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Abstract

Let $A$ be a non-empty set. For a set $F$ of (multi-variable) functions on $A$ the centralizer of
$F$ is the set of functions which commute with every mernber of $F$ . A centralizing monoid on $A$

is the set of unary functions of some centralizer. Equivalently, it is the set of endomorphisms
of some algebra. Even for a small base set $A$ it is known to be hard to determine explicitly
such centralizing monoids.

In this paper we focus on maximal centralizing monoids and report all maximal centralizing
monoids on a three-element set $A$ . The result suggests that, in general, maximal centralizing
monoids are strongly related to special kinds of minimal clones.
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1 Introduction

Commutation is defined for multi-variable functions as a generalization of commutation for unary
functions. For a set $F$ of multi-variable functions the centralizer $F$ “ of $F$ is the set of functions
which commute with all members in $F$ .

The main object of this paper is a centralizing monoidl which is the unary part of a centralizer.
A set of functions which we call a witness determines a centralizing monoid. We focus on maximal
centralizing monoids and present relationship between maximal centralizing monoids and special
kinds of minimal clones on a three-element set $A$ . Unary constant functions, which necessarily
generate minimal clones, and majority functions generating minimal clones are shown to have
strong connection with maximal centralizing monoids on a three-element set.

In Section 2 basic definitions and properties concerning commutation and centralizers are given.
In Section 3 our fundamental result connecting maximal centralizing monoids and minimal clones
is presented. It is followed by Section 4 where the colnplete list of maximal centralizing monoids
on a three-element set is given. Finally, in Section 5, we give a general remark that all constant
functions correspond, as witnesses, to maximal centralizing monoids.

This paper is a report from the author‘sjoint work with Ivo G. Rosenberg, mainly from [MR 11]
as well as from [MR 09] and [MR 10].
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lIn our previous papers a centralizing monoid was called an endoprimal monoid. In order to avoid confusion we
use the term centralizing monoid in this paper.
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2 Basic Definitions and Properties

Let $A$ be a non-empty finite set. For an integer $n(>0)$ denote by $\mathcal{O}_{A}^{(n)}$ the set of all n-ary functions
defined over $A$ , i.e,, maps from $A^{n}$ into $A$ . Let $\mathcal{O}_{A}$ be the set of all functions defined over $A$ , i.e.,
$O_{A}= \bigcup_{n=1}^{\infty}\mathcal{O}_{A}^{(n)}$ . A function $e_{i}^{n}\in \mathcal{O}_{A}^{(n)}$ for $1\leq i\leq n$ is the i-th n-ary projection which is defined
by $e_{i}^{n}(a_{1}, \ldots, a_{i}, \ldots, a_{n})=a_{i}$ for every $(a_{1}, \ldots, a_{n})\in A^{n}$ . Denote by $\mathcal{J}_{A}$ the set of all projections
defined on $A$ .

2.1 Commutation and Centralizer
For functions $f\in \mathcal{O}_{A}^{(n)}$ and $g\in O_{A}^{(m)}$ we say that $f$ commutes with $g$ , or $f$ and $g$ commute, if

$f(g(^{t}c_{1}), \ldots,g(^{t}c_{7b}))$ $=$ $g(f(r_{1}), \ldots, f(r_{m}))$

holds for every $m\cross n$ matrix $M$ over $A$ with rows $r_{1},$ $\ldots,$ $r_{m}$ and columns $c_{1},$ $\ldots,$ $c_{n}$ . We write
$f\perp g$ when $f$ commutes with $g$ . The binary relation $\perp$ on $O_{A}$ is symmetric.

For $m=n=1,$ $f\perp g$ means that $f(g(x))=g(f(x))$ for every $x\in A$ , which is an ordinary
commutation for unary functions.

Definition 2.1 For $F\subseteq \mathcal{O}_{A}$ , the centralizer $F^{*}$ of $F$ is the set of all functions which commute
with every member of $F$ , that is,

$F^{*}=\{g\in O_{A}|g\perp f$ for all $f\in F\}$ .

