θ -correspondence for PGSp(4) and PGU(2,2)

TAKEO OKAZAKI

Introduction

Let $\mathfrak{H}_2 = \{Z = {}^tZ \in \mathrm{M}_2(\mathbb{C}) \mid \Im(Z) > 0\}$ be the Siegel upper half space of degree 2. Let

$$\theta_m(Z) = \sum_{x \in \mathbb{Z}^2} \exp\left(2\pi\mathrm{i}\big(\frac{1}{2}(x+\frac{m'}{2})Z^t(x+\frac{m'}{2}) + (x+\frac{m'}{2})^t(\frac{m''}{2})\big)\right)$$

be the Igusa theta constant with $m=(m',m'')\in\mathbb{Q}^2\times\mathbb{Q}^2$. For a congruence subgroup Γ of $\mathrm{Sp}_2(\mathbb{Z})(\subset\mathrm{SL}_4(\mathbb{Z}))$, let $S_3(\Gamma)$ denote the space of Siegel modular cusp forms of weight 3 with respect to Γ , and let S_Γ the Siegel modular 3-fold associated to Γ . van Geemen and van Straten showed that $S_3(\Gamma_2(4,8))$ is spanned by certain 6-tuple products $\prod_{j=1}^6 \theta_{m_j}(Z)$ with $m_j \in \{0,1\}^4$ using the theta embedding of $S_{\Gamma(4,8)}$ into \mathbb{P}^{13} (cf. [3]), where

$$\Gamma(4,8) = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Gamma(4) \mid \operatorname{diag}(B) \equiv \operatorname{diag}(C) \equiv 0 \pmod{8} \right\}. \tag{0.1}$$

Through Igusa's transformation formula, $\operatorname{Sp}_4(\mathbb{Z})$ acts on these 6-tuple products. They showed that $S_3(\Gamma(4,8))$ is decomposed into seven irreducible $\operatorname{Sp}_4(\mathbb{Z})$ -modules, and each module is generated by acting $\operatorname{Sp}_4(\mathbb{Z})$ a 6-tuple product of Igusa theta constants:

$$S_3(\Gamma(4,8)) = \sum_{i=1}^{7} \operatorname{Sp}_2(\mathbb{Z}) \cdot f_i$$
 (0.2)

where \cdot indicates the standard action of the elements of $\operatorname{Sp}_2(\mathbb{R})$ to the Siegel modular forms of weight 3. Further, they showed that each 6-tuple products f_i lie in irreducible cuspidal automorphic representations π_{f_i} of $\operatorname{PGSp}_4(\mathbb{A})$. Calculating some eigenvalues for Hecke operators on

$$f_7(Z) := \theta_{(0,0,0,0)}(Z)^2 \theta_{(1,0,0,0)}(Z) \theta_{(0,1,0,0)}(Z) \theta_{(0,0,1,1)}(Z) \theta_{(0,0,0,1)}(Z),$$
 they gave the following conjecture:

Conjecture (van Geemen and van Straten [2]). Let ρ be the unique elliptic cusp form of weight 3 of level 32 with central character χ_{-4} . Let μ be the größencharacter of $\mathbb{Q}(i)$ associated to the CM-elliptic curve $y^2 = x^3 - x$, and $\pi(\mu)$ be the CM-elliptic cusp form of weight 2 of level 32. Then, the irreducible cuspidal automorphic representation π_{f_7} has the partial spinor L-function (of degree 4) $L(s, \rho \otimes \pi(\mu))$ outside of 2.

Here χ_{-4} indicates the quadratic character related to the extension $\mathbb{Q}(i)/\mathbb{Q}$. We will give a sketch of a proof of this conjecture.

1 θ -lifts

Let $K = \mathbb{Q}(i)$. Let $Gal(K/\mathbb{Q}) = \{1, c\}$. Let

$$J = \begin{bmatrix} 0 & -1_2 \\ 1_2 & 0 \end{bmatrix}$$

and

$$\mathrm{GU}_{2,2}(K) = \left\{ g \in \mathrm{GL}_4(K) \mid {}^t g^c J g = \nu(g) J, \nu(g) \in \mathbb{Q}^{\times} \right\}.$$

