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Abstract. This paper is related to the authors’ talk at the RIMS conference 2011 on:
Automorphic forms, trace formulas and zeta functions in Kyoto. The Igusa modular form of
weight 10 is the unique Siegel modular form which is a Borcherds and a Saito-Kurokawa lift.
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1 Introduction

The Igusa modular form $\chi_{10}$ appeared first in the famous theorem of Jun-ichi Igusa about the
generators of graded algebra of Siegel modular forms of even weight and degree 2 (see [Igl]).
The algebra is equal to

(1.1) $\mathbb{C}[E_{4}^{2}, E_{6}^{2}, \chi_{10}, E_{12}^{2}]$ .

We normalized the Siegel type Eisenstein series $E_{k}^{2}$ of weight $k$ such that the Fourier coefficient
related to $0-\dim$ cusp at infinity is one. The Igusa modular form $\chi_{10}$ is a cusp form of weight
10. Igusa introduced the form in terms of Eisenstein series ([Igl], page 192).

$\chi_{10}:=-43867\cdot 2^{-12}\cdot 3^{-5}\cdot 5^{-2}\cdot 7^{-1}\cdot 53^{-1}(E_{4}^{2}E_{6}^{2}-E_{10}^{2})$ .

It is known that $\chi_{10}$ is a Saito-Kurokawa lift ([Za]) and a Borcherds lift ([GNl], [GN2]).
The square root of this modular form is related to the denominator formula for a generalized

Borcherds-Kac-Moody super algebra (Gritsenko, Nikulin). Moreover it is as a partition function
of BPS dyons in the toroidally compactified heterotic string theory. To study a generalized Kac-
Moody algebra one has to know the imaginary simple roots and the multiplicities of all positive
roots. It is absolutely crucial that the underlying modular form has a degenerate Fourier ex-
pansion (Saito-Kurokawa lift) and an infinite product (Borcherds lift). We refer to ([CD], [CV])
for more details. The following theorem states that there are no other Siegel modular forms of
degree 2 which are Borcherds and Saito-Kurokawa lifts.

Theorem Let $F$ be a Siegel modular form of degree 2. If $F$ is a Borcherds lift and a Saito-
Kurokawa lift, then $F$ is proportional to the Igusa modular form.

We note that the Borcherds lift is multiplicative and the Saito-Kurokawa lift additive.
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2 Siegel modular forms, Witt operator and Taylor expansions

For an introduction to the theory of Siegel modular forms we refer to Klingen‘s book ([Kl]). Let
$\Gamma_{n}$ be the Siegel modular group and $\mathfrak{H}_{n}$ the upper half space of degree $n$ :

$\Gamma_{n}$ $:=$ $\{\gamma\in GL$2$n(Z)|^{t}\gamma(\begin{array}{ll}0_{n} 1_{n}-1_{n} 0_{n}\end{array})\gamma=(\begin{array}{ll}0_{n} 1_{n}-1_{n} 0_{n}\end{array})\}$

$\mathfrak{h}_{n}$ $:=$ $\{Z\in M_{n}(\mathbb{C})|{}^{t}Z=Z, {\rm Im}(Z)>0\}$ ,

where $0_{n}$ (respectively $1_{n}$ ) is the zero (respectively identity) matrix of degree $n$ . Then we denote
by $M_{k}(\Gamma_{n})$ the space of SiegeI modular forms of weight $k$ on $\Gamma_{n}$ and by $S_{k}(\Gamma_{n})$ the subspace of
cusp forms. In the case $n=1$ we usually drop the index and for $n=2$ which we are mainly
interested in we often write $(\tau_{1}, z, \tau_{2})$ for a point

$(\begin{array}{ll}\tau_{l} zz \tau_{2}\end{array})\in \mathfrak{H}_{2}$ .

Next we introduce two useful operators. Let $F\in M_{k}(\Gamma_{2})$ . Define

$\Phi(F)(\tau)$ $:= \lim_{yarrow\infty}F(\tau, 0, iy)$
$(\tau\in \mathfrak{H}_{1})$ ,

$\mathcal{W}(F)(\tau_{1}, \tau_{2}):=F(\tau_{1},0, \tau_{2})$ $(\tau_{1}, \tau_{2}\in \mathfrak{H}_{1})$ .

