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2. STABLE MAP

In this section, we give the definition and see properties of a stable map.
Let $f$ : $Marrow \mathbb{R}^{2}$ be a smooth map of a closed connected surface $M$

into the plane. We denote the set of such maps by $C^{\infty}(M, \mathbb{R}^{2})$ , which is
equipped with the Whitney $C^{\infty}$ -topology. A smooth map $f$ is said to be a
stable map if in $C^{\infty}(M, \mathbb{R}^{2})$ , there exists an open neighborhood $U$ of $\tilde{f}$ such
that for any $\tilde{g}\in U,\tilde{g}$ is $C^{\infty}$ right-left equivalent to $f$ , i.e., there exist two
diffeomorphisms $\Phi$ : $Marrow M$ and $\varphi:\mathbb{R}^{2}arrow \mathbb{R}^{2}$ such that the diagram

$Marrow^{\Phi}M$

$\overline{f}\downarrow$ $\downarrow\tilde{g}$

$\mathbb{R}^{2}arrow \mathbb{R}^{2}$

$\varphi$

is commutative.
For a smooth map $f;Marrow \mathbb{R}^{2}$ , we denote by $s(f)$ the set of the points

in $M$ where the rank of the differential of $\tilde{f}$ is strictly less than two. We
say that $S(\tilde{f})\subset M$ is a singular set of $f$ and $f(S(f))\subset \mathbb{R}^{2}$ is an apparent
contour of $f$.

The following characterizations of stable maps are well-known (see [2, 8],
for example).

Proposition 2.1. A smooth map $f;Marrow \mathbb{R}^{2}$ of a closed surface $M$ is a
stable map if and only if the following conditions are satisfied.

(i) For every $q\in M$ , there $ex:ist$ local coordinates $(x, y)$ and (X, Y)
around $q\in M$ and $f(q)\in \mathbb{R}^{2}$ respectively such that one of the fol-
lowing holds:
$(a)(X\circ\tilde{f}, Yo\tilde{f})=(x, y)$ ( $q$ : regular point),
$(b)(Xo\tilde{f}, Yo\tilde{f})=(x, y^{2})$ ( $q$ : fold point),
$(c)(Xo\tilde{f}, Yo\tilde{f})=(x, y^{3}-xy)$ ( $q$ : cusp point).

(ii) If $q\in M$ is a cusp point, then $\tilde{f}^{-1}(f(q))\cap s(f)=\{q\}$ .
(iii) The map $f|$ ( $S(\tilde{f})\backslash \{cusp$ points}) is an immersion with normal cross-

ings.

Note that $s(f)$ is a compact l-dimensional submanifold of $M$ and the
number of cusp points is finite. Let $U\subset M$ be a tubular neighborhood of
$S(\tilde{f})$ . Then the restriction of $f$ on the closure cl $(M\backslash U)$ is an immersion.
By the apparent contour of $f,$ $\mathbb{R}^{2}$ is naturally stratified into 2-, 1- and 0-
dimensional strata. The union of l-and 0-dimensional strata forms $\tilde{f}(S(f))$ .
On each l-dimensional stratum, we can define an orientation as follows.
We fix the canonical orientation on $\mathbb{R}^{2}$ . Let $\Omega$ be a connected component
of $\mathbb{R}^{2}\backslash \tilde{f}(S(\tilde{f}))$ . We associate to $\Omega$ a non-negative integer $n_{\overline{f}}(\Omega)$ , which
is the number of points in the fiber of $\tilde{f}$ over any point of $\Omega$ . Every 1-
dimensional stratum is adjacent to exactly two connected components of
$\mathbb{R}^{2}\backslash \tilde{f}(S(\tilde{f}))$ . Since these two components have distinct $n_{\overline{f}}(\Omega)$-values, we
can orient each l-dimensional stratum in $f(S(\tilde{f}))$ so that the region with
the larger $n_{f}(\Omega)$-value is on its left. Since $f|$ ( $S(\tilde{f})\backslash \{$cusp points}) is an
immersion, $S(\tilde{f})\backslash$ {cusp points} is also oriented.
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Suppose that $M$ is an oriented closed surface and $\mathbb{R}^{2}$ is oriented plane.
Let $q$ be a cusp point of a stable map $f;Marrow \mathbb{R}^{2}$ . For a sufficiently small
neighborhood $U$ of $f(q)$ , the map $f|v$ : $Varrow U$ has degree $\pm 1$ , where $V$

is the component of $f^{-1}(u)$ containing $q$ . We call $q$ is a positive (resp.
negative) cusp if the local degree of $f$ at $q$ equals $+1$ (resp. $-1$ ).

3. IMMERSION LlFT

In the following, we assume that $M,$ $\mathbb{R}^{3}$ and $\mathbb{R}^{2}$ are oriented. In this case,
Haefliger $s$ theorem is restated as follows.

Theorem 3.1 (Haefliger [3]). A stable map $f;Marrow \mathbb{R}^{2}$ has an immersion
lift if and only if each connected component of $S(\tilde{f})$ has even number of cusp
points.