We define the 6-dimensional quadratic space over Q

$$\mathbf{X}(\mathbb{Q}) = \left\{ x = \begin{bmatrix} 0 & u & a & d \\ -u & 0 & b & -a^c \\ -a & -b & 0 & -v \\ -d & a^c & v & 0 \end{bmatrix} \mid b, d, u, v \in \mathbb{Q}, \ a \in K \right\}$$

with norm form $(x,x) = (bd + uv + a\overline{a})$. Let

We define a right action ϱ of $\mathrm{GU}_{2,2}(K)$ on $\mathrm{X}(\mathbb{Q})$ by

$$\rho(h)x = h^{-1} \cdot x \cdot {}^t h^{-1}.$$

Via ϱ , we have the isomorphism

$$PGU_{2,2}(K) \simeq PGSO_{X}(\mathbb{Q}).$$

We will denote by F a v-adic completion of \mathbb{Q} . Let Y(F) be the 4-dimensional symplectic space with symplectic form \langle,\rangle . Let $\{\varepsilon_{+1},\varepsilon_{-1},\varepsilon_{+2},\varepsilon_{-2}\}$ be the standard basis of Y(F) ($\langle\varepsilon_{+i},\varepsilon_{-j}\rangle=\delta_{ij},\langle\varepsilon_{+i},\varepsilon_{+j}\rangle=0$). Let $\mathrm{Sp}_2(F)$ act from the right on Y(F). We will use the two polarizations

$$Z = Y \otimes X = Z^{+} + Z^{-}$$

= $Z'^{+} + Z'^{-}$

with

$$Z^{\pm} = Y \otimes (Fe_{\pm 1} + Fe_{\pm 2}) + (F\varepsilon_{\pm 1} + F\varepsilon_{\pm 2}) \otimes (Fe + Fe'),$$

$$Z'^{\pm} = (F\varepsilon_{\pm 1} + F\varepsilon_{\pm 2}) \otimes X(F).$$

We realize the Weil representation r_{ψ}, r'_{ψ} of Sp(Z) in $\mathcal{S}(Z^{+}(F)), \mathcal{S}(Z'^{+}(F))$, respectively. Put

$$\mathcal{R}(F) = \{ (g, h) \in \mathrm{GSp}_2(F) \times \mathrm{GU}_{2,2}(K_v) \mid \nu(g) = \nu(h) \}$$

where ν indicates the similitude norm. We embed $\mathcal{R}(F)$ into $\operatorname{Sp}(Z(F))$ through the action $z \to \varrho(h^{-1})zg$, and denote

$$r_{\psi_v}(g,h)\phi(z) = r_{\psi_v}(g,\varrho(h^{-1}))\phi(z),$$

 $r'_{\psi_v}(g,h)\phi(z) = r'_{\psi_v}(g,\varrho(h^{-1}))\phi(z).$

Let ψ be a nontrivial additive character of $\mathbb{Q}\setminus\mathbb{A}$ and $r_{\psi}=\otimes_{v}r_{\psi_{v}}, r'_{\psi}=\otimes_{v}r_{\psi'_{v}}$. Let τ be an automorphic form on $\mathrm{PGSp}_{2}(\mathbb{A})$. For $\phi\in\mathcal{S}(\mathbb{Z}^{+}(\mathbb{A}))$ and $h\in\mathrm{GU}_{2,2}(K_{\mathbb{A}})$, we define

$$\theta_{\psi}(\phi,\tau)(h) = \int_{\mathrm{Sp}_{2}(\mathbb{Q})\backslash \mathrm{Sp}_{2}(\mathbb{A})} \sum_{z\in \mathbb{Z}^{+}(\mathbb{Q})} r_{\psi^{-1}}(g_{1}g,h)\phi(z)\tau(g_{1}g)\mathrm{d}g_{1},$$

where $g \in \mathrm{GSp}_2(\mathbb{A})$ is taken so that $(g,h) \in \mathcal{R}(\mathbb{A})$. Then, the value $\theta_{\psi}(\phi,\tau)(h)$ does not depend on the choice of g, and $\theta_{\psi}(\phi,\tau)$ is an automorphic form on $\mathrm{GU}_{2,2}(K_{\mathbb{A}})$. If τ has the trivial central characacter, then so does $\theta_{\psi}(\phi,\tau)$. For an irreducible cuspidal automorphic representation π of $\mathrm{PGSp}_2(\mathbb{A})$, we define $\Theta_{\psi}(\pi)$ the space of these automorphic forms on $\mathrm{PGU}_{2,2}(K_{\mathbb{A}})$ obtained from all $\tau \in \pi$ and all $\phi \in \mathcal{S}(\mathbb{Z}^+(\mathbb{A}))$. For an irreducible cuspidal automorphic representation σ of $\mathrm{PGU}_{2,2}(K_{\mathbb{A}})$, we define $\Theta'_{\psi}(\sigma)$ the space of these automorphic forms on $\mathrm{PGSp}_2(\mathbb{A})$ using $\mathcal{S}(\mathbb{Z}'^+(\mathbb{A}))$ and r'_{ψ} , similarly.

