
ON THE SMOOTH UNKNOTTING CONJECTURE IN
DIMENSION FOUR

TAKAO MATUMOTO

ABSTRACT. We will reduce the smooth unknotting conjecture in
dimension four to the special case and discuss also about the re-
duced case. The starting point is that the fundamental group of
the complement is cyclic and then we have a generic one-parameter
family of smooth maps of $S^{2}$ into $\mathbb{R}^{4}$ which connects the given sur-
face knot to the standard one with only cusp births and deaths.

The important step is a Markov type theorem; we can translate
the image of such a one-parameter family into a one-parameter
family of the singular surface braids, which will be described by
a deformation of their chart diagrams on $S^{2}$ . This part is due to
Seiichi Kamada.

Such a deformation of chart diagrams is a special object con-
sisting of 2-dimensional surfaces in $S^{2}\cross$ R. In the family of simple
singular surface braids case the trace of the self-intersection points
and the boundaries has no singular points with respect to the defor-
mation parameter. In fact, we can cut off the part which contains
only one self-intersection point and satisfies the simple condition.
If this part can be modified to the deformation of non-singular sur-
face braids, the conjecture is solved affirmatively by the induction
on the number of self-intersection points.

In this way the conjecture is reduced to the case of the defor-
mation of the simple chart diagrams with one node assuming that
one end has a canceling node and another end is a ‘trivial’ chart
with one node. We will discuss some ideas about this case, too.

1. INTRODUCTION

A smooth embedding of $S^{2}$ into $\mathbb{R}^{4}$ is called smoothly unknotted if
it is diffeomorphic to the standard embedding. In this case the fun-
damental group of the complement is an infinite cyclic group. So, the
question is whether the converse is true: if the fundamental group of
the complement of a smooth embedding of $S^{2}$ into $\mathbb{R}^{4}$ is cyclic, is it
smoothly unknotted? Kawauchi [7] proved that when it is considered
as an embedding into $S^{4}$ by adding a point at infinity, the comple-
ment has the homotopy type of $S^{1}$ and Freedman [2] proved that it is
homeomorphic to the standard embedding. The purpose of this paper
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is to discuss how to get an affirmative answer to the following smooth
unknotting conjecture in dimension four.

Conjecture. Let $S^{2}\subset \mathbb{R}^{4}$ be a smooth knot such that the fundamental
group of the complement is an infinite cyclic group. Then it is smoothly
unknotted.

For the classical knot Dehn $s$ lemma was proved by Papakyriakopou-
los [11] in 1957. The higher dimensional knot whose complement is of
the same homotopy type with the standard embedding is proved to
be unknotted topologically by Stallings [12] in 1963 and smoothly by
Levine [8] and [9] in 1965 and 1970 except the four-dimensional case.

2. REVIEW OF THE TERMINOLOGY CONCERNING SURFACE BRAIDS

The basic reference is Kamada’s book [3] and a surface braid may
be also called a 2-dimensional braid. The special kind of locally flat
surfaces in 4-space are treated there but it is not difficult to make them
PL and then they are smoothable due to Cerf [1]. Note that a surface
braid can represent only an orientable surface and we do not know yet
any counterexample for the smooth unknotting of orientable surfaces
in 4-space.

A surface braid of degree $m$ is an oriented surface ($=2$-manifold) $S$

embedded properly and locally flatly in $D_{1}^{2}\cross D_{2}^{2}$ such that the restric-
tion map $pr_{2}|S$ : $Sarrow D_{2}^{2}$ of the second factor projection is a branched
covering map of degree $m$ and $\partial S=$ {$m$ interior points} $\cross\partial D_{2}^{2}$ . See
Definition 14.1 at p.105 of [3].

A singular surface braid is a properly immersed oriented surface with
almost the same property as in the case of a surface braid but admitting
at most one double point in $pr_{2}^{-1}(y)$ when $y$ is not a branched point.
See Definition 34.3 at p.272 of [3] for the exact definition.

A simple (singular) surface braid is a (singular resp.) surface braid
whose associated branched covering is simple, that is, for each branched
point $y\in D_{2}^{2}$ there is a unique singular point $x$ with $pr_{2}(x)=y$ and
the local degree at $x$ is two. See Definition 14.8 at p.108 of [3].