Let $f:Marrow \mathbb{R}^{2}$ be a stable map which has an immersion lift. On each
connected component of fold points $S(\tilde{f})\backslash$ {cusp points}, we can put a sign
$+1$ or-l which satisfies the following rule.

$\bullet$ Let $C$ and $C’$ be two connected components which adjacent to the
same cusp point. Then $C$ and C’ have the opposite signs.

If a sign of $C$ is $+1$ (resp. $-1$ ), we call $C$ a positive (resp. negative) fold and
a sign can be put on each image of fold component. Such a stable map $\tilde{f}$ is
called a signed stable map.

Let $f:Marrow \mathbb{R}^{2}$ be a signed stable map and $U$ a tubular neighborhood
of $S(\tilde{f})$ . Since $M$ is oriented, $U\backslash s(f)$ is divided into two regions $U+$ and
$U$-where $f|U+$ (resp. $f|U_{-}$ ) is an orientation preserving (resp. reversing)
immersion. We construct an immersion lift $f_{U}$ : $Uarrow \mathbb{R}^{3}$ over $f|u$ which
satisfies the following.

(1) If $C$ is a positive fold, $f$ is defined as Figure 1 (a).
(2) If $C$ is a negative fold, $f$ is defined as Figure 1 (b).
(3) If $q$ is a positive cusp and negative fold comes in $q$ for the orientation

of $S(\tilde{f}),$ $f$ is defined as Figure 2(a).
(4) If $q$ is a positive cusp and positive fold comes in $q$ for the orientation

of $S(\tilde{f}),$ $f$ is defined as Figure 2(b).
(5) If $q$ is a negative cusp and negative fold comes in $q$ for the orientation

of $s(f),$ $f$ is defined as Figure 2(c).
(6) If $q$ is a negative cusp and positive fold comes in $q$ for the orientation

of $s(f),$ $f$ is defined as Figure 2(d).

Definition 3.2. Let $f;Marrow \mathbb{R}^{2}$ be a signed stable map and $U$ a tubular
neighborhood of $S(\tilde{f})$ . If an immersion $f$ : $Marrow \mathbb{R}^{3}$ satisfies the above rules
(1) $-(6)$ on $f|U$ , we call $f$ an immersion lift over the signed stable map $f$ .

4. $f$-REGULAR HOMOTOPY

In this section, we state that $f$-regular homotopy classes can be deter-
mined.

Theorem 4.1. If $f$ and $g:Marrow \mathbb{R}^{3}$ are immersion lifts over the signed
stable map $f:Marrow \mathbb{R}^{2_{f}}$ then $f$ and $g$ are $f$-regularly homotopic.
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$\downarrow\pi$ $\downarrow\pi$

(a) (b)

FIGURE 1. Immersion lifts if (a) $C$ is a positive fold, (b) $C$

is a negative fold.

Corollary 4.2. Let $f:Marrow \mathbb{R}^{2}$ be a stable map which has an immersion
lift. (Note that $f$ is not signed.) The number of $f$-regular homotopy classes
is $2\# S(\overline{f})$ , where $\# S(\tilde{f})$ is the number of connected components of $S(\tilde{f})$ .

We have a following example which is related to Theorem 4.1.

Example 4.3. Let $T^{2}$ be an oriented torus and $l$ and $m$ longitude and
meridian of $T^{2}$ , respectively. Let $f$ and $\tilde{g}$ : $T^{2}arrow \mathbb{R}^{2}$ be signed stable
maps which satisfy the following properties. They do not have cusp points,
$f(S(\tilde{f}))=\tilde{g}(S(\tilde{g}))$ , both signs are the same, $f|\iota=\tilde{g}|l$ and $\tilde{g}|m$ are plane
curves whose rotation numbers equa12 (or-2), $f|m$ is a simple closed plane
curve. See Figure 3. By the theorem of Pinkall [6], immersion lifts $f$ and
$g:T^{2}arrow \mathbb{R}^{3}$ over $f$ and $\tilde{g}$ respectively are not regularly homotopic.

Theorem 3.1 and Example 4.3 mean that if $M\neq S^{2}$ , an apparent contour
with sign does not determine a regular homotopy class. We need information
of immersion $f|(M\backslash s(f))$ .

5. REGULAR HOMOTOPY LIFT OVER A GENERIC HOMOTOPY

Let $f$ and $\tilde{g}$ : $Marrow \mathbb{R}^{2}$ be stable maps and $\tilde{F}$ : $M\cross[0,1]arrow \mathbb{R}^{2}$ a homotopy
between $f$ and $\tilde{g}$ . If $\tilde{F}$ satisfies the following conditions, we call $\tilde{F}$ a generic
homotopy between $f$ and $\tilde{g}$ (see [5]).

(1) There is a finite set of parameter values $0<t_{1}<\cdots<t_{n}<1$
(possibly empty) in $(0,1)$ .

