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ABSTRACT. A region crossing change at a region of a knot diagram is the crossing
changes at all the crossing points on the boundary of the region. In this paper, we
show that for any knot diagram and any region $R$ , we can make any crossing change
by a sequence of region crossing changes except at $R$ . We also discuss about region
unknotting numbers of 3-braids.

1. INTRODUCTION
A region crossing change at a region $R$ of a link diagram $D$ on $S^{2}$ is the

crossing changes at all the crossing points on the boundary of $R[3]$ . For
example, we obtain the diagram $D’$ from the knot diagram $D$ by the region
crossing change at the region $R$ in Figure 1.

$rightarrow$

FIGURE 1

We remark that K. Kishimoto proposed a region crossing change at a sem-
inar at Osaka City University, and asked whether a region crossing change
is an unknotting operation. To give the positive answer to this question,
the following theorem is shown in [3]:

Theorem 1.1 ([3]). For any knot diagram $D_{f}$ we can make any crossing
change on $D$ by a sequence of region crossing changes.
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Since a crossing change is an unknotting operation, a region crossing change
on a knot diagram is also an unknotting operation. Moreover, we have the
following theorems:

Theorem 1.2. Let $D$ be a knot diagmm and let $R$ be a region ofD. We can
make any crossing change on $D$ by a sequence of region crossing changes
at regions of $D$ except $R$ .

Theorem 1.3. Let $D$ be a reduced knot diagram. For any region $R$ of $D$ ,
there exists a region $S\neq R$ of $D$ such that we can make any crossing change
on $D$ by a sequence of region crossing changes at regions of $D$ except $R$

and $S$ .

The proofs are given in Section 2. For example, for the diagram $D$ and the
region $R$ in Figure 2, the region $S$ satisfies the above condition: We can
change the crossing at $c_{1}$ (resp. $c_{2}$ ) by region crossing changes at $T_{1}$ and
$T_{3}$ (resp. $T_{1},$ $T_{2}$ and $T_{3}$ ).

FIGURE 2

The region unknotting number $u_{R}(D)$ of a knot diagram $D$ is the minimal
number of region crossing changes which are needed to obtain a diagram
of the trivial knot (without Reidemeister moves) [3]. For example, the
diagram $D$ in Figure 1 has the region unknotting number one. The region
unknotting number $u_{R}(K)$ of a knot $K$ is the minimal $u_{R}(D)$ for all minimal
crossing diagrams $D$ of $K[3]$ . We have $u_{R}(D)\leq c(D)/2+1$ for any reduced
knot diagram $D$ , and hence we have $u_{R}(K)\leq c(K)/2+1$ for any knot $K$ ,
and we have $u_{R}(K)=m$ for the $(2, 4m\pm 1)$ -torus knot $K(m=1,2, \ldots)[3]$ .
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We will discuss about region unknotting numbers of the standard diagrams
of $($ 3, $n)$ -torus knots in Section 3.

The rest of this paper is organized as follows: In Section 2, we prove
Theorem 1.2 and Theorem 1.3. In Section 3, we discuss about region
unknotting numbers of closed 3-braid diagrams.

2. PROOF OF THEOREM 1.2
In this section, we prove Theorem 1.2 after proving Theorem 1.3. The

following lemmas are shown in [3]:

Lemma 2.1 ([3]). For a reduced knot diagmm $D$ and the set $B$ of all the
black-colored regions of $D$ with a checkerboard coloring, we obtain $D$ from
$D$ by region crossing changes at $B$ .

Lemma 2.2 ([3]). Let $D$ be a reduced knot diagram, and let $B$ be the set
of all the black-colored regions of $D$ with a checkerboard coloring. Let $P$

be a subset of B. Then we obtain the same diagram from $D$ by the region
crossing changes at $P$ and the region crossing changes at $B-P$ .

We prove Theorem 1.3.

Proof of Theorem 1.3. Let $B$ (resp. $W$ ) be the set of all the black-colored
(resp. white-colored) regions of $D$ with a checkerboard coloring. If $R\in B$

(resp. $R\in W$), we can take any white-colored (resp. black-colored) region
as $S$ . By Lemma 2.2, the region crossing change at $R$ is equivalent to the
region crossing changes at $B-R$, and the region crossing change at $S$ is
equivalent to the region crossing changes at $W-S$. By Theorem 1.1, we
can make any crossing change on $D$ by region crossing changes at regions
of $D$ except $R$ and S. $\square$

$\mathbb{R}om$ Theorem 1.3, we have the following corollaries:
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Corollary 2.3. Let $D$ be a reduced knot diagram. For any two regions $R$

and $S$ of $D$ which are adjacent to each other, we can make any crossing
change on $D$ by a sequence of region crossing changes except at $R$ and $S$ .

Corollary 2.4. Let $T$ be $a$ one-string tangle diagmm. We can make any
crossing change by a sequence of region crossing changes at regions of $T$

except the outer region.

Now we prove Theorem 1.2.