Then $\Phi(F)\in M_{k}(\Gamma)$ and $\mathcal{W}(F)\in Sym^{2}(M_{k}(\Gamma))$ . The operator $\Phi$ (respectively $\mathcal{W}$ ) is called the
Siegel (respectively Witt) operator. Then $S_{k}(\Gamma_{2})=\{F\in M_{k}(\Gamma_{2})|\Phi(F)=0\}$ .
Let $fi,$ $f_{2},$

$\ldots,$
$f_{d}$ be a basis of newforms of $S_{k}$ and $f_{0}=ek$ . Here $ek$ denotes the elliptic Eisenstein

series with constant term $a(O)=1$ .
Then we define

(2.1) Sym2 $(M_{k}(\Gamma))^{D}$ $:= \{\sum_{i=0}^{d}\alpha_{i}f_{i}\otimes f_{i}|\alpha_{i}\in \mathbb{C}\}$ .

By Sym2 $(S_{k}(\Gamma))^{D}$ we denote the cuspidal part.
A Siegel modular form $F\in M_{k}(\Gamma_{2})$ admits the Fourier expansion

$F( \tau_{1}, z, \tau_{2})=\sum_{n,r,m\in Z}A_{F}(n, r, m)e(n\tau_{1}+rz+m\tau_{2})$
,

where we put $e(z)=\exp(2\pi iz)$ for $z\in \mathbb{C}$ . Note that $A_{F}(n, r, m)=0$ unless $n,$ $m,$ $4nm-r^{2}\geq 0$ .
We also use the following shortcuts: $q:=e(\tau),$ $q_{1}$ $:=e(\tau_{1}),$ $\zeta$ $:=e(z),$ $q_{2}$ $:=e(\tau_{2})$ . It is easy to
see that:

(2.2) $\Phi(F)(\tau)$ $=$ $\sum_{n=0}^{\infty}A_{F}(n, 0,0)q^{n}$

(2.3) $\mathcal{W}(F)(\tau_{1}, \tau_{2})$ $=$ $\sum_{n_{1}m=0}^{\infty}(\sum_{r}A_{F}(n, r, m))q_{1}^{n}q_{2}^{m}$ .
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We define the order of the q-expansion of a modular form $F\in M_{k}(\Gamma_{2})$ by

$ord(F)$ $:= \min\{n\in No|A_{F}(n, r, m)\neq 0\}$ .

Remark 2.1. If $ord(F)\geq 2$ , then $F\not\in Sym^{2}(M_{k}(\Gamma))^{D}$ .

Let $k$ be even. Then $F\in M_{k}(\Gamma)$ has the Taylor expansion

(2.4) $F( \tau_{1}, z, \tau_{2})=\sum_{l=0}^{\infty}\Psi_{2l}(\tau_{1,2}\tau)z^{2l}$ .

It is clear that $\Psi_{0}$ is the image of the Witt operator and an element of Sym2 $(M_{k}(\Gamma))$ . Moreover
if $\Psi_{0}$ is identically zero then $\psi_{2}\in$ Sym2 $(S_{k+2}(\Gamma))$ .

Finally let $E_{k}^{n}$ denote the Siegel-typ $e$ Eisenstein series on $\Gamma_{n}$ , normalized by $\Phi^{n}(E_{k}^{n})=1$ .
Here $\Phi^{n}$ denotes the n-th iteration of the $\Phi$ operator. Let $E_{k}^{n}(f)$ denote the Klingen Eisenstein
series attached to $f\in S_{k}(\Gamma),$ $f\neq 0$ . Note that $\Phi^{n-1}(E_{k}^{n}(f))=f$ . Let further $M_{k}^{2,0}$ be the
$1-\dim$ space generated by Siegel Eisenstein series of weight $k$ and degree 2, let $M_{k}^{2,1}$ be the space
generated by all Klingen type Eisenstein series of weight $k$ and degree 2 and let $M_{k}^{2,2}=S_{k}(\Gamma_{2})$ .
Then

(2.5) $M_{k}(\Gamma_{2})=M_{k}^{2,0}\oplus M_{k}^{2,1}\oplus M_{k}^{2,2}$ .

The direct sum is related to the Petersson scalar product. Moreover this decomposition is
respected by the Siegel $\Phi$ operator. Let $F\in M_{k}(\Gamma_{2})$ with decomposition $F_{0}+F_{1}+F_{2}$ . Then

(2.6) $\Phi(F)$ $=$ $\Phi(F_{0})+\Phi(F_{1})+\Phi(F_{2})$

(2.7) $=$ $c_{1}E_{k}+c_{2}f$ $(c_{1}, c_{2}\in \mathbb{C}, f\in S_{k}(\Gamma))$ .

