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Roughly speaking, Algebraic Geometry on a field $K$ studies algebraic sets in $K^{n}$ i.e.
the sets of the form $\{x\in K^{n} : P_{1}(x)=\cdots=P_{k}(x)=0\}$ , where $P_{i}$ are polynomials
with coefficients in K. One of the difficulties when studying real algebraic sets is that
the field of real numbers $\mathbb{R}$ is not algebraically closed, e.g. the number of zeros (counted
with multiplicity) of a real polynomial can be not equal to its degree. Besides, though the
class of real algebraic sets is closed under taking finite unions and intersections, it is not
closed under taking complement. Moreover, in general, images of algebraic sets by poly-
nomial functions and their connected components are not algebraic sets. For example, the
equation $xy– l=0$ defines a hyperbola in $\mathbb{R}^{2}$ consisting of the connected components:
$\{(x, y)\in \mathbb{R}^{2}:xy-1=0, x>0\}$ and $\{(x, y)\in \mathbb{R}^{2}: xy- l=0, x<0\}$ , and its image
under the projection on $Ox$ coordinate is two intervals. These sets are given by equations
and inequalities, but they can not be given by equations only.

This lecture deals with the class of semi-algebraic sets which are those defined by Boolean
combination of equalities and inequalities of real polynomials. This class has a very inter-
esting property: it is stable under projection (Tarski-Seidenberg’s Theorem). Moreover,
a semi-algebraic set has only finitely many connected components, and each of the com-
ponents is also semi-algebraic (Lojasiewicz‘s Theorem). These fundamental properties
create great conveniences in studying semi-algebraic sets. Note that $\mathbb{R}$ is an ordered field.
One can construct semi-algebraic sets in a general real closed field (see the excellent book
by Bochnak-Coste-Roy cited in the references).

This lecture is partially supported by Vietnam’s National Foundation for Science and Technology
Development (NAFOSTED), and HEM 21 Invitation Fellowship Programs for Research in Hyogo.

数理解析研究所講究録
第 1764巻 2011年 48-58 48



TA L\^E LOI

1. LECTURE 1

In this lecture we will investigate some of the most basic properties of semi-algebraic
sets. Deeper properties (e.g. stratification, the curve selection, the Lojasiewicz inequali-
ties, triangulation, ... ) will be studied in the next lectures.

1.1. Definition The class of semi-algebraic sets in $\mathbb{R}^{n}$ is the smallest class of subsets of
$\mathbb{R}^{n}$ satisfying the following properties:
(SAl) It contains all sets of the form $\{x\in \mathbb{R}^{n}:P(x)>0\},$ $P\in \mathbb{R}[X_{1}, \cdots, X_{n}]$ .
(SA2) It is stable under taking finite unions, finite intersections and complements.
A mapping $f$ : $Xarrow \mathbb{R}^{m}$ is called semi-algebraic if its graph is a semi-algebraic set.

1.2. Example.
1.2.1. Every real algebraic set is semi-algebraic. Moreover, in the real field, $P_{1}=\cdots=$

$P_{k}=0\Leftrightarrow P_{1}^{2}+\cdots+P_{k}^{2}=0$ , and hence every algebraic subset in $\mathbb{R}^{n}$ is of the form
$\{x\in \mathbb{R}^{n}:P(x)=0\}$ , where $P$ is a polynomial.
1.2.2. A semi-algebraic set in $\mathbb{R}$ is a finite union of points and open intervals.
1.2.3. Let $f(b, c, x)=x^{2}+bx+c$ . The set of the values of $(b, c)$ in $\mathbb{R}^{2}$ such that $f$ has a
real solution is the projection of the set $\{(x, b, c) : f(b, c, x)=0\}$ onto the plane $(b, c)$ .
It is the semi-algebraic set $\{(b, c):b^{2}-4c\geq 0\}$ .

1.2.4. Polynomial functions are semi-algebraic.
1.2.5. The function $\xi$ : $\{(b, c) : b^{2}-4c>0\}arrow \mathbb{R},$ $\xi(b, c)=\frac{1}{2}(b+\sqrt{b^{2}-4c})$ is semi-

algebraic because its graph is given by: $\{(b, c, x) : x^{2}+bx+c=0, b^{2}-4c>0, x>\frac{b}{2}\}$ .
1.2.6. The following sets are not semi-algebraic:

$\{(x, y)\in \mathbb{R}^{2}:y=\sin x\},$ $\{(x, y)\in \mathbb{R}^{2}:y=nx, n\in \mathbb{N}\},$ $\{(x, y)\in \mathbb{R}^{2}:y=[x]\}$ .
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Exercise; Let $f$ : $Xarrow \mathbb{R}$ be a semi-algebraic function.
1.2.7. Prove that if $f(x)\neq 0$ , for all $x\in X$ , then $1/f$ is semi-algebraic.
1.2.8. Prove that if $f\geq 0$ , then $\sqrt{f}$ is semi-algebraic.

