
An automated reasoning system based on isabelle/HOL

Hidetsune Kobayashi Yoko Ono
Deparment of Mathematics Deparment of Information System
Ninon University Niigata University of I. I. Studies

1. Introduction
We have some computer languages which can process logical inference and derives some simple

propositions equivalent to an originally given proposition. Isabelle, MIZAR, Coq etc. are such proof
assistant languages, and some of them have functions which can prove simple propositions
automatically. However almost all mathematical propositions are too complicated for the functions to
prove completely. And even for a simple proposition a proof with such language needs many tedious
logical proof steps, because those languages require strict logical statements having no gap. In human
proof, we needn$|t$ write down such rigorous logical chain of propositions, because we can easily see
almost all such steps are correct or not. Hence human proofs are concise, and they are easier to read
than the machine proofs consisting of long rigorous chain of logical expressions.

This observation presents two problems:
1 $)$ is it possible to resolve such simple logical steps automatically?
2$)$ how we can give a machine prover a deep mathematical idea to complete a proof ?

This report is an essay on the above problems. Isabelle is developed by Lawrence Paulson and others
written in polyML, HOL stands for the higher order logic. We are developing an automated reasoning
system called H-prover which works on emacs together with ProofGeneral developed by D. Aspinall
which interface with isabelle/HOL.

From now on a proof in isabelle/HOL is called as a “formalized proof”. A formalized proof starts
with a proposition expressed in logical symbols. Applying axioms, lemmas and theorems already
proved, or unfolding definitions, we change the original proposition and obtain some propositions.
Repeating such operations step by step, finally when all thus derived propositions are apparently tme,
then the original proposition is said to be proved. Hereafter, to avoid a confusion, axioms and
propositions or theorems already proved are called as ”rules”, and the word “proposition” means
“proposition to be proved“. Some proofs in isabelle/HOL is composed by forward inference and
others are composed by backward inference. A file containing axioms, definitions, propositions and
formalized proofs written in isabelle is called a “theory file“ and its file name is given as “XXX.thy”,
where XXX is a freely given name to express the contents of the file e.g. “Set.thy“.

In section 2, we give brief examples of propositions and proofs written in isabelle/HOL to illustrate
how a mathematical proposition is expressed and how a proof proceeds. In section 3, we discuss how
an automated reasoning system should be designed and we show a scheme of our H-prover. In section
4, we give some examples of commands generated by H-prover semi-automatically, i.e. when H-
prover cannot step forward, we can give a command and let the prover generate proof steps as far as
possible. We give proofs and try to obtain a feeling of a ”mathematical idea“. We know almost any
mathematical proposition is not proved without some “mathematical ideas”, therefore we encounter
important problems conceming ”mathematical”. In section 5, we show more how H-prover works.

数理解析研究所講究録
第 1769巻 2011年 75-82 75

2. Proofs in isabelle/HOL

We present two propositions to see how a proposition and a proof is written in isabelle/HOL. The
first lemma is very simple and easy to see:

lemma $example21:$”$Ux\in A,$ $A\subseteq B\Vert\Rightarrow x\in B$
”

Here the first word lemma is a dec]aration that the following expression is a proposition to be proved.
Example21 is the name of the proposition, after proving the proposition, it is referred to by the name
as a rule. In fact, this proposition is already proved as a lemma subsetD”:

lemma subsetD: $\#c\in A;A\subseteq BI\Rightarrow c\in B$
”

By using a rule subsetD”, a proof to ’ $Example21$ ” is given as
apply ($rule\lrcorner acc=\prime\prime x’’$ and $A=\prime\prime A^{1\prime}$ and $B=\prime\prime B’’$ in subsetD, assumption$+$)

By abuse of terminology, we call the above a “command”. This command is interpreted as “use the
rule subsetD with x instead of c

” and then apply $assumption+$, where $+$ means apply the rule
$assump\uparrow|on’$” as much as possible. ProofGeneral has a function $l|proof-assert-next$-command-

interactive” which pass the command to isabelle and isabelle returns propositions after applying the
first part of the rule:

1. $[x\in A;A\subseteq B$ I $\approx A\subseteq B$
”