For any subset $F\subseteq \mathcal{O}_{A}$ the centralizer $F^{*}$ is a clone. When $F=\{f\}$ we often write $f^{*}$ for $F^{*}$ .
Also, we write $F^{**}$ for $(F^{*})^{*}$ . The lnap $F\mapsto F^{**}$ is a closure operator on $O_{A}$ .

Lemma 2.1 For any $F,$ $G\subseteq \mathcal{O}_{A}$ the following holds:

(1) $F\subseteq F^{**}$

(2) $F\subseteq G\Rightarrow F^{*}\supseteq G^{*}$

(3) $F^{***}=F^{*}$

2.2 Centralizing Monoid
A subset $M$ of $\mathcal{O}_{A}^{(1)}$ is a monoid (transformation monoid) if it is closed with respect to composition
and contains the identity. A centralizing monoid is a monoid satisfying the following property.

Definition 2.2 For $M\subseteq O_{A}^{(1)},$ $M$ is $a$ centralizing monoid if $M$ satisfies

$M=$ $M^{**}\cap O_{A}^{(1)}$ .

In other words, a centralizing monoid is the unary part of some centralizer as the next lemma
shows.

Lemma 2.2 For any $M\subseteq O_{A}^{(1)},$ $M$ is $s$ centralizing monoid if and only if
$M=F^{*}\cap O_{A}^{(1)}$

for some $F\subseteq O_{A}$ .
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Proof. Only-if-part is trivial. In order to prove if-part, let $M$ satisfy $M=F^{*}\cap O_{A}^{(1)}$ for some
$F\subseteq \mathcal{O}_{A}$ . It follows that $M\subseteq F^{*}$ . Applying $*$ -operator twice to both sides and appealing to
Lemma 2.1 (2), (3) we have $M^{**}\subseteq F^{*}$ , from which we get $M^{**}\cap \mathcal{O}_{A}^{(1)}\subseteq F^{*}\cap \mathcal{O}_{A}^{(1)}=M$ . On
the other hand, we have $M\subseteq M^{**}$ by (1) of Lemma 2.1. Taking the intersection with $O_{A}^{(1)}$ we
obtain $M=M\cap O_{A}^{(1)}\subseteq M^{**}\cap \mathcal{O}_{A}^{(1)}$ . Hence, we have $M=M^{*r}\cap \mathcal{O}_{A}^{(1)}$ as desired. $\square$

A particular case where $m=1$ in the preceding definition gives the commutation in a familiar
form, that is, $f\perp g$ for $f\in O_{A}^{(n)}$ and $g\in O_{A}^{(1)}$ means that

$f(g(a_{1}), \ldots,g(a_{n}))$ $=g(f(a_{1}, \ldots, a_{n}))$

holds for every $(a_{1}, \ldots, a_{n})\in A^{n}$ .
For an algebra $\mathcal{A}=(A;F)$ and a map $\varphi$ : $Aarrow A$ , i.e., $\varphi\in \mathcal{O}_{A}^{(1)},$

$\varphi$ ls an endomorphism of $\mathcal{A}$

if
$f(\varphi(x_{1}), \ldots, \varphi(x_{n}))=\varphi(f(x_{1}, \ldots,x_{n}))$

holds for every $f\in F$ and all $(x_{1}, \ldots , x_{n})\in$ $A^{\iota}$ . In other words, $\varphi$ is an endomorphism of
$\mathcal{A}=(A;F)$ if and only if $\varphi\perp f$ for all $f\in F$ , i.e., $\varphi\in F^{*}$ . This means that a centralizing monoid
is the set of all endomorphisms of some algebra.

2.3 Witness Lemma
The if-part of Lemma 2.2 may be expressed in the following way. We call it the Witness Lemma.

Lemma 2.3 (Witness Lemma) Let $S$ be a non-empty subset of $\mathcal{O}_{A}$ . For a monoid $M\subseteq \mathcal{O}_{A}^{(1)}$ ,
suppose the following conditions (i) and (ii) hold:

(i) For any $f\in M$ and any $u\in S,$ $f$ and $u$ commute, i. e., $f\perp u$ .