A closed (singular) surface braid in $\mathbb{R}^{4}$ is an oriented (singular resp.)
surface link in $\mathbb{R}^{4}$ which is the closure $\hat{S}=S\cup(\coprod mD^{2})$ of $S$ contained in
$N(S^{2})=D_{1}^{2}\cross S^{2}\subset \mathbb{R}^{4}$ . The closure can be thought as a surface braid
not in $D_{1}^{2}\cross D_{2}^{2}$ but in $D^{2}\cross S^{2}$ . See Definitions 23.1-2 at pp.179-180
of [3].

Let $S$ and $S’$ be closed (singular) surface braids in $D^{2}\cross S^{2}$ .
(2) $S$ and $S’$ are equivalent if they are ambient isotopic by an iso-

topy $\{h_{u}\}_{u\in[0,1]}$ of $D^{2}\cross S^{2}$ such that for each $u\in[0,1],$ $h_{u}$ is
fiber-preserving.

(3) $S$ and $S’$ are braid ambient isotopic if they are ambient isotopic
by an isotopy $\{h_{u}\}_{u\in[0,1]}$ of $D^{2}\cross S^{2}$ such that for each $u\in[0,1]$ ,
$h_{u}(S)$ is a (singular resp.) surface braid.
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See Definition 14.10 at p.109 (and also Definition 14.2) of [3].
A chart of degree $m$ is a finite graph $\Gamma$ on $D_{2}^{2}$ (or on $S^{2}$ ) whose edges

are oriented and labeled satisfying the following conditions:

(0) The graph is disjoint from the boundary of $D_{2}^{2}$ .
(1) Every vertex has degree one, four or six.
(2) The labels of edges are integers in $\{1, 2, \ldots, m-1\}$ .
(3) For each degree-six vertex, three consecutive edges are oriented

inward and the others are oriented outward, and the six edges
are labeled $i$ and $i+1$ alternately for some $i$ . This vertex is
called a white vertex. Also the degree-one vertex is called a
black vertex.

(4) For each degree-four vertex, diagonal edges have the same la-
bel and are oriented coherently, and the labels $i$ and $k$ of the
diagonals satisfy $|i-k|>1$ .

See Definition 18.7 at p.135 of [3].
A chart determines an associated simple surface braid through mo-

tion pictures and also through braid monodromies up to equivalence
and vise versa. Moreover, two charts of degree $m$ present the same, up
to equivalence, simple surface braid if and only if they are related by
a finite sequence of CI-, CII- and CIII-moves and ambient isotopies of
$D_{2}^{2}$ (or $S^{2}$ ). See Chapter 18 especially Theorem 18.20 at p.142 of [3].
CI-, CII- and CIII-moves are illustrated as in Figure 1 in \S 7.

A singular chart admits also degree-two vertex, called a node. And
for each degree-two vertex, the two edges have the same label but the
orientations are opposite. Moreover, two singular charts of degree $m$

describe the same, up to equivalence, simple singular surface braid if
and only if they are related by a finite sequence of the chart moves $(=$

C-moves $=$ CI$-$ , CII-, CIII-, CIV and CV-moves) and ambient isotopies
of $D_{2}^{2}$ (or $S^{2}$). See \S 34.4 especially Theorem 34.5 at p.274 of [3]. CIV-
and CV-moves are illustrated as in Figure 2 in \S 7.

A free edge of a (singular) chart is an edge whose end points are
black vertices. See Definition 20.5 at p.156 of [3].

A (singular) surface braid $S’$ of degree $m+1$ is obtained from a
(singular resp.) surface braid $S$ of degree $m$ by a stabilization if $\Gamma(S’)$

is a union of $\Gamma(S)$ and a new free edge with label $m$ , where $\Gamma(S)$ and
$\Gamma(S’)$ denote the charts for $S$ and $S’$ respectively. A destabilization is
the inverse of a stabilization. See Definition 25.5 and Exercise 25.11
at pp.188-190 of [3]. In fact, we may put the free edge with label $m$ in
any region of $S^{2}-\Gamma(S)$ .