2. $ux\in A;A\subseteq BI\Rightarrow x\in A$
”

This is because isabelle applies subsetD as “to see $x\in B$, we have to show two propositions 1 and 2
above. These two derived propositions are called subgoals. In the subgoal 1, we have the conclusion in
the assumption, so “apply assumption” resolves the subgoal 1. Similarly, “apply assumption” resolves
the subgoa12. The command “apply (rule-tac $c=x$ and $A=A$ and $B=B$ in subsetD, assumption $+$)” is
concatenated two commands ”apply (rule tac $c=x$ and $A=A$ and $B=B$ in subsetD)” and‘apply
$assumption+$”. After applying this concatenated command, we have no remaining subgoal, and a proof
is finished, we give the command “done‘’, then isabelle is ready to prove next proposition.
Now we give the second lemma:

lemma example22: $|\prime X\cap Y=X\Rightarrow X\subseteq Y’’$

apply (rule subsetl)

apply($frule_{-}tacP’’=\lambda xxx$. $x\in$ xxx”and $s=\prime\prime x\prime\prime$ and $t=’|X\cap Y’’$ in ssubst, assumption $+$)

apply $(thin\lrcorner acX\cap Y=X’’)t^{*}$ this line is given manually “)

apply $(cut\lrcorner acc=\prime\prime x’’$ and $A=\prime\prime X’’$ and $B=\prime\prime Y$ “ in lnt iff,

drule tac $O=x\prime\prime\in X\cap Y’’$ and $P=^{1\prime}x\in X\wedge x\in Y$ ” in iffDl,

assumption$+$, erule conjE, thin tac $x\in X\cap Y^{\iota\prime}$)

apply assumption $+$

done

Applying the rule subsetI, we have a subgoal
! $!x$. $[X\cap Y=X;x\in\cross I=>x\in Y$

76

To this subgoal, we apply the rule ssubst which is a proposition $\ovalbox{\tt\small REJECT} s=t;Pt\Vert\Rightarrow$ Ps, and frule-tac
inserts the conclusion of the rule applied into premise. In this case, after executing the second
command, we have

! $!x$. $[X\cap Y=X;x\in X;x\in X\cap YI==>x\in Y$

This subgoal has a problem that we are falling into an infinite loop, because $x\in$ X $\cap Y$ is rewritten
as $x\in$ X $\cap X\cap Y$ by ssubst. A simple way to avoid falling down into an infinite loop is to delete
the assumption X $\cap Y=X$ from the premise. So, we put the third command manually. Of course a
sophisticated programming can make a system not falling into such an infinite loop. And we note that
an application of “thin-tac” is dangerous, because after eliminating it, we cannot use it as an
assumption anymore. The fourth command is a composition of commands that separates $x\in X\cap Y$

as $x\in X;x\in$ Y. After executing the fourth command, we have subgoals having the conclusion
appearing already in the premise, hence “apply assumption$+$

” completes the proof. We trace step by
step how the expression is rewritten by the fourth command.
$cut\lrcorner acc=\downarrow\prime x^{11}$ and $A=||X$“ and $B=’|Y^{1\prime}$ in lnt iff:

$In\llcorner iff$ is the rule $(c\in A\cap B)=(c\in A\wedge c\in B)$ ”. We use cut-tac to input the proposition
$(x\in X\cap Y)=(x\in X\wedge x\in Y)$” into the premise of the subgoal as

! $!x$. $[X\cap Y=X;x\in X;x\in X\cap Y;(x\in X\cap Y)=(x\in X\wedge x\in Y)J==>x\in Y$

drule tac $O=\prime\prime x\in X\cap Y^{\prime 1}$ and $P=\prime\prime x\in X\wedge x\in Y$“ in iffDl:
$|\prime fi$ Dl is the rule $IO=P;$”. drule removes the first term in apremise, hence we have

1. $!!x$. $[X\cap Y=X;x\in X;x\in X\cap YI==>x\in X\cap Y$

2. ! $!x$. $\beta X\cap Y=X;x\in X;x\in X\cap Y;x\in X\wedge x\in Y\#==>x\in Y$

assumption $+$

The subgoal lis resolved by this command, while subgoa12still remains.
eru $|e$ conjE

This command separates conjunction, hence we have asubgoal
! $!x$. $\beta X\cap Y=X;x\in X;x\in X\cap Y;x\in X;x\in Y\mathbb{I}==>x\in Y$

assumption
Finally “assumption” resolves the last $S\mathfrak{u}bgoal$.

