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On the Igusa modular form of weight 10

Bernhard Heim and Atsushi Murase

Abstract. This paper is related to the authors’ talk at the RIMS conference 2011 on:
Automorphic forms, trace formulas and zeta functions in Kyoto. The Igusa modular form of
weight 10 is the unique Siegel modular form which is a Borcherds and a Saito-Kurokawa lift.
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1 Introduction

The Igusa modular form xip appeared first in the famous theorem of Jun-ichi Igusa about the
generators of graded algebra of Siegel modular forms of even weight and degree 2 (see [Igl]).
The algebra is equal to

(1.1) ClES, B3, x10, EDy)-

We normalized the Siegel type Eisenstein series E',% of weight k such that the Fourier coefficient
related to 0-dim cusp at infinity is one. The Igusa modular form xi¢ is a cusp form of weight
10. Igusa introduced the form in terms of Eisenstein series ([Igl], page 192).

x10 1= —43867-2712.37%.572. 771 . 53" 1(E2E? - E%).

It is known that x1¢ is a Saito-Kurokawa lift ([Za]) and a Borcherds lift ([GN1], [GN2]).

The square root of this modular form is related to the denominator formula for a generalized
Borcherds-Kac-Moody super algebra (Gritsenko, Nikulin). Moreover it is as a partition function
of BPS dyons in the toroidally compactified heterotic string theory. To study a generalized Kac-
Moody algebra one has to know the imaginary simple roots and the multiplicities of all positive
roots. It is absolutely crucial that the underlying modular form has a degenerate Fourier ex-
pansion (Saito-Kurokawa lift) and an infinite product (Borcherds lift). We refer to ([CD], [CV])
for more details. The following theorem states that there are no other Siegel modular forms of

degree 2 which are Borcherds and Saito-Kurokawsa, lifts .

Theorem Let F be a Siegel modular form of degree 2. If F is a Borcherds lift and a Saito-
Kurokawa lift, then F is proportional to the Igusa modular form.

We note that the Borcherds lift is multiplicative and the Saito-Kurokawa lift additive.
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2 Siegel modular forms, Witt operator and Taylor expansions

For an introduction to the theory of Siegel modular forms we refer to Klingen’s book ([KIl]). Let
T, be the Siegel modular group and §j,, the upper half space of degree n:

0, 1 0, 1
Lon(Z ¢ n n - n n
{7€G2()|7(_1n On)'y (-ln On)}

Hn = {ZeMu(C)|'Z = Z,Im(Z) > 0},

Tn

where 0,, (respectively 1) is the zero (respectively identity) matrix of degree n. Then we denote
by M (T',) the space of Siegel modular forms of weight k on I', and by S(I's) the subspace of
cusp forms. In the case n = 1 we usually drop the index and for n = 2 which we are mainly

interested in we often write (71, 2, ™) for a point

( T Z2 ) c 52.

z T

Next we introduce two useful operators. Let F' € My(I'2). Define
®(F)(7) := lim F(7,0,5y) (7 € H1),

W(F)(r1,m2) := F(11,0,12) (71,72 € H1).

Then ®(F) € My (T) and W(F) € Sym?(Mi(T)). The operator ® (respectively W) is called the
Siegel (respectively Witt) operator. Then Sx(I's) = {F € Mi(T2) | ®(F) = 0}.
Let fi, fa,..., fa be a basis of newforms of Sy and fo = ex. Here ex denotes the elliptic Eisenstein
series with constant term a(0) = 1.

Then we define

d
(2.1) Sym2(Mk(F))D = {Zai [i® fila; GC} .
=0
By Sym?(S,(T"))P we denote the cuspidal part.

A Siegel modular form F € M (I'z) admits the Fourier expansion

F(r,z,m) = Z Ar(n,r,m) e(nty + rz + mny),

n,r,mez

where we put e(z) = exp(2riz) for z € C. Note that Ap(n,r,m) = 0 unless n,m,4nm —r? > 0.
We also use the following shortcuts: q := e(7), q1 := e(n), ¢ := e(2), g2 := e(72). It is easy to
see that:

(2:2) o(F)(r) = ) Ar(n,0,0)q"
=0

(2.3) W(F)(r,m) = (ZAp(n,r,m)) .

n,m=0 r



We define the order of the g-expansion of a modular form F € My(T'3) by
ord(F) := min {n € No |Ar(n,r,m) # 0}.
Remark 2.1. If ord(F) > 2, then F ¢ Sym?(M,(I"))P.

Let k£ be even. Then F € My (T") has the Taylor expansion
o0
(2.4) F(r,2,m) =Y Uy(n,m) 2%
=0

It is clear that Uy is the image of the Witt operator and an element of Sym?(M(T")). Moreover
if Uy is identically zero then 12 € Sym?(Sy,2(I")).

