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Abstract

Data compression most commonly is based no the reduction of repetitions to a more
compact representation. We investigate the reduction of direct repetitions, more exactly of
squares. The main focus is on the question, how many different reduced normal forms one
word can have under this reduction. We show that this number can be exponential in the
length of the original word.

$0$ Repetitions and $D\iota tpIicat\dot{\iota}$

We investigate the reduction of direct repetitions in strings. This reduction is not directly ap-
plicable for data compression, because it is not reversible, i.e. the original string cannot be
reconstructed. However, reduction of squares directly models the reverse of a operation com-
mon in biochemistry

A mutation, which occurs frequently in DNA strands, is the duplication of a factor inside a
strand [19]. The result is called a tandem repeat, and the detection of these repeats has received
a great deal of attention in bioinformatics [1, 20]. The reconstruction of possible duplication
histories of a gene is used in the investigation of the evolution of a species [24]. Thus dupli-
cating factors and deleting halves of squares is an interesting algorithmic problem with some
motivation from bioinformatics, although squares do not need to be exact there. A very similar
reduction was also introduced in the context of data compression by Ilie et al. [10, 11]. They,
however conserve information about each reduction step in the resulting string such that the
operation can also be undone again. In this way the original word can always be reconstructed,
which is essential for data compression. We will present their approach in more detail in Section
2 and establish some relations between the two reductions.

So far, the interpretation of duplication as an operation on a string has mainly inspired work
in Formal Languages, most prominently the duplication closure. Dassow et al. introduced the
duplication closure of a word and showed that the languages generated are always regular over
two letters [7]. Wang then proved that this is not the case over three or more letters [23]. These
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results had actually been discovered before in the context of copy systems [8], [3]. It remains
an open problem, whether such duplication closures are always context-free or not. Later on,

length bounds for the duplicated factor were introduced [17], [15], and also the closure of lan-
guage classes under the duplication operations was investigated [12]. Finally, also a special
type of codes robust against duplications was investigated [16].

Besides considering duplication as a generative operation elongating strings, also the effects
of the inverse operation on words have been the object of investigations [15]. Here duplications
are undone, i.e. one half of them is deleted leaving behind only the other half of the square.
In this way words are reduced to square-free words, which are in some sense primitive under
this notion; this is why we call the set of all square-free words reachable from a given word $w$

the duplication root of $w$ in analogy to concepts like the primitive root or the periodicity root
of words. Duplication roots of languages were studied already in earlier work by the present
author [14].

Here we will focus on duplication roots of single words. Mainly the following question is
addressed: how many different duplication roots can a word have? We establish an exponential
lower bound for this number as well as an upper bound. Besides any possible applications,
this study of how repetitions in a sequence can be nested follows important lines of study in
Combinatorics of Words, where repetitions have been in the center of attention from the very
start in the work of Thue [22].

1 Definitions

We assume the reader to be familiar with fundamental concepts from Formal Language Theory
such as alphabet, word, and language, which can be found in many standard textbooks like
the one by Harrison [9]. The length of a finite word $w$ is the number of not necessarily distinct
symbols it consists of and is written $|w|$ . The number of occurrences of a certain letter a in $w$ is
$|w|_{a}$ . The i-th symbol we denote by $w[i]$ . The notation $w[i\ldots j]$ is used to refer to the part of a
word starting at the i-th position and ending at the j-th position.

A word $u$ is a prefix of $w$ if there exists an $j\leq|w|$ such that $u=w[1\ldots l]$ ; if $i<|w|$ , then
the prefix is called proper. The set of all prefixes is pref$(w)$ . Suffixes are the corresponding
concept reading from the back of the word to the front and they are denoted by suff. We define
the letter sequence seq $(u)$ of a word $u$ as follows: any word $u$ can be uniquely factorized as
$u=\chi_{1^{1}}^{j}\chi_{2^{2}}^{j}\cdots\chi_{\ell}^{j_{p}}$ for some integers $\ell\geq 0$ and $i_{1},$ $i_{2\dagger}\ldots$ , $j_{\ell}\geq 1$ and for letters $x_{1},$ $x_{2},$ $\ldots,$ $x\ell$ such
that always $x_{j}\neq x_{j+1}$ , then seq $(u)$ $:=x_{1}x_{2}\cdots x_{\ell}$ . Intuitively speaking, every block of several
adjacent occurrences of the same letter is reduced to just one occurrence.