(ii) For any $g\in O_{A}^{(1)}\backslash M$ there ecists $w\in Ssuch$ that $g$ does not commute with $w$ , i. e., $g$ A $w$ .

Then $M$ is a centralizing monoid.

A subset $S$ in the lemma will be called a witness for a centralizing monoid $M$ . We denote by
$M(S)$ the centralizing monoid $M$ with $S$ as its witness. $(i.e., M(S)=S^{*}\cap \mathcal{O}_{A}^{(1)}.)$ In particular,
when $S=\{f\}$ we write $M(f)$ instead of $M(\{f\})$ .

The following basic properties are easy to prove. (Recall that we assumed that the basic set $A$

is finite.)

Proposition 2.4 (1) Every centmlizing monoid $M$ has a witness.

(2) Moreover, every centralizing monoid $M$ has $a$ finite witness, that is, for every centralizing
monoid $M$ there $exist,s$ a finite subset of $O_{A}$ which is a witness of $M$ .

3 Maximal Centralizing Monoid and Minimal Clone
The purpose of this and the following sections is to study the “top“ part of the lattice of centralizing
monoids.

Definition 3.1 A centralizing monoid $M$ is maximal if $O_{A}^{(1)}$ is the only centralizing monoid
properly containing $M$ .
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Proposition 3.1 Every maximal centmlizing monoid has $a$ singleton witness, that is, for every
maximal centralizing monoid $M$ there exists $u(\in \mathcal{O}_{A})$ such that $M=M(u)$ .

For the proof the reader is referred to [MR 11].

Now, maximal centralizing monoids are strongly related to minimal functions.

Definition 3.2 A function $f(\in \mathcal{O}_{A})$ is called $a$ minimal function if
(i) $f$ genemtes a minimal clone $C$ , and

(ii) $f$ has the minimum arity among functions genemting $C$ .

Theorem 3.2 Every maximal centmlizing monoid has a witness which is $a$ minimal function, that
$is$, for any maximal centmlizing monoid $M$ there exists a minimal function $f(\in \mathcal{O}_{A})$ such that

$M=M(f)$ .

Proof By Proposition 3.1, a maximal centralizing monoid has a singleton witness, that is, there
exists $g\in \mathcal{O}_{A}$ such that $M=M(g)$ . It is well-known that ovcr a finite basc set $A$ every non-trivial
clone $C$ $(i.e., C\neq \mathcal{J}_{A})$ contains a minimal clone. Hence, there exists $f\in O_{A}$ which satisfies the
following.

(i) $(f\rangle$ is a minimal clone.

(ii) $\{f\rangle\subseteq\{g\rangle$ $(\Leftrightarrow f\in\{g\})$

It is easy to,see by the definition of commutation that. in general, two conditions $u\in\langle v\}$ and
$v\perp w$ imply $u\perp w$ for any $u,$ $v,$ $w\in O_{A}$ . Equivalently, $u\in\langle v\rangle$ implies $v^{*}\subseteq u^{*}$ for any $u,$ $v\in \mathcal{O}_{A}$ .
Hence, for $f$ and $g$ given above, it holds that $g^{*}\subseteq f^{*}$ . Taking the unary part we get

$M(g)=g^{*}\cap \mathcal{O}_{A}^{(1)}\subseteq f^{*}\cap O_{A}^{(1)}=M(f)$

Since $M(g)$ is a maximal centralizing monoid, by assumption, it holds either

$M(g)=M(f)$ $(i.e., M=M(f))$
or

$M(f)=\mathcal{O}_{A}^{(1)}$ .
However, in [MR 05], we proved $(S_{A}\cup$ CONST$)^{*}=\mathcal{J}_{A}$ for any $A$ with $|A|>2$ , where $S_{A}$ is the
symmetric group on $A$ and CONST is the set of unary constant functions on A. (Note: $\mathcal{J}_{A}$ is the
clone of projections.) This implies $(\mathcal{O}_{A}^{(1)})^{*}=\mathcal{J}_{A}$ . Therefore, $M(f)=\mathcal{O}_{A}^{(1)}$ cannot happen for a
minimal function $f$ , and so we get

$M=M(f)$ .
This completes the proof. $\square$

4 The Case on a Three-Element Set
In this section we present all maximal centralizing monoids on a three-element set $A$ , namely, on
$A=\{0,1,2\}$ . In the sequel, we write $E_{3}=\{0,1,2\}$ .
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4.1 Minimal Clones on $E_{3}$

The complete list of minimal clones on $E_{3}$ was given by B. Cs\’ak\’any (1983).