A nomad of degree $m$ is a union of $(m-1)$ number of free edges whose
labels are 1, 2, . .. , $m-1$ . It represents the trivial surface knot of genus $0$

and may be called a trivial chart but a trivial surface braid has already
defined to be one equivalent to the product { $m$ interior points} $\cross D_{2}^{2}$

(Definition 14.1 at p.107 of [3]).
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A non-simple (singular) surface braid can also be described by non-
simple (singular) chart by admitting some fusions of black vertices.
The chart moves can be easily generalized to this case. Moreover,
braid isotopies can be described by the chart moves admitting fusions
and fissions of black vertices. Of course there are several conditions to
get fusion but we do not care about the conditions and any possibility
of attaching sheets to black vertices in this paper. For the details see
[5].

Note that the cusp death point is described by the fusion of a simple
black vertex and a simple node with opposite signs. The result is also
a simple black vertex with the same sign as the node. The cusp at the
birth point is described by the inverse.

We will use the charts in $S^{2}$ and can neglect the conjugations in
Markov $s$ Theorem. See Theorems 25. I2 and 25.14 at p.190 of [3].

3. THEOREMS AND A RESTRICTED CONJECTURE

The following Theorems 1 to 3 and affirmative answer to Conjec-
ture 4 will solve the smooth unknotting conjecture.

Theorem 1. Let $f$ : $\mathscr{S}arrow \mathbb{R}^{4}$ be a smooth embedding such that the
fundamental group of the complement is an infinite cyctic group. Then,
there is a generic one-pammeter family of smooth maps ffom $\mathscr{S}$ to $\mathbb{R}^{4}$

which connects the given surface knot to the standard one with only
cusp births and deaths (for singularities of smooth maps).

The proof of this fact is not difficult, because any finger moves in
this dimension are isotopic to trivial ones by the given condition and
each of them is easily deformed into two cusps. The proof is given in
[10].

Moreover, we may assume that each self-intersection double point
appears near the end and keeps the same place and then disappears
near another end.

FUrther, after introducing self-intersection double points we may as-
sume that the singular surface knots near two ends are ambient isotopic,
that is, there is a generic one-parameter family of smooth maps from
$S^{2}$ to $\mathbb{R}^{4}$ without any singular points with respect to the deformation
parameter.

The Markov type theorem for a singular surface knot will be as
follows.
Theorem 2. Let an ambient isotopy of a singular surface knot, that
$is$, an ambient isotopy of a generic immersion of $\mathscr{S}$ in $\mathbb{R}^{4}$ be given.
We may suppose that the double points are not moved. Assume that the
two ends are given by closed simple singular surface braids in $D^{2}\cross S^{2}$ .
Then, two end singular surface bmids are related by a finite sequence
of bmid ambient isotopies (which keep the nodes disjoint jfivm the other
vertices by definition), and stabilizations and destabiIizations.
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A Markov type theorem for a surface knot is proved in [3] as Theo-
rem 25.14 at p.190 and this is its generalization to a singular surface
knot. The proof will be given somewhere else by Kamada.

The result gives a one-parameter family of singular surface braids
whose traces of double points are disjoint non-singular curves with
respect to the deformation parameter except at the cusp birth and
death points. Also the part between two level singular surface braids
$\mathscr{L}ve$ an ambient isotopy if it contains no cusp singularity. Hereafter
such a family will be called a one-parameter cusp family of singular
surface braids.

Theorem 3. Assume that the lower end of the given one-parameter
cusp family of singular surface braids is simple. We assume that there
is one cusp death point next to the lower end, which means the fuion
of the node and a simple black vertex occurs as the last move. Then,
the family can be modified so that the corresponding cusp birth point is
pushed down to just above the lowest cusp death point, at least lower
than the other cusp death points. Remark that each of two end singular
surface braids is unchanged up to equivalence. In particular, we have
no non-simple surface braids under the moved new cusp b\’irth point.

Conjecture 4. Let $a$ one-pammeter cusp family of simple singular sur-
face braids between two non-singular surface braids be given. Assume
that the chart of the lower end surface braid is ‘trivial’ described by a
nomad and that the tmce of doubte points is connected. Then, the one-
parameter cusp family can be changed into the one-parameter family of
non-singular simple surface bmids keeping two ends unchanged.