1.3. Proposition. A subset of $\mathbb{R}^{n}$ is semi-algebraic if and only if it can be represented
$\partial S$ a finite union of sets of the form;

$\{x\in \mathbb{R}^{n}:f(x)=0, g_{1}(x)>0, \cdots, g_{m}(x)>0\}$ , $f,$ $g_{i}\in \mathbb{R}[X_{1}, \cdots, X_{n}]$ .

Proof: The class of sets of the above form satisfies (SAl) and (SA2), and it is contained
in the class of semi-algebraic sets. $\square$

Exercise:
1.3.1. The class of constructible sets in $\mathbb{C}^{n}$ , by definition, is the smallest Boolean algebra
of subsets of $\mathbb{C}^{n}$ which contains all complex algebraic sets.
Prove that $X\subset \mathbb{C}^{n}$ is constructible if and only if $X= \bigcup_{i=1}^{p}V_{i}\backslash W_{i}$ , where $V_{i},$ $W_{i}$ are
algebraic sets.
1.3.2. Prove that if we identify $\mathbb{C}\equiv \mathbb{R}^{2}$ , then every constructible subset of $\mathbb{C}^{n}$ is semi-
algebraic in $\mathbb{R}^{2n}$ .
1.3.3. Prove that $f=(f_{1}, \cdots, f_{m})$ : $Xarrow \mathbb{R}^{m}$ is semi-algebraic if and only if $f_{i}$ is semi-
algebraic for all $i\in\{1, \cdots, m\}$ .
1.3.4. Let $f,$ $g$ : $Xarrow \mathbb{R}$ be semi-algebraic functions. Prove that the functions $|f|$ ,
$\max(f, g),$ $\min(f, g)$ are semi-algebraic.
1.3.5. Prove that every semi-algebraic set $X$ in $R^{n}$ can be represented as the image $p(A)$

of an algebraic set $A\subset \mathbb{R}^{n}\cross \mathbb{R}^{p}$ under projection $\pi$ : $\mathbb{R}^{n}\cross \mathbb{R}^{p}arrow \mathbb{R}^{n}$ .
1.3.6. Let $f$ : $[0, r)arrow \mathbb{R}$ be a semi-algebraic function. Prove that there is a polynomial
$P(X, Y)\neq 0$ , such that $P(x, f(x))=0$, for all $x\in[0, r)$ .

Most of the basic properties of semi-algebraic sets are implied from the following two
theorems:

1.4. Theorem (Tarski-Seidenberg). The image of a semi-algebraic subset of $\mathbb{R}^{n}\cross \mathbb{R}^{k}$

under the natural projection $\mathbb{R}^{n}\cross \mathbb{R}^{k}arrow \mathbb{R}^{n}$ is a semi-algebraic set.

1.5. Theorem (Lojasiewicz). The number of connected $com$ponents of a semi-algebraic
set is Finite, and each of the components is also semi-algebraic.

First, we consider the relationship between semi-algebraic-sets and the formulas.

1.6. Definition. A first-order formula (of the language of ordered fields with parameters
in $\mathbb{R})$ is constructed according to the following rules:

$\bullet$ If $P\in \mathbb{R}[X_{1}, \cdots, X_{n}]$ , then $P\star 0$ , where $\star\in\{=, >, <\}$ , is a formula.
$\bullet$ If $\phi$ and $\psi$ are formulas, then their conjunction $\phi\wedge\psi$ , their disjunction $\phi\vee\psi$ ,

and the negation $\neg\phi$ are formulas.
$\bullet$ If $\phi$ is a formula and $x$ is a variable ranging over $\mathbb{R}$ , then ョ$x,$ $\phi$ and $\forall x,$ $\phi$ are

formulas.
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The formulas obtained by using only the first and the second rules are called quantifier-
ffee formulas.

We use the relations between logical notations and boolean algebras: Let $x,$ $y$ be variables
ranging over nonempty sets $X,$ $Y$ , and let $\phi(x, y)$ and $\psi(x, y)$ be first-order formulas on
$(x, y)\in X\cross Y$ defining sets

$\Phi=\{(x, y)\in X\cross Y : \phi(x, y)\}$ , and $\Psi=\{(x, y)\in X\cross Y : \psi(x, y)\}$ .
Then

$\phi(x, y)\vee\psi(x, y)$ defines $\Phi\cup\Psi$ ,
$\phi(x, y)\wedge\psi(x, y)$ defines $\Phi\cap\Psi$ ,
$\neg\phi(x, y)$ defines $X\cross Y\backslash \Phi$ ,
$\exists x\phi(x, y)$ defines $\pi_{Y}(\Phi)$ , where $\pi_{Y}$ : $X\cross Yarrow Y$ is the natural projection,
$\forall x\phi(x, y)$ defines $Y\backslash \pi_{Y}(X\cross Y\backslash \Phi)$ .

