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Abstract

The purpose of the present paper is to give some univalence conditions for a broad class
of analytic functions. Moreover, we consider some special cases as corollaries of the main
results.
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1. Introduction

[e.0]
It is well known that if f(2) = 2+ ) anz™ is analytic in D = {2]]z| < 1} and we
=2

suppose that f(z) satisfies one of the following conditions

Ref/(z) >0 in D (1.1)
Zf”(Z) in
1+Re O 0 D, (1.2)
zf'(2) :
Re @) >0 in D, (1.3)
rRe L) S in D, (1.4)

g(z)



z2f'(2) :
Re @) >0 in D, (1.6)

o0
where g(z) = z + Y_ b,2" is analytic and satisfies the condition
n=2

7
Re29 D) S0 D
g(2)

or g(z) is starlike in D, 0 < (8 and ¢ is analytic on f(D) with ¢(0) = 0 and Re ¢'(0) >
0, then f(z) is univalent in D and we call f(2) when f(z) satisfies the condition (1.1),
(1.2), (1.3), (1.4), (1.5) and (1.6) as a Noshiro-Warschawski function, a convex function, a

starlike function, a close-to convex function, a Bazilevi¢ function of type 8 and ¢-like function,

respectively.
It is the prupose of the present paper to introduce a broad class of analytic functions and

to investigate some sufficient conditions for univalence of the class.

2. Main Results

o
Theorem 1. Let f(z) = z+ Y an2™ be analytic in D and suppose that

n=2

z2f'(2)

Re ————>0 inD,

p(f(2),2)
where o(f(2), z) is analytic in (f(D), D) and

d arg o(w, re')

T >0 in (f(D),D)

forz=re® 0<r<1and0<60<2n. Then f(2) is univalent in D.
Proof. If there exists a point zg, |29| < 1 such that
f () is univalent for |2z| < 2|

and
f(z) is not univalent for |z| < |20},

then there exists a point z1, 20 # 21, |20| = |21], 20 = |z0}ei®, z1 = |zp|e®®* and 0 < 6y < 61 <
27 for which
f(z0) = f(=1),



as we see in the following figures.

L
M

C, = {z]|z] = |20, z = |20]e?® and 6y < 0 < 61}.

Then from the hypothesis, we have

- = /Czdargdf(z) = /Czdarg%z—)-dz

= /zdarg(a(z?%%)Jr/Czdarg(%f) +/Czdarg<p(f(2),Z)

> — 7w+ (arg o(f(21), 21) — arg(f(20), 20))
= — w4+ (arg p(f(=0), 21) — arg (f(20), z0))
_ _F_'_/ol darg p(f(z0), |20l€”) .o

[

dé

0
> — .

This is contradiction and so, we completes the proof.
cO
Corollary 1. Let f(z) =z+ )_ anz™ be analytic in D and suppose that
n=2
/
o(f(2),2)

where 4
d arg o(w, re')
de

and o(f(2), 2) satisfies one of the following conditions

>0 in (f(D),D)

o(f(2),2) = z =re'® [5, 8],

(2.1)
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o(f(2), 2) = 2f'(2) = re“ f'(e¥) [7,
p(f(2), 2) = f(2) = f(re®) (4],
o(f(2), 2) = g(z) = g(re) 2, 3, 6],

o(f(2), 2) = p(w,re’) = w'Pg(2)f = w'Pg(re) [,

94

(2.2)
(2.3)
(2.4)
(2.5)

. [o. o]
wherez =re®, 0<r<1,0<0<2r,0< 3 and g(z) = 2+ Y bpz™ is analytic and starlike

. n=2
n D or

/
Rezg(z) >0 inD.
9(2)
Then f(z) is univalent in D.

Proof. For the case (2.1), from hypothesis we have

Re—fﬂ—(i=Rez—f;@=Ref’(z)>O in D

©(f(2), 2)

and 0

dargp(w,re”’) df _ .

— —@_1>0 in D.
Applying Theorem 1, f(2) is univalent in D.

For the case (2.2), we have
/ !
(@) _po# ) 150 mp

p(f(2),2) T z2f'(2)
and

dargp(w,re’) _ dargzf'(z) _ darg(f) | dargdf(2)

do - do T de de
_ dargdf(z) zf"(z) .
= 20 =14 Re 702) 0 inD.

This shows that f(z) is convex and univalent in D.
For the case (2.3), we have

) o 2P
@) TRy S0 P

and
i0 7

dé de f(z)
This shows that f(z) is starlike in D.




For the case (2.4), we have

2@ _ g, )

()7 gy >0 P

and
darg p(w,re’)  dargg(z) o 29'(2) )
T = 20 = Re 02 >0 in D.

This shows that f(z) is univalent in D and close-to-convex in D.

For the case (2.5), we have

22 _pe 2D 4 up

e(f(z),2) " f(2)1Pg(2)P
and
dargp(w,re®)  dargw'Pg(re?)?  dargg(re?) zg'(2) )
T2 = a9 =Py~ =FRe—ry >0 WD
where 0 < 3. This shows that f(z) is univalent in D and f(2) is Bazilevi¢ function of type
0<p. O

If f(2) is a Bazilevi¢ function of type 3, then 8 must be a positive real number. But we

can obtain the following theorem.

o=}
Theorem 2. Let f(z) = 2+ 3 anz™ be analytic in D and suppose that

n=2

z2f'(2) L
argW < Ea in D,

o0

where 0 < a <1, <0,a—28<1andg(z)=2+ ) b,2" is analytic and starlike in D.
n=2

Then f(z) is univalent in D.

Proof. If there exists a point zp, |2p| < 1 such that
f(2) is univalent for |z| < |2]

and

f(2) is not univalent for |z| < |z],

then there exists a point 23, 2o # 21, |21] = |20|, 20 = |20/€%, 21 = |20]€®®* and 0 < Gy < 6; <
27 for which
fz0) = f(21).
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Then the image picture under the mapping w = f(z) for |z| = |z| is the same as the picture
of the proof of Theorem 1.
Let

C,={z||z| = 2|, z= |zolew and 6y < 6 < 61},

C; = {zllz| = |=l} - C;,

and

I, = f(C2).

Then we have

3r = da.rgdw:/ dargdf(z)
., I

w

. z2f'(2) dz -

= /C;darg (W) +/C;darg (7) + Cédargf(z)l 5+/C; dargg(z)?
= /C;darg (—'——'——f(z)sz—g;)(z)ﬁ) +(1-p) /C;da.rgf(z) +,6/C;dargg(z)
<ar+(1-p08)2r=72+a-20) < 3n.

This is a contradiction and so, we completes the proof. O
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