The proof of Theorem 3 is a main part of this paper. The idea of
the proof depends on the chart description of the one-parameter cusp
family of singular surface braids and will be explained later in \S 5.

Theorem 2 works only for the orientable but possibly singular sur-
faces. In the case of higher genus Theorem 3 is valid but the discussion
about Conjecture 4 becomes too complicated.

4. OUTLINE OF DISCUSSION PROVING THE MAIN CONJECTURE

First we get a generic one-parameter family of smooth maps from
$S^{2}$ to $\mathbb{R}^{4}$ which connects the given surface knot to the standard one
with only cusp births and deaths by Theorem 1. We can move the
times of cusp births to the very beginning and those of cusp deaths to
the very end. This means that after introducing the same numbers of
self-intersection double points by the cusp births from each end, two
singular knots at the new ends are ambient isotopic to each other.

Moreover, after introducing the self-intersection double points, we
may assume that these self-intersection points do not move during the
ambient isotopy. In fact, the cusp birth and death are paired by tracing
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the self-intersection points and moving the cusp death points appropri-
ately we can assume that each pair of the cusp birth and death points
is located at the same point in $\mathbb{R}^{4}$ and then we can deform each trace
curve of self-intersection double points which is non-singular with re-
spect to the deformation parameter to the straight line fixing the both
ends because $1+1<5$ .

We may assume that the given surface knot is a closed surface braid
in $D^{2}\cross S^{2}\subset \mathbb{R}^{4}$ and the standard embedding is a closed ‘trivial’ surface
braid. Since introducing a cusp is given by a fission of a black vertex
into a pair of node and black vertex as explained in \S 2, we can apply
Markov type Theorem 2 to the intermediate ambient isotopy of the
one-parameter,cusp family of singular surface knots above and get a
one-parameter cusp family of singular and possibly non-simple surface
braids connecting a simple surface braid representing the given surface
knot and the ‘trivial’ surface braid described by a nomad.

Now we take the lowest.cusp death point; if there are several ones we
take one of them and move its time lower, that is, we make the fusion of
a pair of node and black vertex a little later. Then, the corresponding
cusp birth point can be pushed down lower than the other cusp death
points by Theorem 3. Note that the assumption of Theorem 3 can be
satisfied by our construction.

Taking a level surface braid a little above the new lowest birth point
as a new upper end, we get a one-parameter cusp family of simple
singular surface braids whose lower end is the ‘trivial’ surface braid
described by a nomad and whose trace of double points is connected.

So, if Conjecture 4 is affirmative, we can apply it to the lower part
above and replacing this part we get a one-parameter cusp family of
singular and possibly non-simple surface braids connecting a simple
surface braid representing the given surface knot and the ‘trivial’ sur-
face braid described by a nomad with one less number of connected
components of double points. By an induction on the number of con-
nected components of double points, we get a one-parameter family of
non-singular, possibly non-simple surface braids connecting a s\’imple
surface braid representing the given surface knot and the ‘trivial’ sur-
face braid described by a nomad. This means that they are related by
a finite sequence of braid ambient isotopies, stabilizations and destabi-
lizations. Therefore, they are ambient isotopic in $\mathbb{R}^{4}$ by Theorem 25.14
of [3]. So, the given surface knot is unknotted.

5. PROOF OF THEOREM 3

We may assume that the one-parameter cusp family of singular and
possibly non-simple surface braids is given by a one-parameter cusp
family of the charts for singular and possibly non-simple surface braids.
In fact, each chart move is parametrized and the chart description of
the one-parameter cusp family is a 2-dimensional object consisting of
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the trace of edges and vertices in $S^{2}\cross \mathbb{R}$ whose intersection with $S^{2}\cross t$

gives a chart admitting also the diagram on the way of chart moves.
Note that the ‘boundaries’ of this object are the trace of black vertices
and only the simple boundaries touch with the trace of nodes at the
cusp birth or death points. The trace of black vertices and node are
the main objects because they determine the braid monodromies.