We saw the formalized proof is composed of simple and trivial steps and almost all steps are not worth
to read from the mathematical point of view.

3. Design of H-prover
Why we need an automated reasoning system? Is it possible to prove propositions appearing in

textbooks of mathematics? Provably nobody can give affirmative answer to these questions. However
there are some reasons which encourage us to promote a study of automated reasoning system. At first
there is no doubt that formalized proofs scarcely have errors within them. Therefore formalization can
perform the role of a proof checker. As we saw in the previous section, a formalized proof consists of
many commands only for logical conversion, not representing a meaningful mathematical idea. Here
is a task of a prover. We can expect an automated prover to fill up logical gaps between mathematical
ideas automatically. We can design a interface of a prover having only mathematically meaningful

77

statements and completing a proof in the background. Thus we can obtain concise and accurate proofs.
This is the first reason why we develop a prover. For a beginner, it is hard to find out a starting point
of a proof. There are some systematic study on “how to prove”, and we can store in a machine prover
the methods of proof. Then an automated prover can be used as a tutor of mathematics. This is the
second reason. Finally, we can obtain an answer quickly. From example, if measures to deal with
natural calamities are formalized, then we can give the best solution quickly.

Now, we show the scheme of our automated reasoning system “H-prover”. It works together with
ProofGeneral, so the program is written in emacs lisp. To store the proved propositions, we have a
SQL server. Here is the il]ustration of the scheme of H-prover.

Buffers for ProofGeneral

isabelle$/HOL$

Buffers for H-prover

emacs

In the illustration, the horizontal arrow implies communication of subgoals from the left to the
right and solution from the right to the left. In an ordinary isabelle session, the buffer xxx.thy is set to
be a current buffer. Here, xxx.thy is the name of a file containing axioms, definitions and propositions
written in isabelle language. The buffer ”subgoal” is used to show subgoal(s) given by isabelle after
reading a proposition or command into. “response” is a used to show some notification generated by
isabelle. The buffers “workl” and “work2“ are used to get statements $from/to$ isabelle and SQL
$to/from$ H-prover.

H-prover has two modes for generating commands. One is step by step mode, that is press specific
keys and H-prover executes a command and generates a next command. Another mode is full
automatic mode, that is press specific keys and H-prover tries to generate next commands as much as
possible. In both two modes, when H-prover cannot generate next command, it stops and wait for
human assistance. So, we input a command and press specific keys, then it begins two work. Thus the
prover composes a proof partly automatically and partly asking human assistance.

78

4. H-prover with human assistance
We show how H-prover works by giving an example. The first simple example is to show a proof

given by human assistance. It should be noted that the proposition in the first example is obvious, and
human proof can be written in one line, but a mechanical proof requires some lines:

Lemmas and commands

lemma $A2set_{-}A1$:“ [Al $\subseteq A;f\in Aarrow A1\mathbb{I}$

\Rightarrow $A2setf$ A Al \subseteq Al“

isabelle‘s response

$[A1\subseteq A;f\in Aarrow AlI\Rightarrow A2setf$ A Al \subseteq Al

H-prover apply a general mle to prove a set is a subset of another.

apply (rule subsetl)

This is a general method to check subset.

$:$ apply $($ simp $on|\dot{y}\dot{A}\dot{2}set\dot{d}ef)\ldots\ldots\ldots\ldots$:..
\ldots $\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\cdot$

Expand the definition of $A2$set, manual.

コココココロココココココココロココ．コココ．．．．．．．．．．．．．．．．．．．．

-apply (erule CollectE) ..
$\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots.$.
H-prover doesn t know CollectE, given
manually.