From these relations, we have:
$X\subset \mathbb{R}^{n}$ is semi-algebraic if and only if there is a quantffier-free formula $\Phi(x_{1}, \cdots, x_{n})$

such that
$X=\{x=(x_{1}, \cdots, x_{n})\in \mathbb{R}^{n}:\Phi(x)\}$

The Tarski-Seidenberg theorem has the following logical formulation:

1.4’. Theorem (Tarski-Seidenberg). For every first-order formula $\Phi(x_{1}, \cdots, x_{n})$ , there
exists a quantifier-free formula $\Psi(x_{1}, \cdots, x_{n})$ , such that the following formula is always
true in $\mathbb{R}$ :

$\forall x_{1)}\cdots,$ $x_{n}(\Phi(x_{1}, \cdots, x_{n})\Leftrightarrow\Psi(x_{1}, \cdots, x_{n}))$ .
In particular, the set $\{x=(x_{1}, \cdots, x_{n})\in \mathbb{R}^{n}:\Phi(x)\}$ is semi-algebraic.

For example, the formula $\Phi=(\exists x, x^{2}+bx+c=0)\wedge(\exists y, y^{2}+by+c=0)\wedge\neg(x=y)$ is
equivalent to the qualifier-free formula $\Psi=(b^{2}-4c>0)$ .

Before proving the theorems, we give some applications of the Tarski-Seidenberg the-
orem.

1.7. Proposition (Elementary properties).
(i) The closure, th$e$ interior, and th$ebo$undary of a semi-algebraic set are semi-algebraic.
(ii) Images and inverse images of semi-algebraic sets under semi-algebraic maps are semi-
algebraic.
(ii) Compositions of semi-algebraic $maps$ are semi-algebraic.

Proof: If $A$ is a semi-algebraic subset of $\mathbb{R}^{n}$ , then its closure is

$\overline{A}=\{x\in \mathbb{R}^{n}:\forall\epsilon, \epsilon>0,$ ョ$y(y \in A)\wedge(\sum_{i=1}^{n}(x_{i}-y_{i})^{2}<\epsilon^{2})\}$ ,

where $x=(x_{1}, \cdots, x_{n})$ and $y=(y_{1}, \cdots y_{n})$ . By the Tarski-Seidenberg theorem, $\overline{A}$ is semi-
algebraic. The interior and the boundary of $A$ can be expressed by int $(A)=\mathbb{R}^{n}\backslash \overline{\mathbb{R}^{n}\backslash A}$

and bd $(A)=\overline{A}\cap\overline{\mathbb{R}^{n}\backslash A}$ , so they are semi-algebraic.
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Let $f$ : $Xarrow Y$ be a semi-algebraic function and $A\subset X,$ $B\subset Y$ be semi-algebraic sub-
sets. Let $\pi_{X}$ : $X\cross Yarrow X$ and $\pi_{Y}$ : $X\cross Yarrow Y$ be the natural projections. Then
$f(A)=\pi_{Y}(f\cap A\cross Y)$ and $f^{-1}(B)=\pi_{X}(f\cap X\cross B)$ . So they are semi-algebraic.
Let $f$ : $Xarrow Y,$ $g:Yarrow Z$ be semi-algebraic maps. Then $gof=\pi(f\cross Z\cap X\cross g)$ , where
$\pi$ : $X\cross Y\cross Zarrow X\cross Z$ defined by $\pi(x,y, z)=(x, z)$ . So $gof$ is semi-algebraic. $\square$

Exercise: Use Tarski-Seidenberg’s Theorem 1.4’ to do the following:
1.7.1. Let $n\in N,$ $k\leq n$ , and $i_{1},$ $\cdots,$ $i_{k}\in\{1, \cdots, n\}$ . Denote $\Gamma_{i_{1}\cdots i_{k}}=$

{ $(a_{0},$ $\cdots,$ $a_{n})\in \mathbb{R}^{n}$ : $a_{0}+\cdots+a_{n}T^{n}$ has $k$ zeros with mutiplicities $i_{1},$ $\cdots,$
$i_{k}$ }.