At first we would like to move the stabilizations and destabilizations
out of the range so that we can consider the one-parameter cusp family
to be one of singular surface braids of constant degree. To do so we
need to move the time of each stabilization to the very beginning. We
start with a stabilization with the smallest degree $n$ . This is described
by a newly appeared free edge with label $n$ at the stabilization time.
If there is no destabilizations (of degree n) upper than it, there is no
problem to push up the free edge to the very beginning. When our
rising free edge meets the time of destabilization, if the free edge with
label $n$ which disappears as a destabilization locates in the same com-
plementary region of the singular surface braid of degree $n$ consisting
of the components other than each free edge with label $n$ , we can con-
nect these free edges with label $n$ directly; then a pair of stabilization
and destabilization of degree $n$ will disappear and get a local family
of singular surface braids of degree $n+1$ . Even if two free edges are
in the distinct regions, these charts are related by a finite sequence
of chart moves as in Exercise 25.11 at pp.189-190 of [3]. So, by in-
serting a parametrized family for these chart moves into the original
one-parameter cusp family, the condition above is satisfied and a pair
of stabilization and destabilization of degree $n$ disappears. Hence, we
can push up all the stabilizations to the very beginning by an induction
on the number of stabilizations of degree $n$ and an induction on $n$ . All
the destabilizations are also pushed down to the very end.

So, we may assume that we are given a one-parameter cusp family
of singular surface braids of degree $m$ which satisfy the same condition
although the end charts for singular surface braids may be stabilized.

Next we modify the chart for the singular surface braid at the time
of the corresponding cusp birth. The cusp birth, which is a fission of a
simple black vertex into a pair of a node and a simple black vertex with
the same label, has the label $n$ with $n\leq m-1$ . If $n<m-1$ , we take
two concentric simple loops with the same orientation and the labels
$n+1,$ $n$ near the cusp birth (or a pair of black vertex and a node) by
CI-moves. Then, we push the cusp (the black vertex first and then the
node) into the simple loops with labels $n+1,$ $n$ in this order and get a
white vertex by CIII- and CV-moves; the label of cusp birth is changed
to $n+1$ . By an induction we can assume that the corresponding cusp
birth has the highest label $m-1$ .

Now we take a small interval neighborhood of the cusp birth time.
We stabilize this part of the one-parameter cusp family for the singular
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surface braids and by the technique shown in the following Figure 3 we
can move the node on the newly introduoed &ee ‘edge’ and become a
cusp birth with label $m$ . We repeat this process three times and push
down the free edges with labels $m,$ $m+1,m+2$ carefully along the trace
of the double point as in the following Figure 4 so that the cusp birth
can be pushed down just above the corresponding cusp death. Then,
we get the result. Note that we only need to observe not to link with

FIGURE 4. The cusp birth which can be pushed down
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6. $BR\ddagger EF$ DISCUSSION TO PROVE CONJECTURE 4
S\’ince the one-parameter cusp family contains only simple singular

surface braids, the traces of $b$}$ack$ vertices are disjoint and hence we
think that the black vertices are fixed on the standard places and not
moved during tbe deformation. On the other hand the trace of node
starts from some black vertex and goes down by winding the traces of
black vert\’ices and then reach some black vertex.

Since the lower end is a ‘trivial’ chart or equivalently a nomad, we
should take the trace of node backward from the lower end in a generic
position. We may assume that the trace of node euds at the bIack
vertex with label 1 by the technique shown in the-following Figure 5.
(The dotted line indic\’ates a part of the tme of the [lode.) Originally

$\dot{\iota}’\trianglerightarrow_{\simeq}-\dot{c}_{\sim\mu ,---\langle}^{-\underline{|}}3^{\dot{t}}’|.|’|\iota gi\tau\prec_{\gamma’}\mathscr{N}\gamma \mathfrak{i}-|_{\urcorner-}^{\frac{\iota 1}{--1t}}i^{\phi’\backslash \sim}$

1 I

FIGURE 5. Moves to cbange the end black vertex

the trace of node starts at some black vertex but we start a little later,
that is, after the fission into a node and a black vertex. So, the mon-
odoromy at the startingpoint may be assumed to be $\sigma_{i}^{2}$ . (Alternatively
if $\sigma_{i}^{-2}$ the argument will be valid by reversing the orientation of all the
edges.) The starting chart diagram is a ‘trivial’ one, that is, one that a
free edge of a nomad with label $i$ is changed into a segment consisting
of one node, two inward oriented edges and two end blaok vertices with
negative sign.