3 Saito-Kurokawa lifts

One can find an overview in Zagier $s$ Bourbaki article [Za]. Let $k$ be an even integer. Then there
exists an injective linear map

(3.1) $SKL$ : $lII_{2k-2}(\Gamma)arrow M_{k}(\Gamma_{2})$ ,

where Hecke eigenforms $f$ map to Hecke eigenforms $F=SKL(f)$ . For a Hecke eigenform $f$ ,
the spinor L-function $Z(SKL(f), s)$ is given by

$Z(SKL(f), s)=\zeta(s-k+1)\zeta(s-k+2)L(f, s)$ ,

where $L(f, s)$ is the Hecke L-function of $f$ and $\zeta(s)$ denotes the Riemann zeta function. We are
interested in the image of the lifting, which is given by the so-called Maass Spezialschar:

(3.2) $M_{k}^{Spez}$ $:=\{F\in M_{k}(\Gamma_{2})$
$A_{F}(n, r, m)= \sum_{d\in N,d|(n,r,m)}d^{k-1}A_{F}(\frac{nm}{d^{2}},$

$\frac{r}{d},$ $1)\}$ .
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Here $(n, r, m)$ denotes the greatest common divisor of $n,$ $r,m$ $($We put $1:=(0,0,0))$ . To prove our
main result we use the following properties of the Maass Spezialschar. If $F\in M_{k}^{Spez}$ , then $F$ is
non-trivial iff $\Psi_{0}^{F}$ or $\Psi_{2}^{F}$ is not identically zero. Moreover

(3.3) $\Psi_{0}^{F}\in Sym^{2}(M_{k}(\Gamma))^{D}$ .

If $\Psi_{0}^{F}$ is identically zero then

(3.4) $\Psi_{2}^{F}\in$ Sym2 $(S_{k+2}(\Gamma))^{D}$ .

Remark 3.1. Let $F\in M_{k}(\Gamma_{2})$ has the decomposition $F_{0}+F_{1}+F_{2}$ as described before. If $F_{1}$

is non-trivial, then $F$ is not in the Spezialschar.

4 Borcherds lifts

Roughly speaking a Borcherds lift BL is a correspondence between modular forms of weight
$1- \frac{m}{2}$ on $\mathfrak{H}$ with possible singularities at the cusps and certain meromorphic automorphic forms
with possible character on symmetric domains of type IV related to orthogonal groups $O(2, m)$

$(m\in N)$ ([Bol],[Bo2], [Bo3]). We note that

$BL(f+g)=BL(f)\cdot BL(g)$ .

Lifts to Siegel modular forms of degree 2 are related to the case $m=3$, where the image is
umiquely (up to a scalar) determined by the divisor

(4.1) $div(BL(f))= \sum_{d\in D}n{}_{d}H_{d}$ .

Here $\mathcal{D}$ is the set of all positive integers congruent to $0$ or 1. The sum is finite and $n_{d}\in$ Z. The
$H_{d}$ are the Humbert surfaces (see also the following subsection), for general $m$ they are called
Heegner divisor. The image could be an element of $M_{k}(\Gamma_{2}, v)$ , a Siegel modular form with the
unique non-trivial character $v$ on $\Gamma_{2}$ .

Remark 4.1. The coefficients of the principal part of the input function are related to the $nd$ .
A priori it is not clear when the nontrivial character in the image occurs. Moreover even when
not all coefficients in the principal part are non-negative, the image could be holomorphic.

4.1 Humbert surfaces

Let

$Q:=(_{1}$

1
$-2$

1
$1)$ .
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Put $Q(X, Y)$ $:={}^{t}XQY$ and $Q[X];=Q(X, X)$ for $X_{!}Y\in \mathbb{C}^{5}$ . For $Z=(\tau_{1}, z, \tau_{2})\in \mathfrak{H}_{2}$ put
$\overline{Z}:={}^{t}(-\tau_{1}\tau_{2}+z^{2},$