Prove that $\Gamma_{i_{1}\cdots i_{k}}$ is a semi-algebraic set..
1.7.2. Let $f$ : $Aarrow \mathbb{R}$ be a definable function and $p\in$ N. Prove that the set $C^{p}(f)=\{x\in$

$A$ : $f$ is of class $C^{p}$ at $x$ } is definable, and the partial derivatives $\partial f/\partial x_{i}$ are definable
functions on $C^{p}(f)$ .
1.7.3. Let $f$ : $\mathbb{R}arrow \mathbb{R}$ be a semi-algebraic function. Prove that there exists a partition
$-\infty=a_{0}<a_{1}<\cdots<a_{n}=+\infty$ such that on each interval $(a_{i}, a_{i+1})$ the function
is either constant, or strictly monotone and continuous. As a consequence, the limits
$\lim_{xarrow a+}f(x),$ $\lim_{xarrow a}-f(x)$ exist in $\mathbb{R}\cup\{\pm\infty\}$ , for all $a\in \mathbb{R}\cup\{\pm\infty\}$ .
1.7.4. Let $f$ : $Aarrow \mathbb{R}$ be a definable function. Suppose that $f$ is bounded from below.
Let $g:Aarrow \mathbb{R}^{m}$ be a definable mapping. Prove that the function $\varphi$ : $g(A)arrow \mathbb{R}$, defined
by $\varphi(y)=\inf_{x\in g^{-1}(y)}f(x)$ , is a definable function.

Tarski (1931, see [T]) stated and proved Theorem 1.4 in logic form (the real closed field
$\mathbb{R}$ admits quantffier elimination). Later, Seidenberg (1954, see [S]) proved the theorem
by using Sturm’s sequences, which proved to be of great interest to other mathemati-
cians. Here we give Lojasiewicz‘s proof (1964, see [L]), which is based on the cylindrical
decomposition theorem and hence gives rather precise information on semi-algebraic sets.

1.8. Thom’s Lemma. Let $f_{1},$ $\cdots,$ $f_{k}\in \mathbb{R}[T]$ be a finite family of polynomials which is
stable under differentiation, i.e. if $f_{i}’\neq 0$ then $f_{i}’\in\{f_{1}, \cdots, f_{k}\}$ .
For $s:\{1, \cdots, k\}arrow\{<, =, >\}$ , put $A_{s}=\{t\in \mathbb{R} : f_{i}(t)s(i)0, i=1, \cdots, k\}$. Then $A_{s}$

is connected, i.e. empty, a point, or an interval.

Proof.$\cdot$ By induction on $k$ . It is trivial for $k=0$ . Suppose the lemma is true for
$k-1(k>0)$ . Order $f_{1},$ $\cdots,$

$f_{k}$ such that $\deg(f_{k})=\max\{\deg(f_{i}) : i=1, \cdots, k\}$.
Let $A’=\{t:f_{i}(t)s(i)0, i=1, \cdots, k-1\}$ . By the inductive hypothesis $A’$ is empty, a
point, or an interval. If $A^{l}$ is empty or a point, so is $A_{s}=A^{l}\cap\{t : f_{k}(t)s(k)0\}$ . If $A’$ is
an interval, then $f_{k}’$ has a constant sign on $A’$ and hence $f_{k}$ is either strictly monotone or
constant on $A’$ . In each case one can easily check that $A_{s}$ is connected. $\square$

Exercise: Find $f\in \mathbb{R}[T]$ , such that $\{t\in \mathbb{R} : f(t)>0\}$ is not connected.

1.9. Lemma. Let $G(A, T)=A_{0}+A_{1}T+\cdots+A_{d}T^{d}\in Z[A, T],$ $A=(A_{0}, \cdots, A_{d})$ , be a
general polynomial of degree $d$ , and $e\in\{0, \cdots, d, \infty\}$ . Then the set

{ $a=(a_{0},$ $\cdots,$
$a_{d})\in \mathbb{R}^{d+1}$ : $G(a,$ $T)h$as exactly $e$ distinct complex zeros}
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$is$ a semi-algebraic set.
As a consequence, for every $f\in \mathbb{R}[X_{1}, \cdots, X_{n}, T]=\mathbb{R}[X_{1}, \cdots, X_{n}][T]$ ,

$f(X_{1}, \cdots, X_{n}, T)=a_{0}(X_{1}, \cdots, X_{n})+a_{1}(X_{1}, \cdots, X_{n})T+\cdots+a_{d}(X_{1}, \cdots, X_{n})T^{d}$ ,

th $e$ set

{ $x=(x_{1},$ $\cdots,$ $x_{n})\in \mathbb{R}^{n}$ : $f(x,$ $T)$ has exactly $e$ distinct complex zeros}
is a semi-algebraic subset of $\mathbb{R}^{n}$ .

Proof: 1 The cases $d=0$ or $e\in\{0, \infty\}$ are trivial.
Let $d>0,$ $e\in\{1, \cdots, d\}$ , and $a=(a_{0}, \cdots, a_{d})\in \mathbb{C}^{d+1},$ $a_{d}\neq 0$ .

