AUTOMATICITY AND PRESENTATIONS OF SEMIGROUPS *

KUNITAKA SHOJI DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY MATSUE, SHIMANE, 690-8504 JAPAN

In this article, we make a survey of automaticity and presentations of semigroups.

1. Presentations of semigroups

Definition 1 (1) Let X be finite alphabets and R a subset of $X^+ \times X^+$. Then R is called a string-rewriting system.

(2) For $u, v \in X^+$, $(w_1, w_2) \in R$, $uw_1v \Rightarrow_R uw_2v$.

The congruence μ_R on X^+ generated by \Rightarrow_R is called the Thue congruence defined by R.

(3) A semigroup S is (finitely) presented if there exists a (finite) set of X, there exists a surjective homomorphism ϕ of X^+ to S and there exists a (finite) string-rewriting system R consisting of pairs of words over X such that the Thue congruence μ_R is the congruence $\{(w_1, w_2) \in X^* \times X^+ \mid \phi(w_1) = \phi(w_2)\}.$

In this case, we say that S has a presentation by X and R denoted by $S = \langle X : R \rangle$.

Definition 2 A semigroup S has a presentation with finite [resp. regular, context-free] congruence classes if there exists a finite set X and there exists a surjective homomorphism ϕ of X^+ to M such that for each word $w \in X^+$, $\phi^{-1}(\phi(w))$ is a finite [resp. regular, context-free] language.

Definition 3 A semigroup S is called residually finite if for each pair of elements $m, m' \in S$, there exists a conguence on S such that the factor monoid S/μ is finite and $(m, m') \notin \mu$.

^{*}This is an absrtact and the paper will appear elsewhere.

Definition 4 A semigroup S is called residually finite if for each pair of elements $m, m' \in S$, there exists a conguence on S such that the factor monoid S/μ is finite and $(m, m') \notin \mu$.

Result 1 ([9]). If a finitely generated semigroup S has a presentation with regular congruence classes, then S is residually finite.

Definition 5 Let M be a monoid and m an element of M. The syntactic congruence σ_m on M is defined by $s\sigma_m t$ $(s, t \in M)$ if and only if $\{(x, y) \in M \times M \mid xsy = m\} = \{(x, y) \in M \times M \mid xty = m\}$.

The factor monoid M/σ_m is called the syntactic monoid of M at m.

Result 2 ([9]) Let S be a finitely generated semigroup.

Then S has a presentation with finite congruence classes if and only if the following are satisfied:

- (1) S has no idempotent.
- (2) For any $s \in S$, S/σ_s is a finite nilpotent semigroup with a zero element 0.

2. Automatic semigroups

Definition 6 Let $X(2,\$) = (X \cup \{\$\}) \times (X \cup \{\$\}) - \{(\$,\$)\}$, where \\$ is padding symbol.

$$\nu: X^* \times X^* \longrightarrow X(2,\$)^* \ ((u,v) \mapsto (u\$^*,v\$^*))$$

where $max(|u|,|v|) = max(|u\$^*|,|v\$^*|) ! \$ \nu(\epsilon,\epsilon) = \epsilon$.

$$e.g.: (abba, bbabab) \mapsto (a, b)(b, b)(b, a)(a, b)(\$, a)(\$, b)$$

Definition 7 A semigroup S is called automatic if the following conditions hold;

- (1) There exists a regular language $L(\subseteq X^*)$ and a surjective map $: L \to S \ (w \mapsto \overline{w})$. (X, L) is called a rational structure of S.
- (2) $A_a = \nu(\{(w, w') \in L \times L \mid \overline{wa} = \overline{w'}\})$ is a regular language over X(2, \$) for each $a \in X \cup \{\epsilon\}$.

In this case, $(L, A_a (a \in X \cup \{\epsilon\}))$ is called an automatic structure.

Result 3 ([1]) An automatic semigroup with a rational structure (X, L) has a rational structure (X, L') with uniqueness.

That is, there exists a regular language $L'(\subseteq L \subseteq X^*)$ and a bijective map $: L' \to S$ $(w \mapsto \overline{w}).$

Result 4 [1] The followings hold;

- (1) Automatic groups are finitely presented.
- (2) The semigroup $\langle x, y : xy^ix = xyx(i > 2) \rangle$ is automatic but is not finitely presented.

Result 5 ([5]) Automaticity of monoids is preserved by taking any change of generators.

However, this is not the case for semigroups.