We call a word $w$ square-free iff it does not contain any non-empty factor of the form $u^{2}$ , where
exponents of words refer to iterated catenation, and thus $u^{j}$ is the $l$-fold catenation of the word
$u$ with itself. A word $w$ has a positive integer $k$ as a period, if for all $i,j$ such that $i\equiv j(modk)$

we have $w[i]=wD]$ , if both $w[i]$ and $w[i]$ are defined.
For applying duplications to words we use string-rewriting systems. In our notation we

mostly follow Book and Otto [2] and define such a string-rewriting system $R$ on : to be a subset
of $\Sigma^{*}\cross\Sigma^{*}$ . Its single-step reduction relation is defined as $uarrow Rv$ iff there exists $(\ell, r)\in R$

such that for some $u_{1},$ $u_{2}$ we have $u=u_{1}1u_{2}$ and $v=u_{1}ru_{2}$ . We also write simpler just $arrow$ , if
it is clear which is the underlying rewriting system. By $arrow^{*}$ we denote the relation’s reflexive
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and transitive closure, which is called the reduction relation or rewrite relation. The inverse of a
single-step reduction relation $arrow$ is $arrow^{-1};=\{(r, l) : (l, r)\in R\}$ . Further notation that will be
used is $IRR(R)$ for the set of words irreducible for a string-rewriting system $R$ . With this we
come to the definition of duplications.

The string-rewriting system we use here is the duplication relation defined as $\mu\wp_{v:\Leftrightarrow\exists z[z}\in$

$\Sigma^{+}\wedge U=U_{1}ZU_{2}\wedge y=u_{1}zzu_{2}]$ . Notice how the symbol C) nicely visualizes the operation going
from one origin to two equal halves. If we have length bounds $|z|\leq k$ or $|z|=k$ on the factors
to be duplicated we write $\wp\leq k$ or V $k$ respectively; the relations are called bounded and unformly
bounded duplication respectively.

$\wp*$ is the reflexive and transitive closure of the relation $\wp$ . The duplication closure of a word
$w$ is then $w^{Q}$ $:=\{u : w\wp*u\}$ . The languages $w^{\wp\leq k}$ and $w^{\wp_{k}}$ are defined analogously. Because
our main topic is the reduction of squares, we will mainly use the inverse of V and will denote
it by $\succ:=\wp-1$ , the notations for length-bounded versions and iterated applications are used
accordingly. Notice that for $\succ\leq k$ the length bound does not refer to the length of the rules’
left sides, but rather to half that length. This makes sense, because otherwise for all even $k$ we
would have $\succ\leq k=\succ\leq k+1$ , and because this way the relations $\succ\leq k$ and $\wp\leq k$ correspond. We
will use a similar convention when talking about squares. Thus we will say that a square $u^{2}$ is
of length $|u|,\cdot$ in this case $u$ will be calIed the base of this square.

With this we have all the prerequisites for defining the central notion of this work, the dupli-
cation root.

Definition 1. The duplication root of a non-empty word $w$ is

$\sqrt[t^{1}]{w}:=lRR(\succ)\cap\{\iota!:W\succ^{*}u\}$ .

As usual, this notion is extended in the canonical way from words to languages such that

$\sqrt[(]{L};=\bigcup_{w\in L}\sqrt[0]{w}$
.