Now we project generically the trace of node on the starting ehart.
Then, there might be many self-intersections for the trace of node.
But by the method of [6] which pusbes the self-intersections over the
starting node, we can eliminate the self-intersections of the trace of
node. Moreover, after eliminating the seIf-intersections we get a word
by reading the crossing with the oriented edges of the starting ‘trivial’
chart. Read $\sigma_{i}$ (or $\sigma_{i}^{-\iota}$ ) when the $trace$ crosses the edge with orientation
from right to left (or bom left to right resp.) and with label $i$ .

It is proved by Kamada (Lemma in \S 3.2,5 of [4]) that if this word is
considered as an element of the braid group

$B_{m}=\{\sigma_{1},$ $\ldots,\sigma_{m-1}|\sigma_{i}\sigma_{j}\sigma_{i}\sigma_{i}\sigma_{k}$ $==\sigma_{k}\sigma_{i}\sigma_{j}\sigma_{i}\sigma_{j}$ $((|_{i-k|>1)}^{i-j|=1)}\}$

then the monodromy can be changed only by the folIowing three types:
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(1) By adding a path $\sigma_{j}^{\delta}\sigma_{i}^{\delta}$ the change $\sigma_{j}^{2}arrow\sigma_{i}^{2}$ occurs because
$\sigma_{j}^{\delta}\sigma_{i}^{\delta}\sigma_{j}^{2}\sigma_{i}^{-\delta}\sigma_{j}^{-\delta}=\sigma_{i}^{2}$ for $|i-j|=1$ and $\delta=\pm 1$ . We have also
the inverse operation.

(2) A path $\sigma_{i}^{\delta}$ can be added or deleted to the node with the label $i$

because $\sigma_{i}^{\delta}\sigma_{;}^{2}\sigma_{i}^{-\delta}=\sigma_{i}^{2}$ for $\delta=\pm 1$ .
(3) A path $\sigma_{k}^{\delta}$ can be added or deleted to the node with the label $i$

because $\sigma_{k}^{\delta}\sigma_{i}^{2}\sigma_{k}^{-\delta}=\sigma_{i}^{2}$ for $|i-k|>1$ and $\delta\underline{arrow}\pm 1$ .
It is not so difficult to find a finite sequence of chart moves to add

which makes the word trivial in the braid group $k_{t}eeping$ the ending
black vertex unchanged and the starting chart ‘trivial’ without simple
loops by a similar method as in Figure 5. Note that the trace of node
starts from the node with label 1 and ends at the black vertex with
label 1 in this case.

Therefore, from the word we get a van-Kampen diagram with a start-
ing and ending point, hexagons, cubes and bilateral edges. The word
on the van-Kampen diagram is read starting frolp the starting point
and rounding the boundaries in the reverse-clockwise direction.

In the word, essentially in the boundary of some hexagon, there is
a part of path $\sigma_{i}^{\delta}\sigma_{j}^{\delta}\sigma_{i}^{-\delta}\sigma_{j}^{-\delta}(\{i-j|=1,$ $i,j\geq 2)$ illustrated as in the
following Figure 6. The modification shown there makes the length of

FIGURE 6. Essential move to eliminate the hexagonal relations

the word less at least by two, keeping to have a van-Kampen diagram.
So, by an induction we can eliminate all the hexagonal relations except

