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Abstract
We discuss how to calculate the complex volume of a hyperbolic knot using the

optimistic limit of the colored Jones polynomial. This method is based on the colored
Jones version of Yokota theory. This is ajoint-work with Jun Murakami.

Let $K$ be a hyperbolic knot, $vol(K)$ be the hyperbolic volume of $K$ and cs $(K)$ the Chern-
Simons invariant of the knot complement $S^{3}\backslash K$ modulo $\pi^{2}$ . We call $vol(K)+i$ cs $(K)$ the
complex volume of $K$ . The purpose of this article is to survey the method of calculating the
complex volume using the optimistic limit of the colored Jones polynomial in [3]. Note that
this method relies on Yokota’s theory of the optimistic limit of the Kashaev invariant in [11].

The calculation consists of the following four steps.

1 First step: drawing oriented (1,1) tangle
We fix a diagram $D$ of $K$ . We define sides of $D$ as arcs connecting two adjacent crossing
points. For example, Figure l(a) has 10 sides.

Now we split a side of $D$ open to make a (1,1)-tangle diagram. (See Figure 1 $(b).$ ) We
assume that the diagram satisfies Yokota’s Assumptions 1-6 in [11]. This roughly means the
diagram has no crossing points that can be reduced trivially. We can always deform any knot
diagram to satisfy these assumptions.

Let the two open sides be $I$ and $J$ . Assume $I$ and $J$ are in an over-bridge and in an
under-bridge respectively. Then extend $I$ and $J$ so that non-boundary endpoints of $I$ and
$J$ become the first under-crossing point and the last over-crossing point respectively, as in
Figure 1(b). Assume the two non-boundary endpoints of $I$ and $J$ do not coincide. Yokota
proved in [11] that we can always choose $I$ and $J$ with these conditions because, if not, the
knot should be the trefoil knot, which is not hyperbolic. Finally, we remove $I$ and $J$ from
the tangle diagram and put the result $G$ . We always assume $G$ is oriented by the direction
from $I$ to $J$ .

2 Second step: defining potential function
For each region of $G$ , we assign 1 to one bounded region, variables $w_{1},$ $\ldots,$ $w_{n}$ to the other
bounded regions, and $0$ to the unbounded region. (See Figure $1(c).$ ) Then we draw circles
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Figure 1: Example of the $5_{2}$ knot

on vertices of $G$ . If some arcs of the circles are in the unbounded region or meet $I\cup J$ , then
we remove these arcs.

For each vertex of $G$ , we assign the following function according to the types of the vertex
and the shape of the arcs. Note that $Li_{2}(z)=-\int_{0}^{z}\frac{\log(1-t)}{t}dt$ is the dilogarithm function.

For positive crossings:

: $Li_{2}(\frac{w_{l}}{w_{m}})+Li_{2}(\begin{array}{l}-w\lrcorner wk\end{array})-Li_{2}(\frac{w_{j}w_{l}}{w_{k}w_{m}})-Li_{2}(\begin{array}{l}\underline{w}_{n}w_{j}\end{array})-Li_{2}(\begin{array}{l}-wAw_{j}\end{array})+\frac{\pi^{2}}{6}-\log_{j}^{\frac{w}{w}n}\log_{j}^{\frac{w}{w}k}$

$:- Li_{2}(\begin{array}{l}-w_{A}w_{j}\end{array})-Li_{2(\begin{array}{l}-w\Delta w_{j}\end{array})-Al\frac{w}{w}\ }+ \frac{\pi^{2}}{6}-\log_{w_{j}}^{w}og_{j}$

$: Li_{2}(\begin{array}{l}\underline{w}_{L}w_{k}\end{array})+Li_{2}(\begin{array}{l}\lrcorner^{w}wk\end{array})-\frac{\pi^{2}}{6}+\log$di $\log_{j}^{\frac{w}{w}A}$

$:-Li_{2}(\begin{array}{l}\underline{w}_{n}w_{l}\end{array})-Li$2 $(\begin{array}{l}\underline{w}_{A}w_{l}\end{array})+\frac{\pi^{2}}{6}-\log\frac{w}{w}n_{l}\log_{w_{l}}^{w_{A}}-$
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$: Li_{2}(\frac{w_{l}}{w_{m}})+Li_{2}(\frac{w_{j}}{w_{m}})-\frac{\pi^{2}}{6}+1og_{w_{l}}^{w_{A}}-\log$ ue

For negative crossings :

$:- Li_{2}(\frac{w_{l}}{w_{m}})-Li_{2}(\frac{w_{j}}{w_{m}})+\frac{\pi^{2}}{6}-\log_{w_{m}}^{w}\lrcorner_{-}\log\frac{w_{j}}{w_{m}}$

For the end points of $I$ and $J$ , we use the same formula whether some arcs of the circles
are removed or not.