$\tau_{1},$ $z,$ $\tau_{2},1)\in \mathbb{C}^{5}$ . Note that $Q[\overline{Z}]=0$ and $Q(\overline{Z},\overline{\overline{Z}})=4\det({\rm Im}(Z))>0$ . There
exists a homomorphism $\iota:Sp_{2}(\mathbb{R})arrow O(Q)_{\mathbb{R}}$ such that $g\langle Z)=j(g, Z)^{-1}\iota(g)\overline{Z}$ for $g\in Sp_{2}(\mathbb{R})$

and $Z\in \mathfrak{H}_{2}$ .
Let $L$ $:=Z^{5},$ $L^{*}$ $:=Q^{-1}L$ and $L_{prim}^{*}$ $:=$ { $\lambda\in L^{*}|n^{-1}\lambda\not\in L^{*}$ for any integer $n>1$ }. For an

integer $d\in Z$ , let

$\mathcal{H}_{d}:=\sum_{X\in \mathcal{L}_{d}}\{Z\in fl_{2}|Q(X,\tilde{Z})=0\}$
,

where $\mathcal{L}_{d}:=\{X\in L_{prim}^{*}|Q[X]=-d/2\}$ . Note that $\mathcal{H}_{d}=0$ unless $d>0$ and $d\equiv 0$ or 1 (mod
4 $)$ . Since $L_{d}^{*}$ is $\iota(\Gamma_{2})$-invariant, $H_{d}$ is $\Gamma_{2}$-invariant. Denote by $H_{d}$ the image of $\mathcal{H}_{d}$ in $\Gamma_{2}\backslash fl_{2}$ by
the natural projection $\mathfrak{H}_{2}arrow\Gamma_{2}\backslash \mathfrak{H}_{2}$ . The divisor $H_{d}$ of $\Gamma_{2}\backslash \mathfrak{H}_{2}$ is called the Humbert surface of
discriminant $d$ . It is known that $H_{d}$ is nonzero and irreducible if $d\equiv 0$ or 1 $(mod 4)$ (see [Ge2],
page 212, Theorem 2.4; see also [GH], Section 3). Note that

$\mathcal{H}_{1}=\bigcup_{\gamma\in\Gamma_{2}}\gamma\{(\tau_{1},0, \tau_{2})|\tau_{1}, \tau_{2}\in \mathfrak{H}\}$

$\mathcal{H}_{4}=\bigcup_{\gamma\in\Gamma_{2}}\gamma\{(\tau, z, \tau)|\tau\in \mathfrak{H}, z\in \mathbb{C}\}$
.

4.2 Properties of Borcherds lifts and examples

Recently [HM] we found an explicit description of the Borcherds lifts related to single Heegner
divisors. As a by-product one can see that the character is only related to the divisors $H_{1}$ and
$H_{4}$ .

Theorem 4.2.

(i) For each positive integer $d$ with $d\equiv 0$ or 1 $(mod 4)$ , there exists an $F_{d}\in M_{k_{d}}(\Gamma_{2}, v^{\alpha_{d}})$

with $\alpha d\in\{0,1\}$ satisfying $div(F_{d})=H_{d}$ .

(ii) We have $F_{1}\in S_{5}(\Gamma_{2}, v),$ $F_{4}\in S_{30}(\Gamma_{2}, v)$ and $F_{d}\in M_{k_{d}}(\Gamma_{2})$ if $d>4$ .

(iii) A Borcherds lift $F\in M_{k}(\Gamma_{2}, v^{\alpha})(\alpha\in\{0,1\})$ is a constant multiple of $\prod_{d}F_{d}^{A(d)}$ , where $d$

runs over the positive integers with $d\equiv 0$ or 1 $(mod 4)$ , and $A(d)$ is a nonnegative integer
($A(d)=0$ except for a finite number of d) satisfying $A(1)+A(4)\equiv\alpha(mod 2)$ .

Here $S_{k}(\Gamma_{2}),$ $v)$ denotes the cuspidal subspace of $M_{k}(\Gamma_{2}),$ $v)$

It is well-known that $\dim S_{10}(\Gamma_{2})=1$ (see also [Kl]). Hence $\chi_{10}$ is proportional to $F_{1}^{2}$ .

Remark 4.3. The Borcherds lifts in $M_{k}(\Gamma_{2})$ with $k\leq 60$ are listed as follows:
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The table shows that every Borcherds lift of weight less than or equal to 60 is a monomial
of $F_{1},$ $F_{4},$ $F_{5}$ and $F_{8}$ . We also see that there is no holomorphic Borcherds lift of weight 12.

Assume that $F\in M_{k}(\Gamma_{2})$ is a Borcherds lift. Then $\Phi(F)$ is proportional to a power $\Delta^{r}$ of
the modular discriminant $\Delta$ with $r\geq 0$ .