$\partial G$

Let $g=$ degree of GCD $(G(a, T),(a,T))\overline{\partial T}$ in $\mathbb{C}[T]$ .
Then the number of distinct complex zeros of $G(a, T)$ is $d-g$ , and the degree of

$\partial G$

LCM$(G(a, T),(a, T))\overline{\partial T}$ is $2d-g-1$ .
Hence the condition is that $G(a, T)$ has at most $e$ distinct zeros, which is equivalent to
$d-g\leq e$ , that is, to $2d-g-1\leq d+e-1$ . The last condition is equivalent to the
condition:
$(^{*})$ There exist $q(x, T)=x_{0}+x_{1}T+\cdots+x_{e-1}T^{e-1}$ and $r(x, T)=x_{e}+x_{e+1}T+\cdots+x_{2e}T^{e}$ ,
with $x=(x_{0}, \cdots, x_{2e})\in \mathbb{C}^{2e+1}\backslash 0$ , such that

$G(a, T)q(x, T)= \frac{\partial G}{\partial T}(a, T)r(x, T)$

This equality can be rewritten as

$G(a, T)q(x, T)- \frac{\partial f}{\partial T}(a, T)r(x, T)=\beta_{0}(a, x)+\beta_{1}(a, x)T+\cdots+\beta_{d+e-1}(a, x)T^{d+e-1}$,

where $\beta=(\beta_{0}, \cdots, \beta_{d+e-1}):\mathbb{C}^{d+1}\cross \mathbb{C}^{2e+1}arrow \mathbb{C}^{d+e}$ is a bilinear function,
So $(^{*})$ is equivalent to the condition $\beta_{0}(a, x)=\cdots=\beta_{d+e-1}(a, x)=0$ has nonzero
solution $x\in \mathbb{C}^{2e+1}$ The last condition is equivalent to the vanishing of all $(2e+1)$-minor
of the matrix of the linear map $\beta(a, \cdot )$ . Note that each of the minors is a polynomial in
$a_{0}$ , –, $a_{d}$ with coefficients in Z. Therefore, for each $d’\leq d$ , the set

$M_{e}^{d’}=$ { $a\in \mathbb{R}^{d+1}:\deg G(a,$ $T)=d’,$ $G(a,$ $T)$ has at most $e$ distinct complex zeros}
is the intersection of the set $\{a\in \mathbb{R}^{d+1} : a_{d}=\cdots=a_{d’+1}=0, a_{d’}\neq 0\}$ with the zero set
of certain polynomials in $Z[A]$ . So

{$a=(a_{0},$ $\cdots,$
$a_{d})\in \mathbb{R}^{d+1}$ : $G(a,$ $T)$ has exactly $e$ complex zeros} $= \bigcup_{d=0}^{d}M_{e}^{d’}\backslash M_{e-1}^{d’}$

is a semi-algebraic set.
Since $f(x, T)=G(a_{0}(x), \cdots, a_{d}(x), T)$ , the second part follows. $\square$

Exercise: Use the method of proving the lemma to check:
1.9.1. The condition that $f(T)=T^{2}+bT+c$ has $\leq 1$ zero is $b^{2}-4c=0$ .
1.9.2. The condition that $f(T)=T^{3}+pT+q$ has $\leq 2$ zeros is $4p^{3}+27q^{2}=0$ .

lCompare with a proof basing on resultants given at the end of the lecture.
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$0$

1.10. Lemma. Let $f=a_{0}+\cdots+a_{d}T^{d}\in \mathbb{R}[X_{1}, \cdots, X_{n}][T]$ and $e\leq d$ . Let $C$ be a
connected $su$bset of $\mathbb{R}^{n}$ . Suppose that $f(x, T)\in \mathbb{R}[T]$ has exactly $e$ distinct complex
zeros for each $x\in C.$ Then the $n$umber of distinct real zeros of $f(x, T)$ is also constant
as $x$ ranges over C. If th$ese$ zeros are ordered by $\xi_{1}(x)<\cdots<\xi_{r}(x)$ , then the functions

$\xi_{j}$ : $Xarrow \mathbb{R}$ are continuous.