Finally let E7 denote the Siegel-type Eisenstein series on I'p, normalized by ®*(E}) = 1.
Here ®" denotes the n-th iteration of the ® operator. Let E7(f) denote the Klingen Eisenstein
series attached to f € S(T),f # 0. Note that ®"~}(ER(f)) = f. Let further M,f’o be the
1-dim space generated by Siegel Eisenstein series of weight k and degree 2, let M,f ! be the space
generated by all Klingen type Eisenstein series of weight k and degree 2 and let M, ,f 2 = Sk(T'2).
Then

(2.5) Mi(T2) = MP° © MP' @ M2

The direct sum is related to the Petersson scalar product. Moreover this decomposition is
respected by the Siegel ® operator. Let F € My (I's) with decomposition Fy + Fi + F3. Then

(2.6) O(F) = @(Fo)+ ®(F1) + 2(F2)
(2.7) = ¢ Ey+oaf (61,62 eC, fe S'k(F)).

3 Saito-Kurokawa lifts

One can find an overview in Zagier’s Bourbaki article [Za]. Let k be an even integer. Then there

exists an injective linear map
(3.1) SKL: ]\‘Izk_g(r) — Mk(rz),

where Hecke eigenforms f map to Hecke eigenforms F = SKL(f). For a Hecke eigenform f,
the spinor L-function Z(SKL(f), s) is given by

Z(SKL(f),s)=Cs—k+1){(s— k+2)L(f,s),

where L(f,s) is the Hecke L-function of f and ((s) denotes the Riemann zeta function. We are
interested in the image of the lifting, which is given by the so-called Maass Spezialschar:

Ap(n,r,m) = Z d*1 Ap (%n,_g’l)} .

deN, d|(n,rym)

(32) M= { F € M(Ty)
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Here (n,r,m) denotes the greatest common divisor of n,r,m (We put 1:=(0,0,0)). To prove our
main result we use the following properties of the Maass Spezialschar. If F € M,f” *, then F is
non-trivial iff ¥§' or ¥£ is not identically zero. Moreover

(3.3) ol e Sym?(My(I))P.
If ¥} is identically zero then
(34) ¥f € Sym?(Sk42(T))P.

Remark 3.1. Let F € My(T3) has the decomposition Fy + F; + F; as described before. If F3
is non-trivial, then F is not in the Spezialschar.

4 Borcherds lifts

Roughly speaking a Borcherds lift BL is a correspondence between modular forms of weight
1—- % on $ with possible singularities at the cusps and certain meromorphic automorphic forms
with possible character on symmetric domains of type IV related to orthogonal groups O(2,m)
(m € N) ([Bol],[Bo2], [Bo3]). We note that

BL(f +g) = BL(f) - BL(g)-

Lifts to Siegel modular forms of degree 2 are related to the case m = 3, where the image is
uniquely (up to a scalar) determined by the divisor

(4.1) div(BL(f)) = Y ngHy.

deD
Here D is the set of all positive integers congruent to 0 or 1. The sum is finite and ng € Z. The
Hy are the Humbert surfaces (see also the following subsection), for general m they are called
Heegner divisor. The image could be an element of M (I'e,v), a Siegel modular form with the
unique non-trivial character v on I's.

Remark 4.1. The coefficients of the principal part of the input function are related to the nq.
A priori it is not clear when the nontrivial character in the image occurs. Moreover even when
not all coefficients in the principal part are non-negative, the image could be holomorphic.

4.1 Humbert surfaces

Let



Put Q(X,Y) :='XQY and Q[X] := Q(X,X) for X,Y € C°. For Z = (11,2,72) € H2 put
Z :=t(—mim+22,11, 2,12, 1) € C3. Note that Q[Z] = 0 and Q(Z,2) = 4det(Im(Z)) > 0. There
exists a homomorphism ¢: Spy(R) — O(Q)Rr such that EZZ/) = j(g,Z2)"1(g)Z for g € Spy(R)
and Z € §o.

Let L:=Z%L* := Q'L and L}, :={A € L* | n~!\ & L* for any integer n > 1}. For an
integer d € Z, let

Hy= Y {Zeﬁle(x,2)=o},

XeLly
where £y := {X € L%, | Q[X] = —d/2}. Note that 4 = 0 unless d > 0 and d = 0 or 1 (mod
4). Since L} is ¢(T'y)-invariant, Hq is ['s-invariant. Denote by Hy the image of Hg in I'2\$2 by
the natural projection $j; — I'y\$2. The divisor Hy of ['2\$2 is called the Humbert surface of
discriminant d. It is known that Hy is nonzero and irreducible if d = 0 or 1 (mod 4) (see [Ge2],
page 212, Theorem 2.4; see also [GH], Section 3). Note that

7'll = U 7{(7-1’()’ T2) | T1, T2 € ‘6}

Y€l

Ho=|J 1{(rz7) | T€H,2€C}.