! $!x$. [Al $\subseteq A;f:Aarrow$ Al;

$x\in A2setf$ A Al \Rightarrow $x\in$ Al

! $!x$. [Al $\subseteq A;f:Aarrow$ Al;
$x\in\{x\in A1$. $\exists y\in A-$ Al. $\exists n$. itr nfy $=x\}]$

$\Rightarrow x\in A1$

! $!x$. [Al $\subseteq A;f:Aarrow$ Al;
$x\in$ Al \wedge $(\exists y\in A-$ Al. $\exists n$. itr nfy $=x)$ I

$\Rightarrow x\in A1$

CollectE is a proposition:
$[|a\in\{x$. $Px\}$;Pa $==>$ PROP $W|]==>$ PROP W

Since $a\in\{x. Px\}$ is in the premise, we have only to show Pa $==>$ PROP W, this is rewritten as the
last subgoal rewritten properly by isabelle/HOL. Finally the command

apply $(=X\in$ Al” and $Q=$

$1’\exists y\in A-$ Al. $\exists n$. itr nfy $=x^{\prime 1}$

in conjunctl)

gives a trivial proposition, and assumption is the final command to complete the proof. Thus when
the prover does not know how to treat a set of the form $\{$ $\}$, it cannot proceed anymore. If we give
some proper commands manually, then H-prover begins to work.

There are two cases human assistance is required. The case that problems can be resolved by
programming and another case is that problems are not resolved by programming only. In the latter
case we need human idea which is called “mathematical idea” hereafter in this report. To obtain
feeling of mathematical idea, we give the following proposition.

Lemma. Let T be a subset of S , and let (S, \leq) and (T, \triangleleft) be well ordered sets, where \triangleleft is the

restriction of \leq to T. If ψ is an order isomorphism of S to T. Then for all x in S , we have $x\leq$

$\psi(x)$.
Proof. Suppose there is an xO in T such that $\psi(xO)<xO$. The set $M=\{x\in S. \psi(x)<x\}$ is
non-empty. Since M is non-empty, it has the minimum element m . ϵ Mathemat ical idea
$\ovalbox{\tt\small REJECT}^{\iota\iota}makethesetMandconsidertheminimumelementm$”

79

We have an inequality $\psi(m)<m$. Since ψ is an order isomorphism, we have $\psi(\psi(m))<\psi(m)$ (

This shows that $\psi(m)$ belongs to the set M and $\psi(m)<m$, this contradicts to the fact m is minimal.
We present one more example that a proof is relatively long but it is generated completely. A line

beginning from the middle is an isabelle response.

lemma may26-2: “ $[X\subseteq S;Y\subseteq S;X\subseteq Y]$ $\Rightarrow(S-Y)\subseteq(S-X)^{t1}$

[X $\subseteq S;Y\subseteq S;X<=YI\Rightarrow S-Y\subseteq S-X$

apply (rule subsetI)
! $!x$. $[X\subseteq S;Y\subseteq S;X\subseteq Y;x\in S-YJ\Rightarrow x\in S-X$

apply (subst Diff-iff)
$!!x$. $[X\subseteq S;Y\subseteq S;X\subseteq Y;x\in S-Y\Vert\Rightarrow x\in S$ & $x\not\in X$

apply (rule conjI)
1 . $!!X$. $Ix\subseteq S;Y\subseteq S;X\subseteq Y;x\in S-YI\Rightarrow x\in S$

2 . $!!x$. $[X\subseteq S;Y\subseteq S;X\subseteq Y;x\in$ S - Y $J\Rightarrow x\not\in X$

apply (rule-tac $c=^{1\prime}x^{1\prime}$ and $A=||S$ ” and $B=”Y^{\prime\iota}$ in DiffDl, assumption)
! $!x$. $[X\subseteq S;Y\subseteq S;X\subseteq Y;x\in$ S - Y $J\Rightarrow x\not\in X$

apply (rule tac $P=x1\in X^{\prime 1}$ in notI)
$!!x$. $[X\subseteq S;Y\subseteq S;X\subseteq Y;x\in$ S-Y; $x\in xI\Rightarrow$ False

apply (frule-tac $c=^{t\dagger}x^{1\dagger}$ and $A=’,X$“ and $B=^{\mathfrak{l}\dagger}S^{1\prime}$ in subsetD, assumption$+$)

