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QUANDLE COCYCLE INVARIANTS
OF ROLL-SPUN KNOTS

MASAHIDE IWAKIRI AND SHIN SATOH

ABSTRACT. We generalize the class of roll-spun knots in 2-knot theory and study the
quandle colorings for such a 2-knot. We also explain how to calculate the quandle
cocycle invariant and prove that the invariant of any roll-spun knot is trivial if the
second homology group of the quandle vanishes.

1. INTRODUCTION

For an oriented surface-knot F and a third cohomology class § € H3(X;A) of a
quandle X, the calculation of the quandle cocycle invariant of F' with respect to @ is

given as follows:
C € Colx(F) ~ 4(C) € H3(X) ~ ®x(F) ~» ®p(F).

More precisely, each X-coloring C for F defines a third homology class v(C) € H3(X)
by taking the sum of weights on triple points of a diagram, and such classes form the

multi-set

Ox(F) = {7(C) € Hs(X) | C € Colx(F)}.

Under the Kronecker product { , ) : H3(X) ® H*(X;A) — A, the cocycle invariant
®y(F) is the evaluation of ®x(F) by [4];

®4(F) = {(+(C),8) € A |C € Colx(F)}.

The deform-spun knot [8] is a 2-knot obtained from a tangle of a 1-knot with its
motion. The spinning process is originally introduced by Artin [1], and generalized to
twist-spinning by Fox [5] and Zeeman [11]. The quandle cocycle invariant of a twist-spun
knot is calculated in some cases (cf. [2, 3, 6, 7]).

In this note, we introduce a 2-knot F(K, K') associated with a tangle diagram K
and a 1-knot diagram K'. In particular, F(K, K') is a roll-spun knot in the special
case. Under some condition for a quandle X, we prove that there is a one-to-one
correspondence between Colx(F(K, K')) and Colx(K); that is, each X-coloring C' for
K can be extended to that for F(K, K’) naturally which is denoted by C.
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On the other hand, we define a normal subgroup Go(X) of the adjoint group G(X)
and a shifting map S : Hy(X) — H3(X) for every element w € Go(X) so that we have

1(C) = 5 ((C))

for any C' € Colx(K), where w(C) € Go(X) and v(C) € H,(X) are the element of
Go(X) and the second homology class associated with C. This implies that ®x (F(K, K'))
is calculated in terms of Colx(K), and so is ®4(F (K, K')). As an application, we give
a sufficient condition for ®x(F(K, K')) to be trivial.

2. DEFINITION OF F(K, K')

Let K be an oriented tangle diagram and K’ an oriented knot diagram. We assume
that K’ is located on a 2-sphere S? embedded in R3. We replace a tubular neighborhood
of K" in S? with a product K x S!, where the modification near a crossing of K’ is
illustrated in Fiugre 1. This modification is realized by the connected sum of two copies
of K as cross-sections such that one of K’s passes through the other K.

FIGURE 1

We denote by F(K, K’) the 2-knot presented by this diagram. Let w(K) and w(K")
denote the writhes of K and K’, respectively. Then we have the following.

Lemma 2.1. If w(K)p) = w(K;) and w(K}) = w(K?}), then F(Ky, K}) = F(K,, K7).
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Proposition 2.2. F(K, K') is a deform-spun knot.
We denote by 77p*K the r-twist-s-roll-spinning of K (cf. [8]).

Theorem 2.3. If K’ is a diagram of the trivial knot, then F(K,K') 2 17" p~* K, where
r = w(K) and s = w(K'). In particular, if K is a tangle diagram with w(K) = 0, then
F(K,K') = p~K.

3. DEFINITION OF Go(X)

For a quandle X and an element z € X, we denote by ¢, : X — X the right action
by z; that is, ¢,(a) = a * z. The axiom of the right distribution induces the equality

Py © Pr = Py © Py

for any z,y € X. Let W(X) denote the set of words on X. For a word w = z5'...25" €
W(X), we define a quandle isomorphism ¢,, : X — X to be

pu(a) = ¢, 0oy (a).

We also use the notation ¢, (a) = a * w. We remark that w in the definition of ¢,, can

be regarded as an element of the adjoint group
G(X)=(xeX|axb=>b"lab (a,b€ X)).
The index of an element w = z7' ...z € G(X) is defined by ind(w) =€, + -+ + €.
Definition 3.1. Go(X) = {w € G(X) | ¢y = idx and ind(w) = 0}.
We remark that Go(X) is a normal subgroup of G(X).