$c$

FIGURE 7. Typical application to eliminate the 6-relation

$\sigma_{1}\sigma_{2}\sigma_{1}=\sigma_{2}\sigma_{1}\sigma_{2}$ in the word. Note that the relations $\sigma_{i}\sigma_{k}=\sigma_{k}\sigma_{i}$ for
$|i-k|>1$ are also eliminated by an easier method (possibly except the
case $i=1$ and $k=3$). There are still no essential simple loops which
means that any segment with label $i$ encircled by a simple loop with
label $j$ with $|i-j|=1,$ $i,j\geq 2$ has no intersection with the trace of
node.
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Now we have to divide the cases of relation figures into two types:
(A) The two ends of the trace of node for on\’e hexagonal relation are
in the same complementary region or can be connected to the final
positions and (B) Otherwise. (Some examples are shown in Figure 8 in
\S 7.) If there is no type $B$ , almost the same argument as the previous
one is applicable. Even if there is some type $B$ , we can eliminate the
hexagons in the remaining van-Kampen diagram but the ending point
may not coincide with the starting point. The final condition is that the
word essentially contains only $\sigma_{1}$ and $\sigma_{2}$ without trivial relation $\sigma_{i}\sigma_{i}^{-1}$

and hexagonal relation does not simplify the word and that there is no
essential simple loops in the chart. Then, we can essentially eliminate
the elements $\sigma_{t^{-}}^{\pm 1}(i\geq 3)$ in the word.

The sequences of examples which satisfy the final conditioh are enu-
merated (some of them are illustrated in Figure 9 in \S 7) and their words
are simplified to nul. I think all the examples are exhausted essentially.
Note that this does not mean that some example of type $B$ is actually
concerned.

Finally the word would become nul. Then, we can easily understand
that the chart after the cusp death is equivalent to the ‘trivial’ one
described $b\acute{y}$ a nomad. To make sure see the Figure 10 in \S 7.

Since the tentative proof is too delicate, I did not $na\acute{m}e$ Theorem 4.
But I hope this paper can be thought as a kind of first announcement.

7. FIGURES 1-2 AND 8-10

$\beta$ $rightarrow^{(1)}$
$i\vee$

$i\sim$

$\iota\cup$ (3)
$jarrowrightarrow$
$iarrow|i-j|=1$

$)i(j$ $|rightarrow^{i-j1>1(4)}$

Some CI-moves from[3]
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’.

CII-move $hom[3]$

’. $i$ $’\prime i$

CIII-move from [3]

FIGURE 1. Chart moves I-III

CIV-move $hom[3]$

$i$ $j$ $i$ $j$

CV-move $hom[3]$

FIGURE 2. Chart moves IV-V
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$’|$. $\vee$

’

$1$

$f_{t}^{\text{ノ_{}\delta}}1,|$

$\{$

${}^{t}a^{J-}$

$|t$

$B_{A}$ $\dot{r}$

$td^{t}\mathfrak{g}$

$*$

$|$

$\iota_{\backslash }^{\ddot{i}}$.

I I

$1$

FIGURE 8. Some examples of Types A and $B$

$\sim’.\cdot$ $\backslash ...$ ’
$\sim\wedge^{-\prime}--’.$ .

$\backslash .J\tilde{1}$

$\sigma_{1}^{2}$ $arrow$ $\sigma_{2}^{2}$

$s$ xeven $\backslash \urcorner 1_{\nearrow}$

$\sigma_{1}^{2}$ $arrow$ $\sigma_{1}^{2}$

$21\underline{212121\cdots 212}$

3xodd
$\backslash ^{\mathfrak{p},}$

$\sigma_{1}^{2}$ $arrow$ $\sigma_{2}^{2}$

$21\underline{212121\cdots 121}$
$\infty J_{\vee^{\backslash }}\prime^{-\sim}\overline{1}.$.

$arrow-arrow$

$3xeven$ 2
$A_{-Q_{\backslash _{-\prime}}}^{t}’\sim r.)^{\backslash }$,

$\sigma_{1}^{2}$ $arrow$ $\sigma_{1}^{2}$ $\sigma_{1}^{2}$ $arrow$ $\sigma_{2}^{2}$

$21\underline{121121\cdots}12$
$21121\overline{21}\equiv 21(2)$

3xeven

FIGURE 9. Some examples satisfying the final condition
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$\backslash$

$1$

’.

$arrow$

$’..|’|$

$\backslash -\sim\grave{s}$

と
$i^{--\backslash }\backslash \backslash$

る，$\cdot$

$=$
$A^{t^{r^{\text{へ}}-}\backslash }\underline{\backslash }ae-\triangleleft\backslash ...\Leftrightarrow\infty’$
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FIGURE 10. The final move to get nomad
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