For $s, x, y, z \in \mathbb{Q}$, let

$$n(s,x,y,z) = egin{bmatrix} 1 & s & & & & \\ & 1 & & & & \\ & & 1 & & & \\ & & -s & 1 \end{bmatrix} egin{bmatrix} 1 & & x & y \\ & 1 & y & z \\ & & 1 & \\ & & & 1 \end{bmatrix} \in \mathrm{GSp}_2(\mathbb{Q}).$$

Let $N(\mathbb{Q}) = \{n(s, x, y, z) \mid s, x, y, z \in \mathbb{Q}\}$. On $N(\mathbb{Q})$, for an nontrivial additive character ψ , we define $\psi_N(n(s, x, y, z)) = \psi(s + z)$, and the Whittaker function $W_{\psi}(f;g)$ of an automorphic form f with respect to ψ by

$$W_{\psi}(f;g) = \int_{N(\mathbb{Q}) \setminus N(\mathbb{A})} \psi_N(n) f(ng) dn.$$

We say π is globally generic, if there is an $f \in \pi$ having a nontrivial Whittaker function with respect to some nontrivial ψ . For $x, z \in \mathbb{Q}$, $s, y \in K$, let

$$n_K(s,x,y,z) = \begin{bmatrix} 1 & s & & & \\ & 1 & & & \\ & & 1 & & \\ & & -s^c & 1 \end{bmatrix} \begin{bmatrix} 1 & & x & y \\ & 1 & y^c & z \\ & & 1 & \\ & & & 1 \end{bmatrix} \in \mathrm{GU}_{2,2}(K).$$

Let $N_K(K) = \{n_K(s,x,y,z) \mid x,z \in \mathbb{Q}, s,y \in K\}$ and, for a nontrivial ψ on \mathbb{Q} , we define $\psi_{N_K}(n(s,x,y,z)) = \psi(\text{Re}(s)+z)$. We define Whittaker functions of automorphic forms on $\text{GU}_{2,2}(K_{\mathbb{A}})$, and globally generic representation, similarly. Further, we define $\psi'_{N_K}(n_K(0,x,y,z)) = \psi(\text{Im}(y))$ on the subgroup composed of $n_K(0,x,y,z)$. For an automorphic form f on $\text{GU}_{2,2}(K_{\mathbb{A}})$, the Shalike model of f with respect to ψ is defined by

$$\int_{N'_{K}(K)\backslash N'_{K}(K_{\mathbf{A}})} \psi'_{N_{K}}(n) f(ng) dn.$$

First, we recall Ranakrishnan, Shahidi's result in [21].

Proposition 1.1 (Ranakrishnan-Shahidi). Let ρ, μ be as in the conjecture. Then, there is an irreducible, globally, generic, cuspidal, automorphic representation π^{gn} such that

$$L_S(s, \pi^{gn}; \operatorname{spin})(:= \prod_{v \notin S} L(s, \pi^{gn}_v; \operatorname{spin})) = L_S(s, \rho \otimes \pi(\mu)).$$

We start an argument from this π^{gn} .

Proposition 1.2. Let ψ_0 be the standard additive character on $\mathbb{Q}\setminus\mathbb{A}$. If π is an irreducible, globally generic, cuspidal representation of $\mathrm{PGSp}_2(\mathbb{A})$, then $\Theta_{\psi_0}(\pi)$ is nontrivial and a globally generic representation.

Proof. Through a computation similar to used in the proof of Proposition 2.2 of Piatetski-Shapiro, Soudry [16], we get

$$\int_{N(\mathbb{Q})\backslash N(\mathbb{A})} \psi_0(s)\theta_{\psi_0}(\phi, f)(n(s)h) ds$$

$$= \int_{N(\mathbb{A})\backslash \operatorname{Sp}_2(\mathbb{A})} r_{\psi_0}(g, h)\phi(\varepsilon_{-1} \otimes e_1 + \varepsilon_{-2} \otimes e_2 - \varepsilon_{+} \otimes e_{-}) W_{\psi_0}(f; g) dg.$$

It is possible to choose ϕ so that the right hand side of (1.1) is not zero at h=1 if $W_{\psi}(f;1) \neq 0$. Thus the assertion.