For the end point of $I$ :

$:-Li_{2}(\begin{array}{l}\underline{w}Aw_{l}\end{array})+Li_{2}(\begin{array}{l}\lrcorner^{w}w\downarrow\end{array})$

$:Li_{2}(\begin{array}{l}-w_{A}w\downarrow\end{array})-Li_{2}(\begin{array}{l}- w_{A}w_{l}\end{array})$

For the end point of $J$ :

$:- Li_{2}(\frac{w_{k}}{w_{j}})+Li_{2}(\frac{w_{l}}{w_{j}})$
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$:Li_{2}(\begin{array}{l}- w_{A}w_{j}\end{array})-Li_{2}(\begin{array}{l}\lrcorner^{w}w_{j}\end{array})$

We define the potential function $W(w_{1}, \ldots, w_{n})$ of the knot by the summation of all
functions assigned to the vertices. (By the definition, this function depends on the diagram.
Note that this potential function is the minus of the one defined in [3]. The sign is chosen to
make the identity (3) hold.) For example, the potential function of the $5_{2}$ knot from Figure
1 (c) becomes

$W(w_{1}, w_{2})= Li_{2}(w_{1})-Li_{2}(\frac{1}{w_{1}})+2Li_{2}(w_{2})+\log\frac{1}{w_{1}}\log\frac{1}{w_{2}}-\frac{\pi^{2}}{6}$ . (1)

Although we do not discuss the optimistic limit of the colored Jones polynomial here, the
definition of this potential function came from the R-matrix of the colored Jones polynomial
in [6] and the optimistic limit. The exact relation can be found in [3].

3 Third step: finding essential solutions
For the potential function $W(w_{1}, \ldots, w_{n})$ , we define hyperbolicity equation $\mathcal{H}$ by

$\mathcal{H}=\{\exp(w_{k}\frac{\partial W(w_{1},\ldots,w_{n})}{\partial w_{k}})=1k=1,$ $\ldots)n\}$ .

For example, the previous potential function (1) of the $5_{2}$ knot determines the hyperbol-
icity equation

$\mathcal{H}=\{\frac{w_{2}}{(1-w_{1})(1-\frac{1}{w1})}=1,$ $\frac{w_{1}}{(1-w_{2})^{2}}=1\}$ . (2)

We remark that the hyperbolicity equation of $\mathcal{H}$ is actually the hyperbolicity equation
of the Thurston triangulation of the knot complement $S^{3}\backslash K$ , which consists of the edge
relation and the cusp condition of the triangulation. See [3] for the definition of Thurston
triangulation and the relation of it with $\mathcal{H}$ .

Among the solutions of $\mathcal{H}$ , we need only the solutions satisfying that none of the variables
inside the dilogarithm functions $Li_{2}(*)$ of the potential function becomes $0,1$ , or $\infty$ . We call
these solutions essential solutions. In the view of the Thurston triangulation, the essential
solution means the corresponding Thurston triangulation has homotopically nontrivial edges.

For example of the previous $5_{2}$ knot, the hyperbolicity equation has the three essential
solutions

$(w_{1}^{(0)}, w_{2}^{(0)})$ $:=$ $($ 0.1226 $\ldots$ $-i$ 0.7449..., 1.6624 $\ldots$ $-i$ 0.5629... $)$ ,
$(\overline{w}_{1}^{(0)},\overline{w}_{2}^{(0)})$ $=$ $($ 0.1226 $\ldots$

$+i$ 0.7449..., 1.6624$\ldots$
$+i$ 0.5629... $)$ ,

$(w_{1}^{(1)}, w_{2}^{(1)})$ $:=$ $(1.7549\ldots, -0.3247\ldots)$ .
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If $\mathcal{H}$ has an essential solution, then we can go to the fourth step. If not, we cannot
calculate the complex volume by this method.