! $!x$. $[X\subseteq S;Y\subseteq S;X<=Y;x\in S-Y;x\in X;x\in sI\Rightarrow$ False

apply (frule-tac $c=^{11}x^{1}$ and $A=”X$)’ and $B=\prime\prime Y’’$ in subsetD, assumption$+$)

! !X. $IX\subseteq S;Y\subseteq S;X\subseteq Y;x\in S-Y;x\in X;x\in S;x\in YI\Rightarrow$ False

apply (rule-tac $c=^{t\prime}x^{1\prime}$ and $A=|S^{1\prime}$ and $B=’\dagger Y^{\prime 1}$ in $DiffD2$)

1. $!!x$. $[X\subseteq S;Y\subseteq S;X\subseteq Y;x\in S-Y;x\in X;x\in S;x\in YI\Rightarrow x\in S-Y$

2. $!!x$. $[X\subseteq S;Y\subseteq S;X\subseteq Y;x:\in$ S - Y; $x\in X;x\in S;x\in YI\Rightarrow x\in Y$

apply $assumption+$
No Subgoals

It is seen that each step is only a simple logical manipulation.

5. How H-prover generates a proof
At first, we present some types of expressions which can be resolved into simpler expressions by

some commonly used method. For H-prover, those expressions are easy to treat. The last example in
the previous section shows that resolution for those expressions are classified into two classes. One is
mathematical elementary resolution and another is logically elementary resolution. Since it is not
proper to list up all those resolutions here, we present only some simple types of logical expressions
and resolution to those expressions.

spliming a conclusion:
lemma: $\#$ Pl; P2; P3;... ; Pn $\mathbb{I}\Rightarrow$ Ol $\wedge O2$ [Pl; P2; P3;... ; Pn $J\Rightarrow O1\wedge O2$

80

apply (rule conjl) [Pl; P2; P3;... ;Pn $1\Rightarrow$ Ql

[Pl: P2; P3: ... ;Pn $I\Rightarrow Q2$

splitting a conjunction in premise:

lemma: $[P1\wedge P2$, P3; .. . ; Pn I $\Rightarrow Q$

apply (erule conjE)

take an arbitrary element:
le家家 a $:P\Rightarrow\forall x$. Qx

apply (rule allI)

$[P1\wedge P2,$ $P3$, . . . , Pn $I\Rightarrow Q$

$IP1$, P2, P3, .. . , Pn $1\Rightarrow Q$

$P\Rightarrow\forall x$. Qx

llx. P \Rightarrow Qx

The last subgoal is taken as a proposition $P\Rightarrow$ Qx except one point that x is a bounded variable.

In the proposition $P\Rightarrow$ Qx (not following to ! $!x$.), x is taken as a fixed constant. In a forward
inference, sometimes we need more expression derived from premise.

Adding an expression to premise:

lemma: [Pl; P2; P3;... ; Pn $I\Rightarrow O$

Suppose we have a rule aaa: [$|$ Pl; P2 $|$] $\Rightarrow R$,
apply (frule aaa)

inputs R into premise oi the lemma as

[Pl;P2; P3; ... ;Pn $I\Rightarrow Q$

$\mathbb{I}P1$;P2; P3: ... :Pn: $RU\Rightarrow O$

Proving a proposition having the conclusion $\neg P$, H-prover employs the rule notI.

Prove not Q :
lemma: [Pl; P2; P3;... ; Pn $I\Rightarrow\neg O$

apply (rule notl)

[Pl; P2; P3; ... :Pn $I\Rightarrow\neg O$

[Pl; P2; P3;... ; Pn; $oI\Rightarrow$ False

In addition to those logically simple expressions as above, there are some mathematical elementary
expression that H-prover can resolve automatically. Since there are too much to list up, we present only
one such elementary expression. We note that those mathematical elementary properties are give by L.
Paulson and others in Set.thy included in Isabelle2009.tar.gz.

