{3}=0\}$ is invariant. After the blow-up $\pi$ : $Zarrow P^{3}$ , we have
a divisor $\mathcal{R}$ $:=\pi^{-1}\mathcal{R}_{0}$ , which now contains 8 components. In fact, $\mathcal{R}$ is an invariant 8-cycle
of surfaces under $f_{Z}$ . The family of invariant $K3$ surfaces degenerates and becomes singular
at a $\mathcal{R}$ . We have seen that $f_{Z}$ is a pseudo-automorphism and not an automorphism. This is
a property of $f$ and not, somehow, a defect of our choice of a particular blowup space $Z$ . In
[BK3] we showed:

Theorem 7. Let $f$ be a map from Theorems 1 and 3. If $a\neq 1$ , then the restriction
$f^{8}|_{\{x_{3}=0\}}$ is not birationally $eq$uivalent to a surface automorphism. Thus there is no proper
modification $\pi$ : $Warrow P^{3}$ such that the induced map $f_{W}$ is an automorphism.

References
[B] T. Bayraktar, Green currents for meromorphic maps of compact K\"ahler manifolds,

manuscript.

139



[BKl] E. Bedford and Kyounghee Kim, Periodicities in linear fractional recurrences: Degree
growth of birational surface maps, Michigan Math. J. 54 (2006), 647-670.

[BK2] E. Bedford and Kyounghee Kim, Linear fractional recurrences: Periodicities and inte-
grability, Annales de la Facult\’e des Sciences de Toulouse, to appear. arXiv:0910.4409

[BK3] E. Bedford and Kyounghee Kim, Pseudo-Automorphisms of 3-space: Periodicities and
positive entropy in linear fractional recurrences. arXiv:1101.1614

[C] S. Cantat, Dynamique des automorphisms des surfaces K3, Acta Math. 187 (1): 1-57,
2001.

[CL] M. Cs\"ornyei and M. Laczkovich, Some periodic and non-periodic recursions, Monatshefte
f\"ur Mathematik 132 (2001), 215-236.

[dFE] T. de Fernex and L. Ein, Resolution of indeterminacy of pairs, Algebraic geometry,
165-177, de Gruyter, Berlin, 2002.

[DG] J. Diller and V. Guedj, Regularity of dynamical Green functions, Trans. Amer. Math.
Soc. 361 (2009), no. 9, 4783-4805. arXiv:$math/0601216$

[DS] T.-C. Dinh and N. Sibony, Une borne sup\’erieure pour 1‘entropie topologique d‘une ap-
plication rationnelle. Ann. of Math. (2) 161 (2005), no. 3, 1637-1644.

[DO] I. Dolgachev and D. Ortland, Point Sets in Projective Spaces and Theta Functions,
Ast\’erisque, Vol. 165, 1988.

[DuF] R. Dujardin and C. Favre, Distribution of rational maps with a preperiodic critical point.
Amer. J. Math. 130 (2008), no. 4, 979-1032.

[FW] C. Favre and E. Wulcan, Degree growth of monomial maps and McMullen‘s polytope
algebra, arXiv: 1011.2854

[GL] E.A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Kluwer Aca-
demic Publishers, 2005.

[G] V. Guedj, Th\’eorie ergodique des transformations rationnelles. $arXiv:math/0611302$
[KoL] V.I. Kocic and G. Ladas, Global Behaviour ofNonlinear Difference Equations ofHigher

Order with Applications, Kluwer Academic Publishers 1993.
[Li] J.-L. Lin, Pulling back cohomology classes and dynamical degrees of monomial maps,

arXiv:1010.6285
[Ly] R.C. Lyness, Notes 1581,1847, and 2952, Math. Gazette 26 (1942), 62, 29 (1945), 231,

and 45 (1961), 201.
[M] C.T. McMullen, K3 surfaces, entropy and glue.

Indiana University
Bloomington, IN 47405
bedford@indiana.edu

140