(2) For any $t\in(0,1)\backslash \{t_{1}, \ldots, t_{n}\},\tilde{F}|M\cross\{t\}$ : $M\cross\{t\}arrow \mathbb{R}^{2}$ is a stable
map.

(3) For each $t_{i}$ and a sufficiently small positive value $\epsilon$ , the moves of
apparent contours of $\tilde{F}|M\cross\{t\}(t\in(t_{i}-\epsilon, t_{i}+\epsilon))$ are classified into
lips (type $L$ ), beaks (type $B$), swallowtail (type $S$), cusp-fold (type
$C)$ , self-tangency (type $K$ ) or triple point (type $T$).
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$\downarrow\pi$ $\downarrow\pi$

(a) (b)

$\downarrow\pi$ $\downarrow\pi$

(c) (d)

FIGURE 2. Immersion lifts if (a) $q$ is a positive cusp and
negative fold comes in, (b) $q$ is a positive cusp and positive
fold comes in, (c) $q$ is a negative cusp and negative fold comes
in, (b) $q$ is a negative cusp and positive fold comes in.

We call each $t_{i}$ is a bifurcation point on a generic homotopy $\tilde{F}$ .
Let $\tilde{F}$ : $M\cross[0,1]arrow \mathbb{R}^{2}$ be a generic homotopy between signed stable

maps $f$ and $\tilde{g}$ and let $f$ and $g$ immersion lifts over $f$ and $\tilde{g}$ , respectively. If
there exists a regular homotopy $F:M\cross[0,1]arrow \mathbb{R}^{3}$ between $f$ and $g$ such
that $\pi\circ F=\tilde{F}$ , we call $F$ a regular homotopy lift over $\tilde{F}$ .

Theorem 5.1. Let $f$ and $\tilde{g}$ : $Marrow \mathbb{R}^{2}$ be signed stable maps. If there exists
a generic homotopy $\tilde{F}$ : $M\cross[0,1]arrow \mathbb{R}^{2}$ between $f$ and $\tilde{g}$ which preserves sign
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$\downarrow\pi$ $\downarrow\pi$

FIGURE 3. Two stable maps $f$ and $\tilde{g}$ : $T^{2}arrow \mathbb{R}^{2}$ which satisfy
that $\tilde{f}(S(\tilde{f}))=\tilde{g}(S(\tilde{g}))$ and both apparent contours have
positive signs. But their immersion lifts $f$ and $g:T^{2}arrow \mathbb{R}^{3}$

are not regularly homotopic.

convention as depicted in Figures 4 and 5, then $\tilde{F}$ has a regular homotopy
lift $F:M\cross[0,1]arrow \mathbb{R}^{3}$ .

As an application of Theorem 5.1, we have the following example.

Example 5.2. If $f$ and $\tilde{g}$ : $S^{2}arrow \mathbb{R}^{2}$ are signed stable maps such that
$f(s^{2})=\tilde{g}(S^{2})=D^{2},$ $f(S(\tilde{f}))=\tilde{g}(S(\tilde{g}))$ is a simple closed curve and the
sign of $S(\tilde{f})$ (resp. $S(\tilde{g})$ ) is $+1$ (resp. $-1$ ). Then there is a generic homotopy
$\tilde{F}$ : $S^{2}\cross[0,1]arrow \mathbb{R}^{2}$ between $f$ and $\tilde{g}$ which has a regular homotopy lift
$F$ : $S^{2}\cross[0,1]arrow \mathbb{R}^{3}$ . See Figure 6. By the definitions of $f,\tilde{g}$ , the regular
homotopy lift $F$ over $\tilde{F}$ corresponds to an eversion of the embedded sphere.

Our eversion in Example 5.2 is almost same as the eversion given by
Flrancis [1]. But in his picture, self intersections of immersed spheres were not
drawn. Professor Mikami Hirasawa and the author draw a regular homotopy
over the generic homotopy of Figure 6, precisely. So, we can follow how self
intersections move during our sphere eversion. Our eversion will appear in
their preparing paper,
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$rightarrow^{L}$

$rightarrow^{B}$

$rightarrow^{S}$

FIGURE 4. Bifurcations of type $L,$ $B,$ $S$ and $C$ which have
regular homotopy lifts. Here, $\alpha=\pm 1$ and $\beta=\pm 1$ and $\alpha$ and
$\beta$ vary independently.
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$rightarrow^{K_{1}}$

$rightarrow^{K_{2}}$

$rightarrow^{T_{1}}1$

$rightarrow^{T_{2}}$

FIGURE 5. Bifurcations of type $K$ and $T$ which have regular
homotopy lifts. Here, $\alpha=\pm 1,$ $\beta=\pm 1$ and $\gamma=\pm 1$ and $\alpha,$

$\beta$

and $\gamma$ vary independently.
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FIGURE 6. A sequence of apparent contours of a generic ho-
motopy between $f$ and $\tilde{g}:S^{2}arrow \mathbb{R}^{2}$ which has a regular ho-
motopy lift. This regular homotopy corresponds to a sphere
eversion.
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