5 Proof of the Theorem

In the following we give a sketch of the proof of the main theorem. The complete proof will
appear elsewhere. Let $F\in M_{k}(\Gamma_{2}),$ $F\neq 0$ . Let $F$ be a Borcherds lift (BL) and Saito-Kurokawa
lift (SKL). First of all we can assume that the weight is even (SKL). This implies that $k\geq 4$ .
The structure theorem (BL) leads to

(5.1)
$F \sim\prod_{d\in D}F_{d}^{n_{d}}$

.

The product is finite, $n_{1}+n_{4}\equiv 0(mod 2)$ and $n_{d}\in$ No. The symbol $\sim$ indicates that two
function are equal up to a non-zero constant.

Remark 5.1. A refined analysis of the modular forms $F_{d}$ shows that

$ord(F_{1})= \frac{1}{2},$ $ord(F_{4})= \frac{3}{2}$ .

If $d\geq 5$ then $ord(F_{d})\geq 2$ iff $d$ is a square and $ord(F_{d})=0$ otherwise.

Since $F$ is also a SKL we have $ord(F)\leq 1$ . This leads to

(52)
$F \sim F_{1}^{\alpha}\cdot d\geq 5,not\prod_{d}$

a square

$F_{d}^{n_{d}}$ $(\alpha=0,2)$

Put $G:=F/F_{1}^{\alpha}$ . Since $G$ is a BL and not a cusp form we have [HM]

$\Phi(G)\sim\Delta^{r}$ $(r= \frac{k-5\alpha}{12}\in N)$ .

Then it is easy to see that

$\mathcal{W}(G)\sim\Delta^{r}\otimes E_{k}+E_{k}\otimes\Delta^{r}+$ cuspidal.
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This shows that, if $\alpha=0$ , then $G=F$ is not a SKL, a contradiction. Thus we have $\alpha=2$ .
Finally the case $\alpha=2$ remains. We show that $r\geq 1$ is not possible (then the theorem is proven).

Let in the following $F\sim F_{1}^{2}\dot{G}$ , with $\Phi(G)=\triangle^{r}(r\geq 1)$ . Then $\Psi_{0}^{F}$ is identically $0$ . Since $F$

is a SKL and not identically zero, we can assume that $\Psi_{2}^{F}\neq 0$ and that

(5.3) $\Psi_{2}^{F}\in Sym^{2}(S_{k+2}(\Gamma))^{D}$ .

Since the second Taylor coefficient of $F_{1}^{2}$ is proportional to $\triangle\otimes\Delta$ we obtain

(5.4) $\Psi_{2}^{F}\sim(\Delta\otimes\Delta)\cdot \mathcal{W}(G)$ .

On the other hand $\mathcal{W}(G)$ can be expressed in terms of the modular function $j$ and the primitive
modular polynomial. This can be directly proven by comparing the weights and the divisors on

$\mathfrak{H}\cross \mathfrak{H}$ .
For $m\in \mathbb{Z}_{>0}$ , let $\mathcal{M}_{m}^{*}$ be the set of primitive matrices in $M_{2}(Z)$ of determinant $m$ . As is

well-known, there exists a polynomial $\Phi_{m}^{*}$ in $Z[X, Y]$ , called the primitive modular polynomial
of degree $m$ , such that

$\prod_{M\in SL_{2}(Z)\backslash \Lambda 4_{m}^{r}}(X-j(M\{\tau\}))=\Phi_{m}^{*}(X,j(\tau))$
.

Here $\tau\mapsto M\{\tau\}$ denotes the action on $\mathfrak{H}$ . The degree of $\Phi_{m}^{*}(X, Y)$ in $X$ is larger than $m$ for
$m>1$ . Then

(5.5)
$\mathcal{W}(G)(\tau_{1}, \tau_{2})\sim(\Delta^{r}(\tau_{1})\otimes\Delta^{r}(\tau_{2}))\prod_{n>0}\Phi_{n}^{*}(j(\tau_{1}),j(\tau_{2}))^{a(n)}$

,

where $a(n)\in No$ . Hence we obtain

(5.6)
$\Psi_{2}^{F}(\tau_{1}, \tau_{2})\sim(\triangle^{r+1}(\tau_{1})\otimes\Delta^{r+1}(\tau_{2}))\prod_{n>0}\Phi_{n}^{*}(j(\tau_{1}),j(\tau 2))^{a(n)}$

.

Combining this property with (5.3) leads to a contradiction by employing well-known properties
of the modular polynomial, multiplicative properties of the Fourier coefficients of primitive Hecke
eigenforms and the explicit Fourier expansion of the $\Delta$-function.
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