Proposition 4.1 $([Cs83])$ On $E_{3}$ there are 84 minimal clones. The number of minimal clones
generated $|)\uparrow/each$ of five $t\uparrow/pes$ of minimal functions is as follows:

Unary functions : 13 (4)

Binary idempotent functions : 48 (12)

Ternary lnajority functions : 7 (3)

Ternary semiprojections : 16 (5)

The numbers in the parentheses indicate the number of conjugate classes. (Note that the fifth type
of minimal functions does not appear on $E’;.$ )

For each minimal function $f\in O_{3}^{(1)}$ , let $\{f\}$ be a witness and construct a centralizing monoid
$M(f)$ . Then some of such centralizing monoids are maximal while some are not.

4.2 Minimal Functions corresponding to Maximal Centralizing Monoids
We have explicitly determined all centralizing monoids on $E_{3}$ which have minimal functions as
their witnesses. We shall not present the full list of them here due to the lack of space. The
complete list will appear elsewhere.

By inspecting all centralizing monoids having minimal functions as their witnesses, we have
determined all maximal centralizing monoids on $E_{3}$ .

Proposition 4.2 On the three-element set $E_{3}$ , there are 10 maximal centralizing monoids. More
precisely, there are 3 maximal centralizing monoids having unary constant functions as their wit-
nesses and 7 maximal centmlizing monoids having temary majority functions which genemte $\min-$

imal clones as their witnesses.

Recall that there are exactly 7 minimal clones generated by ternary majority functions. Hence
every minimal $c1$on$e$ generated by a ternary majority function corresponds to a maximal centralizing
monoid.

Furthermore, it should be noted that some pairs of minimal functions serve as witnesses of the
same maximal centralizing monoid.

The following is the complete list of minimal functions on $E_{3}$ which give maximal centralizing
monoids as their witnesses.

(I) Unary constant functions
$c_{i},(x)=i$ for any $x\in E_{3}$ $(i=0,1,2)$

(II) Binary idempotent function
$b_{624}(x, y)$ $=$ $\{\begin{array}{ll}x if x=yz \end{array}$

if $|\{x, y, z\}|=3$

(III) Ternary majority functions (showing the values only for mutually distinct $x,$ $y$ and $z.$ )

$m_{0}(x, y, z)$ $=$ $0$

$m_{364}(x, y, z)$ $=$ 1
$m_{728}(\prime x, y, z)$ $=$ 2

if $|\{x, y, z\}|=3$

if $|\{x, y, z\}|=3$

if $|\{x, y, z\}|=3$
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$m_{109}(x, y, z)$ $=$ $\{\begin{array}{l}01\end{array}$

$m_{473}(x, y, z)$ $=$ $\{\begin{array}{l}12\end{array}$

$m_{510}(x, y, z)$ $=$ $\{\begin{array}{l}20\end{array}$

if $(x, y, z)\in\sigma$

if $(x, y, z)\in\tau$

if $(x, y, z)\in\sigma$

if $(x, y, z)\in\tau$

if $(x, y, z)\in\sigma$

if $(x, y, z)\in\tau$

$m_{624}(x, y_{\tilde{k}})$ $=$ $y$ if $|\{x, y, z\}|=3$

Here the sets $\sigma$ and $\tau$ of triples are defined as follows:

$\sigma$ $=$ $\{(0,1,2), (1,2,0), (2,0,1)\}$

$\tau$ $=$ $\{(0,2,1), (1,0,2), (2,1,0)\}$

(IV) Ternary semiprojections

$p_{76}(x, y, z)$ $=$ $\{\begin{array}{l}z021\end{array}$

$p_{332}(x, y, z)$ $=$ $\{\begin{array}{l}z102\end{array}$

$p_{684}(x, y, z)$ $=$ $\{\begin{array}{l}z210\end{array}$

$p_{424}(x, y, z)$ $=$ $\{\begin{array}{l}zx\end{array}$

if $|\{x, y, z\}|\leq 2$

if $|\{x, y, z\}|=3$ and $z=0$

if $|\{x, y, z\}|=3$ and $z=1$

if $|\{x, y, z\}|=3$ and $z=2$

if $|\{x, y, z\}|\leq 2$

if $|\{x, y, z\}|=3$ and $z=0$
if $|\{x, y, z\}|=3$ and $z=1$

if $|\{x, y, z\}|=3$ and $z=2$

if $|\{x, y, z\}|\leq 2$

if $|\{x, y, z\}|=3$ and $z=0$

if $|\{x, y, z\}|=3$ and $z=1$

if $|\{x, y, z\}|=3$ and $z=2$

if $|\{x, y, z\}|\leq 2$

if $|\{x.y, z\}|=3$

We present the list of all maximal centralizing monoids on $E_{3}$ . Recall that $M(f)$ means the
centralizing monoid having $f$ as its witness. The set of unary functions is given in Table 1.

Table 1: Unary Functions in $\mathcal{O}_{3}^{(1)}$
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Proposition 4.3 There are 10 maxtmal centmlizing monoids on $E_{3}$ , which are explicitly given as
follows:

$M(c_{0})$ $=$ $\{s_{1}, s_{2}\}\cup\{j_{1}, j_{2}, j_{5}, u_{1}, u_{2}, u_{5}\}\cup\{c_{0}\}$

$M(c_{1})$ $=$ $\{s_{1}, s_{6}\}\cup\{j_{1}, j_{\backslash !}, j_{5}, v_{0},v_{2},v_{4}\}\cup\{c_{1}\}$

$M(c_{2})$ $=$ $\{s_{1}, s_{3}\}\cup\{u_{2}, u_{4},u_{5}, v_{2}, v_{4}, v_{5}\}\cup\{c_{2}\}$

$M(m_{0})$ $=$ $\{s_{1}, s_{2}\}\cup\{j_{1},j_{2},j_{:\}},j_{4}, u_{1}, u_{2},u_{3}, u_{4}, v_{1}, v_{2},v_{3},v_{4}\}\cup\{c_{0},c_{1},c_{2}\}$

$M(m_{364})$ $=$ $\{s_{1}, s_{6}\}\cup\{j_{0},j_{2},j_{3},j_{5}, u_{0}, u_{2}, u_{3}, u_{5}, v_{0}, v_{2}, v_{3}, v_{5}\}\cup\{c_{0}, c_{1}, c_{2}\}$

$M(m_{728})$ $=$ $\{s_{1}, s_{3}\}\cup\{j_{0},j_{1},j_{4},j_{5}, u_{0}, u_{1}, u_{4}, u_{5}, v_{0},v_{1},v_{4}, v_{5}\}\cup\{c_{0}, c_{1}, c_{2}\}$

$M(m_{109})$ $=$ $\{s_{1}, s_{3}\}\cup\{j_{2},j_{3}, u_{2},u_{3}, v_{2},v_{3}\}\cup\{c_{0}, c_{1}, c_{2}\}$

$M(m_{473})$ $=$ $\{s_{1}, s_{2}\}\cup\{j_{0},j_{5}, u_{0}, u_{5}, v_{0}, v_{5}\}\cup\{c_{0}, c_{1}, c_{2}\}$

$M(m_{510})$ $=$ $\{s_{1}, s_{6}\}\cup\{j_{1},j_{4}, u_{1}, u_{4}, v_{1}, v_{4}\}\cup\{c_{0}, c_{1}, c_{2}\}$

$M(m_{624})$ $=$ $\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\}\cup\{c_{0}, c_{1}, c_{2}\}$

Remark. Four of the maximal centralizing monoids given above, namely, $M(m_{109}),$ $M(m_{473}),$ $M(m_{510})$

and $M(m_{624})$ , have other minimal functions as their witnesses.