~v€l2

4.2 Properties of Borcherds lifts and examples

Recently [HM] we found an explicit description of the Borcherds lifts related to single Heegner
divisors. As a by-product one can see that the character is only related to the divisors H; and
H,.

Theorem 4.2.

(i) For each positive integer d with d = 0 or 1 (mod 4), there exzists an Fq € My, (I, v%?)
with ag € {0, 1} satisfying div(Fy) = Hy.

(ii) We have F € S5(T'2,v), Fy € S30(T'2,v) and Fy € My, (T'2) if d > 4.

(iii) A Borcherds lift F € My(T,v®) (o € {0,1}) is a constant multiple of [, F;(d), where d
runs over the positive integers with d = 0 or 1 (mod 4), and A(d) is a nonnegative integer
(A(d) = 0 except for a finite number of d) satisfying A(1) + A(4) = a (mod 2).

Here Si(I'2),v) denotes the cuspidal subspace of My(I'3),v)
It is well-known that dimS;o(I's) = 1 (see also [KI]). Hence x1o is proportional to FZ.

Remark 4.3. The Borcherds lifts in Mg (I'2) with & < 60 are listed as follows:
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1 Borcherds lift weight divisor
F2¢ (1<a<6) 10a 2aH;
F2H1F, (1<a<2)|10a+35 | (2a+1)H; + Hy
F2Fs (1<a<3) |10a+24 2aH, + H;

F? 60 2H,
F2 48 2H;
Fy 60 Hg

The table shows that every Borcherds lift of weight less than or equal to 60 is a monomial
of Fy, Fy, F5 and F3. We also see that there is no holomorphic Borcherds lift of weight 12.

Assume that F' € M (T'2) is a Borcherds lift. Then ®(F) is proportional to a power A" of
the modular discriminant A with » > 0.

5 Proof of the Theorem

In the following we give a sketch of the proof of the main theorem. The complete proof will
appear elsewhere. Let F € My(T'2), F # 0. Let F be a Borcherds lift (BL) and Saito-Kurokawa.
lift (SKL). First of all we can assume that the weight is even (SKL). This implies that k£ > 4.
The structure theorem (BL) leads to

(5.1) F~]]Fr
deD

The product is finite, n; + ng = 0 (mod 2) and ng € No. The symbol ~ indicates that two
function are equal up to a non-zero constant.

Remark 5.1. A refined analysis of the modular forms F; shows that
1
ord(F1) = E,ord(F‘;) = g

If d > 5 then ord(Fy) > 2 iff d is a square and ord(F;) = 0 otherwise.

Since F is also a SKL we have ord(F) < 1. This leads to

(5.2) F~F2. 1T F}¢ (a=0,2).

d>5, d not a square

Put G := F/F{. Since G is a BL and not a cusp form we have [HM]

k - 5a

B(C) ~ AT (r="0

€N).
" Then it is easy to see that

W(G) ~ A" ® Ex + E, ® A" + cuspidal.
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This shows that, if @ = 0, then G = F is not a SKL, a contradiction. Thus we have o = 2.
Finally the case & = 2 remains. We show that r > 1 is not possible (then the theorem is proven).

Let in the following F ~ F2G, with ®(G) = A" (r > 1). Then UE is identically 0. Since F
is a SKL and not identically zero, we can assume that ¥£ # 0 and that

(5.3) Ty € Sym®(Sp12(I))”.
Since the second Taylor coefficient of FZ is proportional to A ® A we obtain
(5.4) vl ~ (A0 A) WG).

On the other hand W(G) can be expressed in terms of the modular function j and the primitive
modular polynomial. This can be directly proven by comparing the weights and the divisors on

H X H.

For m € Zsy, let M}, be the set of primitive matrices in My(Z) of determinant m. As is
well-known, there exists a polynomial @}, in Z[X,Y], called the primitive modular polynomial

of degree m, such that
[T  (X-im)) = 85,(X,5(r)).
MESL2(Z)\ M3,
Here 7 — M(7) denotes the action on $. The degree of ®%,(X,Y) in X is larger than m for

m > 1. Then

(5.5) W(G)(r1,72) ~ (A7(11) & A" (2)) [ ] €3.(3(m1), 5(72))°,

n>0

where a(n) € No. Hence we obtain

(5.6) U3 (11,1) ~ (A" (1) @ A () [ | @5(5(m), (7))

n>0

Combining this property with (5.3) leads to a contradiction by employing well-known properties
of the modular polynomial, multiplicative properties of the Fourier coefficients of primitive Hecke

eigenforms and the explicit Fourier expansion of the A-function.
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