The roots $\wp\sqrt[<k]{w}$ and $c\sqrt[)]{w}^{k}$ are defined in completely analogous ways, and also these are
extended to entire languages in the canonical way. When we want to contrast the duplication
(root) without length bound to the bounded variants we will at times call it general duplication
(root).

When talking about the elements of a word’s duplication root, we $wm$ also call them simply
roots; no confusion should arise. Similarly, where we say “the number of roots” we mean the
$root’s$ cardinality. Though not completely correct, these formulations are more compact and in
many cases easier to understand.

Finally, notice that all words in a duplication root are square-free, and over an alphabet of
two letters only the seven square-free words $\{\lambda, a, b, ab, ba, aba, bab\}$ exist. They are uniquely
determined by their first letter, the last letter, and the set of letters occurring in them. Thus most
problems about duplication roots are trivial unless we have at least three letters. Therefore,
unless otherwise stated, we will suppose an alphabet of size at least three in what follows. First
off, we illustrate this definition with an example that also shows that duplication roots are in
general not unique, i.e., the set $\sqrt[1]{w}$ can contain more than one element as we will see further
on.
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Example 2. By undoing duplications, i.e., by applying rules from $\succ$ , we obtain from the word
$w=$ abcbabcbc the words in the set { $abc$ , abcbc, abcbabc} ; in a first step either the prefix
(abcb)2 or the suffix $(bc)^{2}$ can be reduced, only the former case results in a word with another
square, which can be reduced to $abc$ .

Thus we have the root $\sqrt[t)]{}$abcbabcbc $=$ { $abc$ , abcbabc}. Exhaustive search of all shorter words
shows that this is a shortest possible example of a word with more than one root over three
letters.

As the examples have finuite length, the bounded duplication root is in general not $uque$
either. The uniformly bounded duplication root, however, is known to be unique over any
alphabet [15].

2 The Relation to Repetition Complexity

In an effort to define a new measure for the complexity of words, Ilie et al. [10, 11] defined a
reduction relation very similar to undoing duplications, which however remembers the steps
it takes, and in this way the original word can be restored from the reduced one. For the
definition let $D=\{0,1, \ldots 9\}$ be the set of decimal digits, and : be an alphabet disjoint from
$O$ . The alphabet for the reduction relation is $T$ $:=\Sigma\cup O\cup\{\langle, \rangle, -\}$ . For a positive integer $n$ let
dec $n$ denote its decimal representation. Then the reduction relation $\Rightarrow$ is defined by $u\Rightarrow v$ iff
$u=u_{1}x^{n}u_{2},$ $v=u_{1}\langle x\rangle^{-}\{$dec $n\rangle u_{2}$ for some $u_{1},$ $u_{2}\in T^{*},$ $x=\Sigma^{+},$ $n>2$ . Finally, let $h$ be the
morphism erasing all symbols except the letters from X.

We illustrate in a simple example the different way of operation of the two relations.

Example 3. . For the word ababcbc there are two irreducible forms under $\Rightarrow$ , namely $($ ab} $\langle 2)_{cbc}$

and aba $\langle bc\rangle^{\langle 2)}$ . Under $\succ$, however, the images of both words under $h$ are further reducible
to a common normal form: both a$babcbc\succ abcbc\succ abc$ and $ababcbc\succ ababc\succ abc$ are
possible reductions leading to $abc$ . Notice how the brackets block the further reduction of a$bab$

in aba $\langle bc\}^{-}\langle 2\rangle$ and of bcbc in $\langle ab\}-\langle 2\}cbc$.

There are two main differences between the two relations.

(i). A reduction $u^{n}\Rightarrow\langle u\}^{-}(n\rangle$ is done in a single step while the reduction $u^{n}\succ^{*}u$ will always
take $n-1$ steps.

(ii). If $w\Rightarrow^{*}u$ then $w\succ^{*}h(u)$ , but the reverse does not hold, see Example 3.

Despite these differences, the similarities are evident, and $\Rightarrow^{*}$ can be embedded in $\succ^{*}$ . We
state a further relation.