lemma: $[Z\subseteq X;Z\subseteq Y\Vert\Rightarrow Z\subseteq X\cap Y$ $\beta Z\subseteq X;Z\subseteq YI\Rightarrow Z\subseteq X\cap Y$

apply $(rule_{-}tacA=\prime\prime x\prime\prime$ and $B=’|Y^{1\prime}$ and $C=\prime\prime z^{1\prime}$ in $1nt_{-}greatest,$ $assumption+)$

In the above, a combination of $1nt_{-}greatest$ and assumption$+$ resolves the lemma. H-prover,
storing rules in a data base, checks whether a rule within a database is app]icable or not after reading
into it a proposition to be proved. Even an elementary mathematical property to show that a set is a
subset of another set, there are several methods according to premise of the proposition. “subsetI” is
one of them, but this is used commonly, and since this is a powerful method to show a set is a subset of
another set, we put it as a last resort of H-prover to show that.

81

Within H-prover, we transform an expression into a tree as

Sc. Pc AQc $rightarrow$ (ex-Scd-Sand-S (Pc) (Qc))

A variable in a tree is specified by its position from the root. For example, the location of the variable
c following P is child child child left-child child (abbreviated as ccclce), were e means “take the root”.
Therefore, even a variable is appearing in multiple places, we can specify the location of it. In the
above tree, ex-S stands for ョ，d-S stands for the period and and-S stands for A. Using tree, we can treat
a variable and a function in the same way:

! $!x$. [$X\cap Y=X;x\in x\mathbb{I}\Rightarrow x\in Y$

apply (drule-tac $P=$ “Axxx. $x\in$ xxx“ and $s=t|X$“ and $t=||X\cap Y$ ” in ssubst)

1. ! $!$ x. x $\in X==>x\in X$

2 . $!!x$. $\Vert x\in X;x\in X\cap Yl\Rightarrow x\in Y$ In this
case difference between x and Y is only a left-child and a right-child, because the conclusion $x\in Y$ of
the first subgoal is expressed in tree as (in-S (x) (Y)). We may say that tree expression is appropriate to
handle HOL (higher order logic).

6. Proof direction, future work
A proof is a well arranged sequence of propositions each derived from the former. In general, there

are several propositions derived from one proposition, therefore if a selection of some proposition(s)
at each step is not appropriate, then the sequence does not reach the goal. We may call “a proof
direction” choice of one proposition from the propositions derived Rom the original one. Therefore
proof directions give a sequence of propositions, and some of them are proofs. H-prover, inputting a
proposition, generates a next possible commands and store them as a list. Then H-prover sends a
command to isabelle from the list, and isabelle, after inferring, retums the result as a subgoal.
Repeatedly, H-prover tries to step forward ffom the given subgoal.

We have no evaluation which command is likely to give a good direction. Therefore, at present, we
have no standard to control a proof direction. So we have big problem for an automated reasoning
system. One is how we can take mathematical idea into the system and another is how to control proof
directions. One method to make the control easy is adopt parallel computation, that we test the
possible commands parallelly and choose the sequence reaching the goal. If the branch of the search
path is not so much, then this method will work. However, in general, the number of branches is not so
small to get a sequence reaching the goal.

References
[1] Bourbaki, N. \’El\‘ements de Math\’ematique, Th\’eorie des ensembles, Springer.
[2] Troelstra, A. S. and Schwichtenberg, H., Basic Proof Theory, Cambridge tracts in theoretical
computer science 43, 1996.
[3] Velleman, D. J., How to prove it, Cambridge University Press, 1995.
[4] Paulson, L. et al., A proof assistant for higher order logic, Lecture notes in computer science,
Springer, 2002.
[5] Kobayashi, H. and Ono, Y., On an automated reasoning system ”H-prover” , Dec. ,2010,
CACS2010,CD-R, IRAST.
[6] Kobayashi, H and Ono, Y. An Application of the Formal Methods to Statistics, Proceedings of the
2009 Intemational Symposium on Computing, Communication and Control, pp238-241.
[7] Kobayashi, H. and Ono, Y., Type and cardinality in Isabelle/HOL, Proceedings of the 10-th
symposium on algebra, language and computation, pp. 1-4. 2008.

82