Let σ be an irreducible constituent of the above nontrivial $\Theta_{\psi_0}(\pi)$. Thanks to the next result due to Furusawa and Morimoto announced in the last year,

Theorem 1.3. An irreducible, globally generic, cuspidal automorphic representation Π of $PGU_{2,2}(K_A)$ has a Shalike model, if and only if $L_S(s,\Pi;\Lambda_t^2)=1$ (a partial L-function of Π with respect to outer exterior representation Λ_t^2 (c.f. [9])) has a simple pole at s=1.

and the observation that, if an irreducible cuspidal automorphic representation π of $\operatorname{PGSp}_2(\mathbb{A})$ has a partial spinor L-function $L_S(s, \rho \otimes \pi(\mu))$ for some finite set S of places, then

$$L_S(s,\sigma;\Lambda_t^2) = \zeta_S(s)L_S(s,\pi,\chi_{-4};r_5)$$

= $\zeta_S(s)L_S(s,\rho,\chi_{-4};\operatorname{sym}_2)L_S(s,\mu^2)$

has a simple pole at s=1, we find that σ has a Shalike model, where $L_S(s,\pi,\chi_{-4};r_5)$ indicates the L-function of π of degree 5 twisted by the quadratic character χ_{-4} . Further,

Proposition 1.4. An irreducible, globally generic, cuspidal automorphic representation Π of $PGU_{2,2}(K_A)$ has a nontrivial θ -lift $\Theta'_{\psi_0}(\Pi)$ to $PGSp_2(A)$, if and only if Π has a Shalike model with respect to ψ_0 .

Proof. Let τ be an automorphic form of Π , and $B_{\psi_0}(\tau;*)$ the Shalike model of τ . Then, the Whittaker function of $F = \theta_{\psi_0}(\varphi, \tau)$ with respect to ψ_0 is

$$\int_{N'_{K}(K_{\mathbf{A}})\backslash SU_{2,2}(K_{\mathbf{A}})} r'_{\psi_{0}}(g,h)\varphi(\varepsilon_{1}\otimes e_{+1}+\varepsilon_{2}\otimes e_{+2})B_{\psi_{0}}(h)\mathrm{d}h. \tag{1.1}$$

It is possible to choose φ so that this function of g is nontrivial. Hence the assertion. \Box

Therefore, we conclude that an irreducible, globally generic, cuspidal, automorphic representation π^{gn} of $\mathrm{PGSp}_2(\mathbb{A})$ with $L_S(\pi; \mathrm{spin}) = L_S(\rho \otimes \pi(\mu))$ can come back through these θ -lifts $\Theta_{\psi_0}, \Theta'_{\psi_0}$.

Now then, we will observe the levels of these automorphic representations. First, π^{gn} has the spinor *L*-function, from the functional equation of the *L*-function and the result of Roberts-Schmidt [22], one can estimate the paramodular level of π^{gn} divides 2^{10} . More precisely, π^{gn} has a right $K^{para}(2^{10})$ (paramodular group) invariant Whittaker function W_{ψ_0} such that $W_{\psi_0}(1) \neq 0$. Let \mathfrak{O}_K be the ring of integers of K and

$$\Gamma_0(2^5)^K = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathrm{GU}_{2,2}(\mathfrak{O}_K) \mid C \equiv 0 \pmod{2^5 \mathfrak{O}_K} \right\}.$$

Setting a ϕ suitably in (1.1), we can construct a right $\Gamma_0(2^5)_2^K$ -invariant Shalike model B_{ψ_0} of $\Theta_{\psi_0}(\pi^{gn})$ such that $B_{\psi_0}(1) \neq 0$. Setting a φ suitably in (1.1), we can construct a right $\Gamma(4,8)_2$ -invariant Whittaker model of $\Theta'_{\psi_0}(\Theta_{\psi_0}(\pi^{gn}))$. Thus, by the strong multiplicity one theorem for globally generic representation of $GSp_2(\mathbb{A})$, due to Soudry [23], π^{gn} has a right $\Gamma(4,8)_2$ -invariant vector. One can deduce the following from Weissauer's result

Proposition 1.5 (Proposition 1.5 of [25]). If an irreducible globally generic cuspidal automorphic representation π of $\mathrm{GSp}_2(\mathbb{A})$ has a cohomological weight, then there is an irreducible cuspidal automorphic representation π^{hol} such that

- $\pi_v^{hol} \simeq \pi_v$ for all nonarchimedean places v.
- π^{hol}_{∞} is a holomorphic discrete series with a cohomological weight.

Remark 1. Ramakrishnan, Shahidi [21] showed the existence of some holomorphic Siegel modular cusp forms of degree 2 with interesting spinor L-functions, using this result.