Proposition 4. For a word $w$, if $\sqrt[q]{w}\subseteq\{h(u) : w\Rightarrow^{*}U\}$ then $|\sqrt[o]{w}|=1$ .

Proof. Let $\rho$ and $q$ be two different words in $\sqrt[0]{w}$ . Then there exist words $u,$ $\rho’,$ $q’$ such that
$w\succ^{*}u,$ $v\succ\rho’\succ^{*}\rho,$ $u\succ q^{l}\succ^{*}q$ , but no reductions $\rho’\succ^{*}q$ or $q’\succ^{*}p$ exist. Intuitively this
means that the paths to $p$ and $q$ divide in the point $u$, which thus is a greatest lower bound of
$\{\rho, q\}$ in the set $w\succ$ with $\succ^{*}$ as partial order. The two unduplications in $u\succ\rho’$ and $u\succ q’$

must overlap, otherwise there would be a word $v$ such that $p’\succ v$ and $q^{l}\succ\psi$ . Let the two
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Intuitively this means that if $\Rightarrow$ can reduce a word to a square-free one, then the overlaps
of its repetitive factors must be so minor that they do not lead to ambiguous duplication roots
either. Already Example 3 shows that the converse of Proposition 4 does not hold.

From the proof of Proposition 4 we can extract an important property of the relation $\succ^{*}$

that characterizes the situation, when two strings derived from the same word can become
incomparable.

Definition 5. Let $w$ be a word. We will call two squares $\rho^{2}$ and $q^{2}$ a pair of critical squares in $w$,
if $w$ has a factor $u$ such that

Without further proof we state the following.

(i). $\rho^{2}\in$ pref$(u)$ ,

(ii). $q^{2}\in$ suff$(u)$ ,

(iii). $|u| \leq 2(ma\cross(|\rho|, |q|))+\min(|\rho|, |q|)-1$ .

Lemma 6. Let $w,$ $\rho$ , and $q$ be words such that $w\succ p$ and $w\succ q$ .
If $\{v:\rho\succ^{*}\iota/\}\cap\{v:q\succ^{*}|/\}=\emptyset$, then $w$ contains a pair ofcritical squares.

3 The Number of Duplication Roots

A decisive question for any algorithmic problem related to duplication is the one about the
possible number of duplication roots of a word with respect to its length. To find an exact
bound seems to be a very intricate problem, and so we try to find good upper and lower bounds
on this number. More formally, we try to find bounds for the function defined as

duproots(n) $:= \max\{|\sqrt[\wp]{w}| : |w|=n\}$ .

The function duproots is monotonically growing. For any word $w$, duplicate one of its letters to
obtain a word $w’$ of length $|w|+1$ . Clearly $w’\succ w$ and thus $\sqrt[\varphi]{w}\subseteq\sqrt[I]{w’}$ . Consequently we

factors that are reduced be $u_{\rho}^{2}$ and $u_{q}^{2}$ , where $|\iota 1_{\rho}|>|v_{q}|$ without loss of generality; notice that
$|u_{\rho}|=|u_{q}|$ would result in $p’=q’$ .

The overlap of the unduplications must be greater than $|u_{q}|$ . Otherwise there is a vv’ such
that the unduplications are applied to a factor $u_{p}w’u_{q}$ or $u_{q}w’u_{\rho}$ and the effect can be seen as
the deletion of $u_{p}$ and $u_{q}$ ; both would be possible consecutively. Further, the maximal repetition
of $u_{p}$ were it is reduced must be less than $u_{p}^{3}$ , otherwise the factor $u_{q}$ would still be present after
deletion of one $u_{\rho}$ . This means that a reduction under $\Rightarrow$ can only result in $\{u_{p}\}^{\sim}\{2\rangle$ , no higher
exponent, and no factor $u_{\rho}$ can follow on either side.