Proof: Let $x_{0}\in C$ , and let $z_{1},$ $\cdots,$ $z_{e}$ be the distinct zeros of $f(x_{0}, T)$ . Take closed
balls $B_{i}$ centered at $z_{i}$ in $\mathbb{C}$ , such that $B_{i}\cap B_{j}=\emptyset$ for $i\neq j$ and $B_{i}\cap \mathbb{R}=\emptyset$ if
$z_{i}\not\in R$ . By continuity of roots (Rouch\’e $s$ theorem), there exists a neighborhood $U$ of $x_{0}$

in $C$ such that for each $x\in U$ the ball $B_{i}$ contains at least one zero $\zeta_{i}(x)$ of $f(x, T)$ .
By the supposition, $\zeta_{i}(x)$ is the only zero of $f(x, T)$ in $B_{i}$ . The graph of $\zeta_{i}$ on $U$ is
$\{(x,t)\in U\cross B_{i} : f(x, t)=0\}$ , hence this graph is closed in $U\cross B_{i}$ , in combination with
the compactness of $B_{i}$ which implies that $\zeta_{i}$ is continuous on $U$ . Since the coefficients of
$f(x, T)$ are real, the set $\{\zeta_{1}(x), \cdots, \zeta_{e}(x)\}$ is closed under complex conjugation. Hence
if $(_{i}(x_{0})\in \mathbb{R}$ then $\zeta_{i}(x)\in \mathbb{R}$ for all $x\in U$ . This shows that the number of real zeros is
locally constant. Since $C$ is connected, this number is constant and the real zeros must
keep their order as $x$ runs through $C$ . $\square$

Exercise: Examine the lemma when $f(T)=T^{2}+bT+c,$ $(b, c)\in X=\mathbb{R}^{2}$ .

Let $\xi_{1},$ $\xi_{2}:Carrow\overline{\mathbb{R}}$, vi $\xi_{1}<\xi_{2}$ . Denote
$\Gamma(\xi_{1})=\{(x, t) : t=\xi_{1}(x)\}$ (the graph),
$(\xi_{1}, \xi_{2})=\{(x, t):x\in C, \xi_{1}(x)<t<\xi_{2}(x)\}$ (the band).
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1.11. Theorem (Cylindrical decomposition - Lojasiewicz).
Let $f_{1},$

$\cdots,$ $f_{p}\in \mathbb{R}[X_{1}, \cdots, X_{n}][T],$ $X=(X_{1}, \cdots, X_{n})$ . Then there exist an augmentation
$f_{1},$ $\cdots f_{p},$ $f_{p+1},$ $\cdots,$ $f_{p+q}\in \mathbb{R}[X][T]$ and a partition of $\mathbb{R}^{n}$ into linitely many semi-algebraic
sets $S_{1},$

$\cdots,$
$S_{k}$ such that for each connected component $C$ of each $S_{i}$ there are contin $uo$us

functions
$-\infty=\xi_{C,0}<\xi_{C,1}<\cdots<\xi_{C,r(C)}<\xi_{C,r(C)+1}=+\infty$

on $C$ satisfying the following two properties:
(i) Each $f_{i}(1\leq i\leq p+q)$ has a constant sign on each $\Gamma(\xi_{C,j})(1\leq j\leq r(C))$ and on
each $(\xi_{C,j}, \xi_{C,j+1})(0\leq j\leq r(C))$ .
(ii) Each of the set $\Gamma(\xi_{C,j}),$ $(\xi_{C,g}, \xi_{C,j+1})$ is of the form

$\{(x, t)\in C\cross \mathbb{R} : f_{i}(x, t)s(i)0, i=1, \cdots,p+q\}$ ,

for a suitable $s:\{1, \cdots, p+q\}arrow\{<, =, >\}$ .

Proof: Let $d= \max\{\deg_{T}(f_{i}), i=1, \cdots,p\}$ .
Augment $f_{1},$

$\cdots,$ $f_{p}$ to $\{f_{1}, \cdots , f_{p+q}\}=\{\frac{\partial^{\nu}f_{i}}{\partial T^{\nu}}:1\leq i\leq p, 0\leq l$ノ $\leq d\}$ .
For each $\triangle\subset\{1, \cdots,p\}\cross\{0, \cdots , d\}$ , and $e\in\{0, --, pd^{2}\}\cup\{\infty\}$ , put

$f_{\triangle}(T)= \prod_{(i,\nu)\in\Delta}\frac{\partial^{\iota \text{ノ}}f_{i}}{\partial T^{\nu}}$
$\in \mathbb{R}[X][T]$ , and

$A_{\Delta,e}=$ { $x\in \mathbb{R}^{n}:f_{\Delta}(x,$ $T)$ has exactly $e$ complex zeros},
By Lemma 1.9, $A_{\Delta,e}$ is a semi-algebraic set. For a given $\triangle$ the family { $A_{\Delta,e}$ : $e$ varies}
forms a partition of $\mathbb{R}^{n}$ . Since the class of semi-algebraic sets is a boolean algebra we can
find a partition (the intersection of the partitions) $\mathbb{R}^{n}=S_{1}\cup\cdots\cup S_{k}$ , where each $S_{i}$ is
semi-algebraic such that each set $A_{\triangle,e}$ is a union of the $S_{i}^{l}s$ .
We will prove that $f_{1},$

$\cdots,$ $f_{p+q}$ and $S_{1},$
$\cdots,$

$S_{k}$ satisfy the conclusion of the theorem.
For each connected component $C$ of $S_{i}$ put

$\triangle(C)=\{(i, \nu):\frac{\partial^{\nu}f_{i}}{\partial T^{\nu}}\not\equiv 0 on C\cross \mathbb{R}\}$ .