Proof of Theorem 1.2. It is enough to show that for any knot diagram $D$

on $\mathbb{R}^{2}$ and any crossing point $c$ , we can make the crossing change at $c$ by
region crossing changes at regions of $D$ except the outer region of $D$ . If
$D$ is a knot diagram which has only one reducible crossing as $c$ as shown
in Figure 3, we can change the crossing at $c$ by region crossing changes as
follows: We splice $D$ at $c$ , and apply the checkerboard coloring to the knot
diagram corresponding to $A$ in Figure 3 so that the outer region of the knot
diagram is colored white. Then, if we apply region crossing changes at all
the regions of $D$ corresponding to the black-colored regions, the crossing
of only $c$ is changed. This theorem also holds for reduced knot diagrams

or

FIGURE 3

by Theorem 1.3. For other cases, we can prove by an induction on the
number of reducible crossings as shown in Figure 4. $\square$

3. REGION UNKNOTTING NUMBERS OF CLOSED 3-BRAID DIAGRAMS

In this section we discuss about region unknotting numbers of closed 3-
braid diagrams. For standard diagrams of $($ 3, $m)$ -torus knots, we have the
following proposition:
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FIGURE 4

Proposition 3.1. Let $D_{3,m}$ be the standard diagram of the $($ 3, $m)$ -torus
link $(m=1,2,3, \ldots)$ . We have $u_{R}(D_{3,3n+1})\leq n$ and $u_{R}(D_{3,3n+2})\leq n+1$

$(n=0,1,2, \ldots)$ .

Proof. We have $u_{R}(D_{3,1})=0$ and $u_{R}(D_{3,2})=1$ . Since we can deform the
braid diagram of $(\sigma_{2}\sigma_{1})^{3}$ into a braid diagram which represents the trivial
3-braid by one region crossing change (see for example Figure 5), we have
the inequalities. $\square$

FIGURE 5

Rom Proposition 3.1, we have the following corollary:
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Corollary 3.2. The closed braid diagram of $(\sigma_{2}^{-1}\sigma_{1})^{3n+1}$ has the region
unknotting number less than or equal to $n+1$ , and the closed braid diagram
of $(\sigma_{2}^{-1}\sigma_{1})^{3n+2}$ has the region unknotting number less than or equal to $n+2$

$(n=0,1,2, \ldots)$ .

Pmof. We can obtain $D_{3,m}$ from the closed braid diagram of $(\sigma_{2}^{-1}\sigma_{1})^{m}$ by
one region crossing change (Figure 6). $\square$

r.c. $c$ .
at $S$

FIGURE 6

Remark. 3.3. Z. Cheng and H. Gao showed in [1] that a region crossing
change on a diagram of a 3-component link such that the linking number
of each two components is even is an unknotting operation. For example,
a region crossing change on the closed braid diagram of $(\sigma_{2}^{-1}\sigma_{1})^{3n}$ is an
unknotting operation. As shown in Figure 5, we can obtain a trivial link
diagram from $D_{3,3n}(n=0,1_{\rangle}2, \ldots)$ by at most $n$ region crossing changes,
i.e., a region crossing change on $D_{3,3n}$ is also an unknotting operation.

For a 3-braid $\beta=\sigma_{1}^{n_{1}}\sigma_{2}^{n_{2}}\sigma_{1}^{n_{3}}\ldots\sigma_{2}^{n_{m}}$ , let $\beta_{1}$ and $\beta_{2}$ be the 3-braids de-
fined to be $\beta_{1}=\sigma_{2}^{-n_{m}}\ldots\sigma_{1}^{-n_{3}}\sigma_{2}^{-n_{2}}\sigma_{1}^{-n_{1}}$ and $\beta_{2}=\sigma_{1}^{-n_{m}}\ldots\sigma_{2}^{-n_{3}}\sigma_{1}^{-n_{2}}\sigma_{2}^{-n_{1}}$

$(n_{1}, n_{2}, \ldots n_{m}\in Z)$ . K. Kishimoto pointed out that each closed 3-braid
diagram of the following $A_{1},$ $A_{2},$

$\ldots$ or $B_{3}$ can be deformed into a diagram
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of a trivial link by one region crossing change:

$A_{1}=\beta(\sigma_{1}^{-1}\sigma_{2})^{3}\beta_{1}(\sigma_{2}^{-1}\sigma_{1})^{3}$ ,
$A_{2}=\beta(\sigma_{1}^{-1}\sigma_{2})^{3}\beta_{1}(\sigma_{2}^{-1}\sigma_{1})^{3}\sigma_{2}^{-1}$ ,
$A_{3}=\beta(\sigma_{1}^{-1}\sigma_{2})^{3}\beta_{1}(\sigma_{2}^{-1}\sigma_{1})^{4}$ ,
$B_{1}=\beta\sigma_{2}\sigma_{1}^{-1}\sigma_{2}\beta_{2}\sigma_{2}^{-1}\sigma_{1}\sigma_{2}^{-1}$ ,
$B_{2}=\beta\sigma_{2}\sigma_{1}^{-1}\sigma_{2}\beta_{2}(\sigma_{2}^{-1}\sigma_{1})^{2}$ ,
$B_{3}=\beta\sigma_{2}\sigma_{1}^{-1}\sigma_{2}\beta_{2}(\sigma_{2}^{-1}\sigma_{1})^{2}\sigma_{2}^{-1}$ ,

FIGURE 7

where $\beta$ is a 3-braid, and $A_{3}$ and $B_{3}$ are illustrated in Figure 7.
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