There can be no factor $U_{q}^{2}$ directly preceding or following $\langle u_{p}\rangle$ on the side of the overlap.
Otherwise, again derivations $p^{f}\succ v$ and $q’\succ v$ would have been possible. This means that the
square $v_{q}^{2}$ in $h(p’)$ cannot be reduced, neither can an equivalent reduction leading to the same
result be done. Analogous reasoning holds for the case that first $n_{q}^{2}$ is reduced to $\langle u_{q}\}^{-}\{2\}$ , and
thus $\{h(u) : w\Rightarrow^{*}u\}$ cannot contain any square-free word.

$\square$
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have duproots(n) $\leq$ duproots$(n+1)$ for all $n>0$ . Therefore writing $|w|=n$ in the definition is
equivalent to writing $|w|\leq n$ .

Because it has often tumed out to be very useful to consider problems about duplications
with a length restriction, we also define the function

bduproots $\leq k(n)$ $:= \max\{|^{0^{e}}(\sqrt[k]{w}|$ : $|w|=n\}$ .

3.1 Bounding from Above

Lemma 7. Let $w$ be a word with period $k$ . Then all applications of rules $from\succ k$ will result in the
same word, i.e. $\{u : w\succ ku\}$ is a singleton set.

duproots(n) $\leq(1.6n)^{n-3}$ .
Of course, this gives a very rough upper bound. Most importantly, it disregards the fact that
many reductions starting in different points will converge again at some point. Obviously, two
rule applications in factors that do not overlap can be applied in either order with identical
result. Further, not all of the strings reachable during a reduction will reach the maximum
number of runs.

We recall a result from [14].

By definition we have bduproots$\leq k\leq$ duproots and bduproots $\leq k\leq$ bduproots $\leq k+1$ for all $k>0$ .
We now try to characterize the growth of the function duproots more exactly.

Obviously, rules from $\succ$ can only be applied on square factors. Thus the number of squares is
the number of possible distinct rule applications in a string. However, when we are interested
in rule applications with distinct result and thus with potentially distinct roots, the number of
runs captures this more exactly.

Recall that a run is a maximal repetition of exponent at least two in a string. It is known that
the number of runs in a string of length $n$ is linearly bounded by $n[13]$ . A great deal of work
has been done to determine the constant $c$ such that $c\cdot n$ is the exact bound. The most recent
results indicate that $c$ lies between 1.6 [6] and 0.94 [18]. The following fact shows how this
number plays a role for the number of possible reductions via $\succ$ and thus for the number of
duplication roots.

As a consequence of this, the number of distinct descendants of $w$ with respect to $\succ$ is equal
to the number of runs in $w$ . In this way. the number of runs seems to play an important role for
the computation of the maximal number of duplication roots.

To obtain a first approximation on this number, let us state the following: the number of runs
in a string of length $n$ is bounded linearly by the string’s length. Reducing one square leaves
the word’s length in general in the order of $n$, thus also the number of runs is again in the order
of $n$ .

On the other hand, every reduction via $\succ$ removes at least one letter, thus there can be at
most $n-1$ steps in the reduction of a word of length $n$ . More precisely, observe that deleting
one half of a square cannot remove all copies of a letter from a given string. Thus all roots of
a word over three letters have at least three letters themselves. OveralL there are up to $n-3$
times up to $n$ choices for reducing squares, and the number of different reduction paths lies in
$\mathcal{O}(n^{n})$ . Using the upper bound on the number of runs we see that
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Lemma 8. Iffor two words $\mu_{\dagger}\psi\in\Sigma^{*}we$ have seq$(u)=seq(v)$ , then also $\sqrt[(]{u}=\sqrt[(]{\psi}=\sqrt[Q]{seq(u)}$ .
This means that we can first do all the possible reductions of the form $x^{2}arrow\chi$ for single

letters $\chi$ . So for possible splits to different duplication roots we can assume that at least two
letters are deleted in every step. Actually, also the fact that $u$ from Example 3 is the shortest
possible word with at least two distinct duplication roots shows that we need only consider
applications of mles $u^{2}arrow\mu$ with $|n|\geq 2$ . This lowers our upper bound to $(1.6n)^{\frac{n-3}{2}}$