By Lemma 1.10, there exist continuous functions $\xi_{C_{1}},<\cdots<\xi_{C,r(C)}$ on $C$ such that
$\{(x, t)\in C\cross \mathbb{R}:f_{\Delta(C)}=0\}=\Gamma(\xi_{C,1})\cup\cdots\cup\Gamma(\xi_{C,r(C)})$ .
Check (i): If $(i, l$ノ $)\not\in\triangle(C)$ then $\frac{\partial^{\nu}f_{i}}{\partial T^{\nu}}\equiv 0$ on the sets given in (i).
If $(i,$ ノ $)$ $\in\triangle(C)$ , then $C\subset A_{\{(i,\nu)\},e}$ , for certain $e\in\{0, \cdots , d\}\cup\{\infty\}$ and the number
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complex zeros of $\frac{\partial^{\nu}f_{i}}{\partial T^{\nu}}(x, T)$ is independent of $x\in C$ . Since $\frac{\partial^{\nu}f_{i}}{\partial T^{\nu}}$ is a factor of $f_{\Delta(C)}$ , by

Lemma 1.9, the zeros of $\frac{\partial^{\nu}f_{i}}{\partial T^{\nu}}(x, T)$ , for $x\in C$ , must be among the $\xi_{C,j}(x)’s$ . Since $C$ is

connected, (i) is checked.

Check (ii): Let $B$ be one of the sets in (i). By (i), $\epsilon(i, l$ノ$)=$ sign $( \frac{\partial^{\nu}f_{i}}{\partial T^{\nu}}|_{B})$ is well-defined.
Put

$B’=\{(x, t)\in C\cross \mathbb{R}$ : sign $( \frac{\partial^{\nu}f_{i}}{\partial T^{\nu}}(x, t)=\epsilon(i, \nu),$ $1\leq i\leq p,$ $0\leq\nu\leq d\}$ .

Clearly $B\subset B^{l}$ . If $B\neq B’$ then exist $(x, t^{l})\in B^{l}\backslash B,$ $(x, t)\in B$ $($ say $t<t’)$ . Thom’s
lemma 1.8 implies that $\{r\in \mathbb{R} : (x, r)\in B‘\}$ is connected, so $\{x\}\cross[t, t’]\subset B’$ . Since
$(x, t)\in B,$ $(x, t’)\not\in B,$ $f_{\triangle(C)}$ must change sign on $\{x\}\cross[t, t’]$ . But $f_{\Delta(C)}$ is a product of
$\frac{\partial^{\nu}f_{i}}{\partial T^{\nu}}$ , so $f_{\triangle(C)}$ cannot change sign on $B’$ , contradiction. Therefore $B=B’$ . $\square$

Exercise:
1.11.1. Contract the augment family of polynomials and the partition of $\mathbb{R}^{2}=\{(b, c)\}$

satisfying the theorem for $f(b, c, T)=T^{2}+bT+c$ .
1.11.2. Contract the augment family of polynomials and the partition of $\mathbb{R}^{2}=\{(p, q)\}$

satisfying the theorem for $f(p, q, T)=T^{3}+pT+q$ .

1.12. Proof of Theorems 1.4 and 1.5: It is sufficient to prove the followings:

$(T-S)_{n}$ If $S\subset \mathbb{R}^{n}\cross \mathbb{R}$ is a semi-algebraic set, then $\pi(S)$ is semi-algebraic.
(L) If $S\subset \mathbb{R}^{n}\cross \mathbb{R}$ is a semi-algebraic set, then the number of the connected components
of $S$ is finite, and each of the components is also semi-algebrai$c$ .