$M(m_{109})$ $=$ $M(p_{332})$

$M(m_{473})$ $=$ $M(p_{76})$

$M(n\iota_{510})$ $=$ $M(p_{684})$

$M(m_{624})$ $=$ $M(b_{624})$ $=M(p_{424})$

To summarize, (i) there are 10 maximal centralizing monoids on $E_{3}$ , and (ii) there are 15 minimal
clones on $E_{3}$ whose generators (minimal functions) serve as witnesses of maximal centralizing
monoids.

5 Constant Witness
In the previous section we have observed that, on a three-element set, every unary constant func-
tion, which is necessarily a minimal function, and every ternary majority and minimal function
serves as a witness for a maximal centralizing monoid. For unary constant functions this phe-
nomenon can be extcnded to thc general $C\Delta t^{\backslash }$ , i.e., the caee for any finite set $A$ with $|A|>2$ .

Theorem 5.1 Let $k>2$ be an integer. For any constant function $c$ on $E_{k},$ $M(c)$ is a maximal
centmlizing monoid.

Here we present only a rough sketch of the proof. For the details of the proof the reader is
referred to [MR 11].

Sketch of the Proof. Without loss of generality, we assume $c=c_{0}(=$ unary constant function
taking value $0$ ). The proof will come after a series of lemmas.

Lemma 1 $M(c_{0})=($Pol(0) $)^{(1)}$

Lemma 2 (CONST) $*$

$=$ IDEMP

Lemma 3 For $f\in \mathcal{O}_{k}$ , if $f\in$ $($ Pol(0) $)^{*}\cap$ IDEMP then $f$ is conservative.
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Note: $f$ is conservative if $f(a_{1}, \ldots , a_{n})\in\{a_{1}, \ldots, a_{n}\}$ for all $a_{1},$ $\ldots$ , $a_{n}\in E_{k}$ .
Lemma 4 $($Pol(0) $)^{*}\cap$ IDEMP $=$ $\mathcal{J}_{k}$

Lemmas 1 and 2 are trivial. Lemma4 is the main part of the whole proof. It is worth mentioning
that for the proof of Lemma 4 we need three or more elements in the base set $E_{k}$ .

The proof of Theorem 5.1 proceeds as follows.
For any $u\in O_{k}^{(1)}\backslash M(c_{0})$ let $M$ be a monoid such that

$M\supseteq M(c_{0})\cup\{u\}$ .

Since $M(c_{0})=$ Pol(0) , the function $u$ maps $0$ to some element in $E_{k}$ other than $0$ . Then it is
easy to see that $M$ must contain all constant functions. Hence we have

$M\supset M(c_{0})\cup$ CONST.

It follows that
$M^{*}\subseteq M(c_{0})^{*}\cap$ CONST $*$

which implies, by Lemmas 1 and 2, that

$M^{*}\subseteq(Po1(0)^{(1)})^{*}\cap$ IDEMP.

Since $M^{*}$ is a clone and contains $J_{k}$ it follows by Lemma 4 that

$M^{*}=\mathcal{J}_{k}$ .

By applying $*$-operator to both sides, we obtain

$M^{**}=\mathcal{J}_{k}^{*}(=O_{k})$ .

It follows that
$M^{**}\cap O_{k}^{(1)}=\mathcal{O}_{k}^{(1)}$ .

Therefore, if $M$ is a celltralizitl$g$ rnonoid then, by definition,

$M(=M^{**}\cap O_{k}^{(1)})=\mathcal{O}_{k}^{(1)}$ .

This concludes that $M(c_{0})$ is a maximal centralizing monoid. $\square$

6 To conclude
In the previous section we asserted that every constant function serves as a witness of some maximal
centralizing monoid. We present two other general open problems, both of which were verified to
hold for the case of the three-element set $E_{3}$ .

Ql Let $k\geq 3$ be arbitrary. Does every ternary majority minimal function on $E_{k}$ serve as a
witness of some maximal centralizing monoid ?

Q2 Let $k\geq 3$ be arbitrary. Does every maximal centralizing monoid on $E_{k}$ have either a con-
stant function or a ternary majority function as its witness ?
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