The improvement is not substantial, however. In the initial approach, in some sense all pos-
sible paths from $M1$ to words in $\sqrt[9]{w}$ in the Hasse diagram of the partial order $[w\succ,\succ^{*}]$ are
counted. The improved version counts only the paths starting from seq $(w)$ as depicted in Fig-
ure 1. The optimal case, however would be to count only one path per element of $\sqrt[\wp]{w}$ . We can
take another step into this direction for the partial order $[\nu v\succ\leq k, \succ\leq k^{*}]$ . As exemplary value
for $k$ we choose 30, the reason for this will become evident in the next section.

aabebababbe aabcbabcbbe

$1$

或$\}$cbabcちわ $c$

$1$

ab$\epsilon$ぬめめお

$/^{/}$ $\backslash$

abcbe abGbabe

$1$

abc abe

Figure 1: 10 versus 2 paths for the word aabcbabcbbc, by first reducing one-letter squares from
left to right. The direction of reductions is top to bottom.

Lemma 6 characterizes the words, from which it may not be possible to rejoin outgoing paths.
They need to have a critical overlap. The involved squares’ bases cannot be longer than 30.
Further, one must be shorter than the other, but of length at least two. So for a given square,
there are at most 29 such candidates. They can overlap on either side, which gives 56 possible
combinations. The shorter square must have more than one half of its length inside the other,
and at least one letter must be outside the other. So for a square of length $m$ we have $m-1$
possible positions. The overall number of possible configurations is therefore 2 $\sum_{2\leq,\leq 29}i-1=$

$2\Sigma_{1\leq j\leq 28};=812$ .
For calculating the number of possible roots of a word $w$, we now employ the following

tactics. Again, we first compute seq $(w)$ . Then we do not follow all possible paths from seq $(w)$ ,
but rather select one random square. If it does not form part of a pair of critical squares, then
we simply reduce it and proceed further with the next square. Otherwise, for all critical pairs
we follow also the paths resulting from reducing the possible partners in these pairs. As we
have seen, a square of length 30 can form part of at most 812 critical pairs. The length of the
paths is subject to the same bound as for $\succ$ , and thus we have to follow at most $812^{\underline{n}-3}\tau$ paths,
which is the upper bound on bduproots $\leq 30$ .
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Clearly, especially the first bound of $(1.6n)^{\underline{n}_{\overline{H}}\underline{3}}$ is very far off the real value. Indeed, all roots
of a word $w$ are shorter than $w$ unless $w$ is square-free. Let us label $w$ ’s letters from the start
to the end. We can look at a rule $uuarrow u$ like the deletion of one copy of $u$, so its labels
disappear. Thus every word in $\sqrt[9]{w}$ corresponds to a subset of the set of $|w|$ labels. There
are only $2^{|w|}$ such subsets, which gives us a much better upper bound, also independent of
the alphabet size. We still have given the construction of our bound, because we feel that it
bears potential for improvement even beyond $2^{|w|}$ . Intuitively, the linear bound on the number
of runs in a string means that they must be distributed rather evenly over the $strg’s$ length.
Further, results like the Theorem of Fine and Wilf suggest that one mn can only form a very
limited number of pairs of critical squares, so that even in the case of unbounded duplication
we should be able to get an average constant bound like the one of 812 for $\succ\leq 30$ . By careful
analysis of the possibilities, it should be possible to lower the bound even beyond $2^{|w|}$ .

3.2 Bounding from Below

The upper bound on the number of duplication roots is very high and raises the question how
far from the real number it is. By an example we now establish a lower bound for this number,
which is also exponential. Thus it shows that the upper bound is not too bad.