Proof: By induction on $n$ . It is trivial when $n=0$ .
Suppose $(T-S)_{n-1}$ and $(L)_{n-1}$ . Let $S\subset \mathbb{R}^{n}\cross \mathbb{R}$ be a semi-algebraic described by equal-
ities and inequalities of $f_{1},$ $\cdots,$

$f_{p}\in \mathbb{R}[X_{1}, \cdots, X_{n}][X_{n+1}]$ . Now apply the cylindrical
decomposition theorem 1.11. There exist an augmentation of this family and a partition
$\mathbb{R}^{n}=\bigcup_{i}S_{i}=\bigcup_{i}\bigcup_{j}C_{ij}$ , where $S_{i}$ is semi-algebraic and $C_{ij}$ is a connected component of
$S_{i}$ . By $(L)_{n-1}$ , the number of the $C_{ij}^{l}s$ is finite and $C_{ij}$ is semi-algebraic. Therefore, $\mathbb{R}^{n}\cross \mathbb{R}$

is partitioned into graphs and bands of continuous functions on the $C_{ij}’s$ , which are con-
nected semi-algebraic sets. Since $S$ is a union of these sets, $\pi(S)=\cup\{C_{ij} : C_{ij}\cross \mathbb{R}\cap S\neq\emptyset\}$

is semi-algebraic, i.e. $(T-S)_{n}$ , and $S$ satisfies $(L)_{n}$ . $\square$

Exercise: The following exercises are related to resultants (ref. [BR]).
Let $A$ be a factorial commutative ring. Let

$P(T)=a_{0}+\cdots+a_{p}T^{p}\in A[T],$ $\alpha_{p}\neq 0$ ,
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$Q(T)=b_{0}+\cdots+b_{q}T^{q}\in A[T],$ $b_{q}\neq 0$ .
For $0 \leq k\leq\min(p, q)$ , the k-nd Sylvester’s matrix of $P,$ $Q$ is defined by:

$M_{k}(P, Q)$ $=$ $\{\begin{array}{ll}a_{0} . . . 0 b_{0} . . . 0\backslash : ... : ... a_{0} b_{0}a_{p} : b_{q} :... \end{array}$...
$0$

$a_{p}$
$0$ $b_{q}/$

$\ovalbox{\tt\small REJECT} p+q-k$

$q-k$ $p-k$

1.12.1. Prove that the following conditions are equivalent:
(a) The degree of GCD $(P, Q)$ is $\geq k+1$ .
(b) $P,$ $Q$ have $\geq k+1$ common zeros (counted with multiplicity) in the algebraic closure

$\overline{A}$ .
(c) Every $(p+q-2k)$-minor of $M_{k}(P.Q)$ vanishes.
1.12.2. From the above exercise, prove that the condition is that $P,$ $Q$ have $k$ distinct zeros
in $\overline{A}$ , which is the condition given by equalities and inequalities of certain polynomials in
$Z[a_{0}, \cdots, a_{p}, b_{0}, \cdots, b_{q}]$ .
1.12.3. When $A=\mathbb{C}$ , prove that $P$ has exactly $k$ zeros if and only if the degree of
GCD$(P, P’)$ is $p-k$ .
This implies Lemma 1.9.
1.12.4. The resultant of $P,$ $Q$ is defined by ${\rm Res}(P, Q)=\det(M_{0}(P, Q))$ . Therefore,

${\rm Res}(P, Q)=0\Leftrightarrow P,$ $Q$ having GCD of degree $>0$ .

1.12.5. The discriminant of $P$ is defined by Disc$(P)={\rm Res}(P, P’)=\det(M_{0}(P, Q))$ .
When $A=\mathbb{C}$ , we have

Disc $(P)=0\Leftrightarrow P$ having zeros of multiplicity $>0$

1.12.6. Compute the discriminants of polynomials of degree 2, 3.

Seminar: St$urm$ ’s theorem and Tarski-Seidenberg’s theorem. (ref. [BCR] or [C]).

REFERENCES
[BR] R. Benedetti and J-J. Risler, Real Algebraic and Semi-algebraic Sets, Hermann, 1990.
[BCR] J. Bochnak, M. Coste and M.-F. Roy, Geom\’etrie algebrique r\’eel, Springer-Verlarg, Berlin, 1987.
[C] M. Coste, An introduction to semialgebmic geometry, Universita di Pisa, Dottorato di recerca in

Matematica, Instituti editoriali e poligrafigi internazionali, Pisa-Roma, 2000.
[D] L. van den Dries, Tame Topology and o-minimal Structures, LMS Lecture Note Serries, 248, Cam-

bridge University Press, Cambridge, 1998.
[L] S. Lojasiewicz, Ensembles Semi-Analytiques, IHES, Bures-sur-Yvette, 1965.
[LZ] S. Lojasiewicz and M.A. Zurro, Una introducci\’on a la geometria semi-y subanalitica, Univesidad

de Valladolid, 1993.
[S] S. Seidenberg, A new decision method for elementary algebra, Ann. of Math. 60(1954), 365-374.

57



AN INTRODUCTION TO SEMI-ALGEBRAIC SETS

[T] A. Tarski A decision method for elementary algebm and geometry, 2nd ed. University of California
Press, Berkeley and Los Angeles, Calif. , 1951.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DALAT, DALAT, VIETNAM
E-mail address: loitl@dlu.edu.vn

58