For
$$w=a_1\cdots a_n\in X^+,$$
 we denote $w(t)=a_1\cdots a_t$ if $t\leq n, \quad w(t)=a_1\cdots a_n$ if $n< t.$

Definition 8 A semigroup(group) S with a rational structure (X, L) has the fellow traveller property if there exists a constant k such that the Cayley graph Γ of S with generators X, whenever d(w(t), w'(t)) < k for all $t \ge 1$ if $d(w, w') \le 1$.

(the distance function
$$d(w,w')=min\{|z|\mid z\in X^* \ with \ \overline{wz}=\overline{w'} \ or \ \overline{w}=\overline{w'z}\}$$
)

- **Result 6** (1) A group G with a rational structure (X, L) is automatic if and if G has the fellow traveller property. (See [6])
- (2) If A semigroup S with a rational structure (X, L) is automatic, then S has the fellow traveller property. (See [1])
- (3) The semigroup S^0 (an non-automatic semigroup S with an adjoined zero 0) has the fellow traveller property, but is not automatic. (See [1])

3. Exsamples of automatic semigroups and non-automatic semigroups

Example 1 Finite groups, finite semigroups, Hyperbolic groups, finitely generated commutative groups.

Example 2 Finitely generated commutative semigroups, hyperbolic semigroups are not always automatic.

Result 7 ([6]) For the Baumslag-Solitar group $BSG(m,n) = \langle x, y : yx^m = xy^n \rangle$, we have

- (1) BSG(m, n) is not automatic if $m \neq n$.
- (2) BSG(m, n) is automatic if m = n.

Result 8 ([2]) For the Baumslag-Solitar semigroup $BS(m,n) = \langle x,y : yx^m = xy^n \rangle$, we have

- (1) BS(m,n) is automatic if m > n.
- (2) BS(m,n) is left automatic if m > n.
- (3) BS(m,n) is non-automatic if m=n.

Result 9 ([3]) The monogenic free semigroup FA_x does not have any rational structure with uniqueness.

4. Automaticity and presentations with context-free congruence classes

Result 10 ([3]) Let S be a finitely generated subsemigroup of vertually free group G. Then S is a semigroup having a presentation with context-free congruence classes.

Result 11 ([3]) Finitely generated subsemigroups of virtually free groups are automatic.

Result 12 Bicyclic monoid $\langle a, b : ba = \epsilon \rangle = \langle a, b, e : ba = e; ae = ea = a, be = eb = b > is automatic and has a presentation with context-free congruence classes.$

Result 13 ([1]) The foundamental four-spiral semigroup $SP_4 = \langle a, b, c, d : a^2 = a, b^2 = b, c^2 = c, d^2 = d,$

ba = a, ab = b, bc = b, cb = c, dc = c, cd = d, da = d > is automatic.

Moreover, every finitely generated subsemigroups of SP₄ is automatic.

5. Problems on commutative automatic semigroups

Result 14 ([7]) The finitely generated commutative semigroup $\langle a, b, x, y : aax = bx, bby = ay, ab = ba, ax = xa, ay = ya, bx = xb, by = yb, xy = yx > is not automatic.$

Question. If a finitely generated commutative semigroup S has a presentation with finite congruence classes, then is S automatic?

References

- [1] R. Campbell, M.Colin, E. F. Robertson, F.Edmund, N. Ruskuc and R. M. Thomas, Theoret. Comput. Sci. **250**(2001), 365-391.
- [2] A. J. Cain, Automatic structures for subsemigroups of Baumslag-Solitar semigroups, Submitted.
- [3] A. J. Cain, E. F. Robert, and N. Ruskuc, Subsemigroups of virtually free groups: finite Malcev presentations and testing for freenss, Math. Proc. Cambr. Phi. Soc., 141(2006), 57-66.
- [4] A. Cutting and A. Solomon, Remarks concerning finitely generated semigroups having reuglar sets of unique normal forms, J. Austral. Math. Soc. 70(2001), 293-309
- [5] A. J. Duncan, E. F. Robertson, and N. Ruskuc, Automatic monoids and change of generators, Math. Proc. Cambridge Philos. Soc., 127(1999), 403-409.

- [6] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson and W. Thurston, Word processing in groups, 1992.
- [7] M. Hoffmann and R. M. Thomas, Automaticity and commutative semigroups, Glasgow Math. J. 44(2002), 167-176.
- [8] J. E. Hopcroft and J. D. Ullman, Introduction to Automata theory, Languages, and Computation, Addison-Wesley Publishing, 1979.
- [9] K. Shoji, Finitely generated semigroups having presentation with regular congruence classes, Scientiae. Math. Japonicae 69(2009), 73-78.