$w=ud\rho(u)d\rho(\rho(u))d=abcb$abcbc $\cdot d\cdot$ bcacbcaca $\cdot d\cdot cabacabab\cdot d$ .

Thus the duplication root of $w$ contains among others the three words

$w_{a}=$ $abc\cdot d\cdot bca\cdot d$ . caba$cab\cdot d$

$w_{b}=$ $abc\cdot d\cdot$ bcacbca $\cdot d\cdot cab\cdot d$

$w_{c}=$ abcb$abc\cdot d\cdot bca\cdot d$ . ca $b\cdot d$ ,

which are square-free. We now need to recall that a morphism $h$ is called square-free, iff $h(v)$

is square-free for all square-free words $v$ . Crochemore has shown that a uniform morphism $h$

is square-foee iff it is square-free for all square-free words of length 3 [5]. Here uniform means
that all images of single letters have the same length, which is given in our case.

Example 9. We construct an example of a sequence of words $w_{n}$ , which are simply powers of a
word $w$, namely $w_{n}$ $:=w^{n}$ . The number of roots increases exponentially in $n$ . This is a modifi-
cation of a construction used earlier to present a simple language with infinite duplication root
[14]. We start the construction of $w$ from the word $u=abcba$bcbc; in Example 2 we have seen
that the root of $u$ consists of the two words $u_{1}=abc$ and $u_{2}=$ abcbabc. The basic idea is to
concatenate copies of $u$, in every factor there is the choice of $u_{1}$ or $u_{2}$ and thus every additional
copy of $u$ doubles the number of roots. However, simple concatenation of $u$ would allow fur-
ther reductions. Therefore we need to modify and separate the different copies of $u$ in ways
that prevent the creation of further squares.

The first measure we take is permuting the letters. Let $\rho$ be the morphism, which simply
renames letters according to the scheme $aarrow barrow carrow a$ . Then $p(u)$ has the two roots $\rho(u_{1})$

and $\rho(u_{2}),\cdot$ similarly, $\rho(p(u))$ has the two roots $\rho(\rho(u_{1}))$ and $\rho(\rho(u_{2}))$ .
We will now use this ambiguity to construct the word $w$ . This word over the four-letter

alphabet $\{a, b, c, d\}$ is
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The morphism we define now is $\varphi(x)$ $:=w_{\chi}$ for all $\chi\in\{a, b, c\}$ . Thus to establish the
square-freeness of $\varphi$, we need to check this property for the images of all square-free words up
to length 3. These are

$\varphi(aba)=$ abcdbcadcaba$ca$bdabcdbcacbcadcabdabcdbcadcabaca$bd$

$\varphi(abc)=$ abcdbcadcaba$ca$bdabcdbcacbcadcabdabcbabcdbcadca$bd$

$\varphi(aca)=$ abcdbcadcabacabdabcbabcdbcadcabdabcdbcadcabacabd
$\varphi(acb)=$ abcdbcadcaba$cabda$bcbabcdbca$dcabda$bcdbcacbcadcabd
$\varphi(bab)=$ abcdbcacbcadca$bda$bcdbcadca$baca$bdabcdbcacbcadcabd
$\varphi(bac)=$ abcdbcacbca$dca$bdabcdbca $dca$bacabdabcbabcdbcadcabd
$\varphi(bca)=$ abcdbcacbcadca$bda$bcbabcdbca$dca$bdabcdbca$dca$bacabd
$\varphi(bcb)=$ abcdbcacbca$dca$bdabcbabcdbcadcabdabcdbcacbcadcabd
$\varphi(cac)=$ abcbabcdbcadcabdabcdbcadca $ba$cabdabcbabcdbcadcabd
$\varphi(cab)=$ abcbabcdbcadcabdabcdbca$dcabaca$bdabcdbcacbcadca$bd$

$\varphi(cba)=$ abcbabcdbcadcabdabcdbcacbcadcabdabcdbcadcabacabd
$\varphi(cbc)=$ abcbabcdbcadcabdabcdbcacbcadcabdabcbabcdbca$dcabd$ ,

Example 9leaves room for improvement in several respects.