For the actual calculation of an example, checking the existence of an essential solution
is very simple by using computer. However, the existence problem in general case is not
an easy problem. The rigorous result on the existence of an essential solution for the 2-
bridge knots with the diagram of the Conway notation $C(a_{1}, \ldots , a_{m})$ was recently done in
[1] by proving the Sakuma-Weeks conjecture proposed in [8]. (See Section 4 of [2] and [7] for
detailed discussions.)

It was proved in [9] that each essential solution $w$ of the hyperbolicity equation $\mathcal{H}$ induces
a parabolic representation $\rho_{w}$ : $\pi_{1}(K)arrow$ PSL $($ 2, $\mathbb{C})$ . Furthermore, each representaion has
the complex volume and it can be computed using the extended Bloch group theory in [12].

If the parabolic representation $\rho$ : $\pi_{1}(K)arrow$ PSL $($ 2, $\mathbb{C})$ induces the complete hyperbolic
structure of the knot complement $S^{3}\backslash K$ , we call $\rho$ the geometric representation. By the
definition, the complex volume of the geometric representation is the complex volume of the
hyperbolic knot $K$ .

If $K$ is the hyperbolic knot, there exists the geometric representation. However, we cannot
guarantee this can be induced from an essential solution of $\mathcal{H}$ . It was proved in Section 2.8
of [10] that if $\mathcal{H}$ has an essential solution, there exists unique solution of $\mathcal{H}$ that induces the
geometric representation. We call the unique solution geometric solution. Therefore, if we
assume the existence of an essential solution of $\mathcal{H}$ , we can denote the geometric representation
$\rho_{w}$ for the geometric solution $w$ of $\mathcal{H}$ .

For the example of the $5_{2}$ knot with the hyperbolicity equation $\mathcal{H}$ in (2), we will see the
geometric solution becomes $(w_{1}^{(0)}, w_{2}^{(0)})=(0.1226\ldots-i$ 0.7449..., 1.6624 $\ldots$ $-i$ 0.5629... $)$ in next
section.

4 Fourth step : obtaining the complex volume by $iW_{0}$

For the potential function $W(w_{1}, \ldots, w_{n})$ , we define

$W_{0}(w_{1}, \ldots, w_{n}):=W(w_{1}, \ldots, w_{n})-\sum_{k=1}^{n}w_{k}\frac{\partial W(w_{1},\ldots,w_{n})}{\partial w_{k}}$ .

Then we evaluate all essential solutions of $\mathcal{H}$ to $iW_{0}$ . According to Yokota’s result in [11]
and the result in [3], the evaluation becomes

$iW_{0}(w)\equiv vol(\rho_{w})+i$ cs $(\rho_{w})(mod i\pi^{2})$ . (3)

(See also [2] for reference.)
On the other hand, it was proved in Corollary 5.10 of [5] that, for any representation

$\rho$ : $\pi_{1}(K)arrow$ PSL $($ 2, $\mathbb{C})$ ,
$|vol(\rho)|\leq vol(K)$ . (4)

Gromov-Thurston-Goldman rigidity in [4] implies that the equality of (4) holds if and only
if $\rho$ is the geometric representation. Therefore, after confirming the existence of an essential
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solution of $\mathcal{H}$ , if we pick the solution $w$ of $\mathcal{H}$ which gives the maximum value of the real part
of $iW_{0}(w)$ , the solution becomes the geometric solution and $iW_{0}(w)$ becomes the complex
volume of the knot $K$ .

For the example of the $5_{2}$ knot with the potential function (1), the evaluations of the
essential solutions become

$iW_{0}(w_{1}^{(0)}, w_{2}^{(0)})=$ 2.8281 $\ldots$
$+i$ 3.0241...,

$iW_{0}(\overline{w}_{1}^{(0)},\overline{w}_{2}^{(0)})=$ $-2.8281\ldots$ $+i$ 3.0241...,
$iW_{0}(w_{1}^{(1)}, w_{2}^{(1)})=$ $0$ $-i$ 1.1135....

The value with the maximun real part is $iW_{0}(w_{1}^{(0)}, w_{2}^{(0)})=2.8281\ldots+i$ 3.0241..., so it is
the complex volume of the $5_{2}$ knot.

All these steps are combinatorial (except finding solutions and evaluation) and very easy
to calculate. We believe this method can be useful for proving problems related to volumes
and Chern-Simons invariant.
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