Lemma 3.2. (i) Go(R,) = {0}, where R, = Z[t,t~']/(p,t + 1) for odd prime p.
(11) GO(S4) = Zg, where S4 = Z[t,t—l]/(Z, t2 +t+4+ 1)

Example 3.3. We consider the case X = Sy = Z[t,t7!]/(2,t* +t + 1). The element
w=1-¢1.0-(t+1)7! satisfies ¢, = idg,; in fact, we have

0 i1 £ LNy’ 2N
1 — 1 — 0 — 0 — 1
t 0 —t4+1 — 1 — 1
t+1 —t — t —t+1 —t+1.

Since ind(w) = 0, it holds that w € Go(S4). Figure 2 shows that w? = 1 in Go(Sy).

Moreover, we see that w is the generator of Go(Sy) = Zs.
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FIGURE 2

4. DEFINITION OF SY : Hp(X) — Hp1(X)

Let Cr,(X) denote the quandle n-chain group which is the free abelian group generated
by the n-tuples (ai,...,a,) € X" with a; # a;;1 forany 1 <i <n— 1.

Definition 4.1. For an n-chain v = 3 #(as,...,a,) € Cp(X), a word w € W(X), and
an element z € X, we denote by

(yxw,z) = Zi(al KW, ...,0n % W, T).

Definition 4.2. For a word w = 27 ...z¥ € W(X), we define words w(3) (1 < ¢ < k)
by
SR it =41
w() = xi x:__ll ) (e )
.t (6= =1)
Definition 4.3. For a word w = z{*...z* € W(X), the shifting map S¥ : C,,(X) —
Cn+1(X) is defined by
Sp(y) = ey x w(i), ).

i=1

Lemma 4.4. If w € Go(X), then S¥ induces a shifting map H,(X) — Hp11(X).

Example 4.5. For the element w = 1-¢71-0- (¢t + 1)~! € Go(S,), the shifting map
Sy : Hy(X) — Hp41(X) is given by

SPM =+ = (v (17, 8)+ (yx (1-£7),0) = (v, 1+1).
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See Figure 3.
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FIGURE 3

5. Colx(F(K,K')) AND Coly(K)

Let K be a tangle diagram with k crossings and w(K) = 0, and C € Colx(K) an
X-coloring for K. Let ¢; and z; (1 < ¢ < k) be the sign and the color of the upper arc
at ith lower crossing along K, respectively. The element of G(X) associated with C' is
given by

w(C) = x5 .. x5k

Example 5.1. We consider the S;-coloring C for the tangle diagram of the figure-
eight knot as shown in Figure 4. Then the element associated with C is given by
wlC)=1-t71.0-(t+1)"L

A e

t O t+l

FIGURE 4

Lemma 5.2. Let a and o’ be the colors assigned to the initial and terminal arcs of K,

respectively. Then it holds that vy (a) = d'.

We consider the following condition (#) for a quandle X;
(#) For any tangle diagram K with w(K) = 0 and any X-coloring C for K, it holds
that w(C) € Go(X).
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We remark that since w(K) = 0, we have ind(w(C)) = 0. Therefore, the condition
(#) is equivalent to @) = idx.

Proposition 5.3. Any Alezander quandle satisfies the condition (#).

Theorem 5.4. Suppose that a quandle X satisfies the condition (#). If K is a tangle di-
agram withw(K) = 0, then there is a one-to-one correspondence between Coly (F(K, K'))
and Colx(K).

6. COMPUTATION OF ®x(F (K, K'))

We consider the connected sum of two copies of a tangle diagram K colored by
C € Colx(K). Let v € Hj3(X) be the class associated with the motion where the
small tangle passes through the big one as shown in Figure 5. We divide v into 7, and
Y- € H3(X) corresponding to the motions where the small tangle passes over and under

the transverse arc, respectively.

y I
= —(K.c)
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FIGURE 5

The third homology class v, is the sum of weights on the triple points as shown in
Figure 6 which is equivalent to the shadow cocycle invariant of K.

Lemma 6.1. v, = 0.

On the other hand, the third homology class _ is the sum of triple points as shown
in Figure 7. Let v(C) € Hy(X) denote the class associated with the X-coloring C for

K. Then we have the following.
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FIGURE 6

FIGURE 7 |
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Lemma 6.2. v. = S¥(~y(C)).

Theorem 6.3. Suppose that a quandle X satisfies the condition (#). If K is a tangle
diagram with w(K) = 0, then it holds that

Ox(F(K,K')) = {—~w(K') - $3'9(7(C)) | C € Colx(K)}

Corollary 6.4. Suppose that a quandle X satisfies the condition (#) with Go(X) =0
or Hy(X) = 0. If K is a tangle diagram with w(K) = 0, then ®x(F (K, K')) is trwvial.

After the conference, Nosaka pointed out that Go(X) and Hy(X) are isomorphic for
any Alexander quandle (cf. [4]). Therefore, the conditions Go(X) = 0 and Hy(X) =0
are equivalent if X is an Alexander quandle.
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