$\bullet$ The word $w$ is over a four-letter alphabet. The letter $d$ is used to separate the different
blocks that introduce the ambiguities and only use the alphabet $\{a, b, c\}$ . The question
is whether this function can also be fulfilled by an appropriate word over $\{a, b, c\}$ , com-
puter experiments with candidate words have always led to unwanted squares with some
of the adjoining factors.

$Q$ The ambiguity of $u$ that we use is only two-fold. Using the words $w_{3}$ and W5 from Ex-
ample 2, it might be possible to pack more choices into less room and thus improve the
initial constant of $\frac{1}{5}$ with similar constructions. However, this would not change the mag-
nitude. On the other hand, the resulting morphism would not be uniform, which would
complicate the establishment of its square-freeness.

Summarizing this section up to this point, we have the following bounds for the function
duproots.

where, of course, the images of all words shorter than three are contained in them. All the
twelve words listed here are indeed square-free as an eager reader can check, and thus $\varphi$ is
square-free.

Now let $t$ be an infinite square-free word over the letters $a,$ $b$ and $c$ . Such a word exists
[22]. Then all the words in $\varphi$ (pref$(t)$ ) are square-free, too. From the construction of $\varphi$ we know
that for any word $z$ of lengih $j$ we can reach $\varphi(z)$ from $w’$ by $\iota mdoing$ duplications. Therefore
$\varphi(pref(t))\subseteq\sqrt[t]{w^{+}}$. For two distinct square-free words $r_{1}$ and $r_{2}$ , also $\varphi(t_{1})\neq\varphi(\mathfrak{x}_{2})$ . Finally,
notice that for all positive $’\leq n$ we have $w^{n}\succ^{*}w^{j}$ .

This means that all square-free words that are not longer than $n$ lead to a different duplication
root of $w_{n}$ . Therefore bduproots $\leq 30\leq s$ , where $s(n)$ is the number of ternary square-free words
of length up to $n$ . This function’s value is not known, however, it was first bounded to 6 .
$1.032^{n}\leq s(n)\leq 6$ . 1.379’ by Brandenburg [4]. A better lower bound was found by Sun
$s(n)\geq 110^{n}4T[21]$ . $w$ itself is of length $3|u|+3=30$ . So we see that bduproots $\leq 30(n)\geq\frac{1}{30}110^{n}4\tau$ .
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Proposition 10. $\frac{1}{30}1104\tau^{n}\leq duproots(n)\leq 2^{n}$for all $n>0$ .

Because Example 9 uses only rules from $\succ\leq 30$ , its bound holds also for bduproots$\leq 30$ . So for
this function we get a much sharper characterization of its growth.

Proposition 11. $\frac{1}{30}110^{n}\tilde{4}7\leq bdu\rho roots_{\leq 30}(n)\leq ma\cross\{812^{\underline{n}_{\overline{T}}\underline{3}},2^{n}\}$for all $n>0$ .

Wluile this upper bound is still enormous, we have at least achieved a bounding between
two exponential functions. So for this case the bounds are much tighter, though still rather
loose. For temary alphabet, the upper bound 6 $\cdot 1.379^{n}$ by Brandenburg can replace $2^{n}$ in both
Propositions.

3.3 Computi$ng$ the Number of Duplication Roots

Proposition 10 shows that the straight-forward approach to computing the function duproots
will lead to exponential runtime. But it seems reasonable to assume that it is not necessary to
actually compute the set $\sqrt[v]{w}$ to determine its size. Example 3 suggests that it suffices to identify
the number of critical overlaps in the original word. In this case, even linear time might suffice.
However, it remains to show that no new critical pairs can come up during a reduction, or at
least that their number can be foreseen by looking a the original word.
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