Applying this, and looking the Γ -factor of $L(s, \rho \otimes \pi(\mu)) = L(s, \mathrm{BC}_K(\rho) \otimes \mu)$ (BC_K(\rho) indicates the base change lift of ρ to $\mathrm{GL}_2(K_{\mathbb{A}})$), one finds that there is an eigenform $F \in S_3(\Gamma(4,8))$ such that $L(s,F;\mathrm{spin}) = L(s,\rho \otimes \pi(\mu))$. In [15], as conjectured by van Geemen, van Straten [2], we showed that all irreducible cuspidal automorphic representation π_{f_i} (1 \le i \le 6) have different spinor L-functions from $L(s,\rho \otimes \pi(\mu))$. Hence, the conjecture is true.

References

- [1] M. Asgari, F. Shahidi, Generic transfer from GSp(4) to GL(4), Composito Math., 142 (2006), 541-550.
- [2] B. van Geemen, D. van Straten, The cuspform of weight 3 on $\Gamma_2(2,4,8)$, Math. Comp., **61** (1993), 849-872.
- [3] B. van Geemen, N. O. Nygaard, On the Geometry and Arithmetic of Some Siegel Modular Threefolds, J. Number Theory, **53** (1995), 45-87.
- [4] Y. Gon, Generalized Whittaker functions on SU(2,2) with respect to the Siegel parabolic subgroups, Mem. A.M.S., 155 (2002).

- [5] M. Harris, S. Kudla, Arithmetic automorphic forms for the nonholomorphic discrete series of GSp(2), Duke Math., **66** (1992), 59-121.
- [6] R. Howe, I.I. Piatetski-Shapiro, Some examples of automorphic forms on Sp_4 , Duke. Math., **50** (1983), 55-105.
- [7] H. Jacquet, R.P. Langlands, Automorphic forms on GL(2), L.N.M., 114 (1970), Springer.
- [8] M. Harris, D. Soudry, and R. Taylor, l-adic representations associated to modular forms over imaginary quadratic fields, Invent. math., 112 (1993), 377-411.
- [9] H. Kim, M. Krishnamurthy, Twisted exterior square lift from GU(2,2)E/F to GL_6/F , J. Ramanujan. Math. Soc., **23** no.4, (2008), 381-412.
- [10] S. Kudla, On the local theta-correspondence, Invent. Math., 83 (1986), 229-255.
- [11] S. Kudla, S. Rallis, A regularized Siegel-Weil formula: The first term identity, Annals of Math., 140 (1994), 1-80.
- [12] Max. A. Knus, Quadratic forms, Clifford algebras and Spinors, Lecture notes, Seminars in Mathematics 1, Campinas, (1988).
- [13] G. Laumon, Sur la cohomologie a supports compacts des varietes de Shimura pour GSp(4)Q. Composito Math., 105 (1997), no. 3, 267–359.
- [14] T. Oda, J. Schwermer, Mixed Hodge structures and automorphic forms for Siegel modular varieties of degree two. Math. Ann., 286 (1990), no. 1-3, 481-509.
- [15] T. Okazaki, L-functions of $S_3(\Gamma(4,8))$, J. Number Theory, **125** (2007), 117-132.
- [16] Ilya I. Piatetski-Shapiro, D. Soudry, On a correspondence of automorphic forms on orthogonal groups of order five, J. math. pures et appl., 66 (1987), 407-436.
- [17] D. Prasad, Theta correspondence for unitary groups, Pacific. J. Math., 194, No. 2, (2000).
- [18] T. Przebinda, The oscillator duality correspondence for the pair O(2,2), $Sp(2,\mathbb{R})$, Memoirs of A.M.S., **79** Number 403 (1989).
- [19] B. Roberts, The nonarchimedean theta correspondence for GSp(2) and GO(4), Trans. A.M.S., **351**, Num 2, (1999) 781-811.
- [20] —, Global L-packets for GSp(2) and theta lifts, Docu. Math., 6 (2001) 247-314.
- [21] D. Ramakrishnan, F. Shahidi, Siegel modular forms of genus 2 attached to elliptic curves, Math. Res. Lett., 13 (2006), 10001-10018.
- [22] B. Roberts, R. Schmidt, Local newforms for GSp(4), L.N.M., 1918 (2007), Springer.

- [23] D. Soudry, A uniqueness theorem for representations of GSO(6) and the strong multiplicity one theorem for generic representations of GSp(4), Israel. J., 38, No 3, (1987), 257-287.
- [24] T. Watanabe, Theta lifting of cusp forms on the unitary group U(d,d), Duke. Math., 67, no.1 (1992), 159-187.
- [25] R. Weissauer, Four dimensional Galois representations, Astérisque, 302, (2005), 67-150.

Department of Mathematics, Faculty of Science, Nara Woman University, Kitauoyahigashimachi, Nara 630-8506, Japan. okazaki@cc.nara-wu.ac.jp