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ON THE COEFFICIENTS OF THE RIEMANN MAPPING
FUNCTION FOR THE COMPLEMENT OF
THE MANDELBROT SET

HIROKAZU SHIMAUCHI

ABSTRACT. We denote the Mandelbrot set by M, the Riemann sl)here by (f,‘ and
the unit disk by D. Let f : D - C\{l/2:2€ M} and ¥ :C\D - C\ M
be the Riemann mapping functions and let their expansions be z + Z;;z A z™
and z + Efn":o bmz~™, respectively. We consider several interesting properties
of the coefficients a,, and b,,. The detailed studies of these coefficients were
given in [1, 3, 4, 5, 8]. This is a partial summary of [11], which contains Zagier’s
observations (see [1]).

1. INTRODUCTION

For c € C, let P,(z) := 22+ cand P°™(2) = P,(P(... P:(z)...)) be the n-th itera-
tion of P,(z) with P?0(z) = 2. In the theory of one-dimensional complex dynamics,
there is a detailed study of the dynamics of P.(z) on the Riemann sphere C. For each
fixed c, the (filled in) Julia set of P,(z) consists of those values z that remain bounded
under iteration. The Mandelbrot set M consists of those parameter values ¢ for which
the Julia set is connected. It is known that M = {¢ € C: {P?"(0)}32, is bounded},
compact and is contained in the closed disk of radius 2. Furthermore, M is connected.
However, its local connectivity is still unknown, and there is a very important con-
jecture which states that M is locally connected (see [2]). N

Let G ¢ C be a simply connected domain with wy € G. Furthermore let G’ C C
be a simply connected domain with co € G’ which has more than one boundary
point. Due to the Riemann mapping theorem there exist unique conformal mappings
f:D — G such that f(0) =0 and f'(0) > 0 and g : D* — G’ such that g(c0) = o0
and lim,_,o g(2)/z > O respectively, where D := {z € C : || < 1} and D* := C \ D.
We call f (and g) the Riemann mapping function of G (and G').

Douady and Hubbard demonstrated in [2] the connectedness of the Mandelbrot
set by constructing a conformal isomorphism @ : C \ M — D*. Note that ¥ := &~!
is the Riemann mapping function of C \ M. We recall a lemma of Carathéodory.

Lemma 1 (Carathéodory’s Continuity Lemma). Let G C Coea simply connected
domain and a function f maps D conformally onto G. Then f has a continuous

extension to D if and only if the boundary of G is locally connected.

This implies if ¥ can be extended continuously to the unit circle, then the Man-
delbrot set is locally connected. This is the motivation of our study.

Jungreis presented an algorithm to compute the coeflicients b,, of the Laurent
series expansion of ¥(z) at oo in [7].
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Several detailed studies of b,, are given in [1, 3, 4, 8] and remarkable empirical
observations are mentioned in [1] by Zagier. Especially a formula for b,, is given in
[3]. Many of these coefficients are shown to be zero and infinitely many non-zero
coefficients are determined.

In addition, Ewing and Schober [5] studied the coefficients a,, of the Taylor series
expansion of the function f(z) := 1/¥(1/z) at the origin. Note that f is the Riemann
mapping function of the bounded domain C\ {1/z : z € M} and f has a continuous
extension to the boundary if and only if the Mandelbrot set is locally connected.

In [12], Komori and Yamashita studied a generalization of by,. Let Py (2) = 2%+c¢
with an integer d > 2 and let M := {c € C: {P;2(0)}7%, is bounded }. Construct-
ing the Riemann mapping function ¥4 of C \ My, they analyzed the coeflicients bg
of the Laurent series at co.

The author has been studying by m and the coefficients agm of the Taylor series
at the origin of the function f;(2) := 1/¥4(1/2) in [11].

In [12] and [11], there is a generalization of the results for d = 2, propositions for
d > 3 and a verification of Zagier’s observations.

In this paper, we focus on the case d = 2. Especially we mention the observations
by Zagier and the asymptotic behavior of b,,.

2. COMPUTING THE LAURENT SERIES OF ¥

Now we introduce how to construct ®. This is established by Douady and Hub-
bard (see [1]).

Theorem 2. Let c € C\ M. Then

do(2) = zH <1 + PG )z)#

is well-defined on some neighborhood of oo which includes c. Moreover, ®(c) := ¢.(c)

maps @\M conformally onto C\D, and satisfies ®(c)/c = 1 as ¢ = 00. Thus C\M
s simply connected and M is connected.

Set A,(c) = P:™(c) for simplicity. Applying the following proposition, we can
calculate the coefficients b,, of V.

Proposition 3 (see [1]).
n 1
An(P(2)) = 2% + O(=1)-

Jungreis [7] presented an algorithm to compute b,, and calculated the first 4095
numerical values of b,,,. Bielefeld, Fisher and Haeseler calculated the first 8000 terms
in [1].

Ewing and Schober [4] computed the first 240000 numerical values of b,,, using
an backward recursion formula in the following way.

Let n be a non-negative integer, and let

(1) An(¥(2) = iﬂn,mz”‘m for |z| > 1.

m=0



Using proposition 3, Brm =0 forn > 1 and 1 < m < 2" — 2. Furthermore
Bro = 1for all n € NU {0}. Since Po( (2)) = ¥(z), obviously Bom = bm—; for

m > 1. Applying the recursion A, (z) = Ap-1(2)? + z to equation (1), we get
> oo m oo
Z /Bn,mz2 = Z Zﬁn—l,kﬂn-l,m—k‘z2 -m + Z 60,m-—2"—lz2 .
m=0 m=0 k=0 m=2"—1

For m > 2™ — 1, we compare the coefficients of the right and left-hand side. Hence

m
,Bn,m = Z ﬁn~l,k;8n—l,m—k + ﬁo,m—Z"—-L
=0
Since f,-10 =1and B,m =0forn >1and 1 < m < 2" — 2, we obtain the
following formula:
m—2"+41
,Bn,m = 26'n—1,m + Z 6n—1,k5n—-1,7n—k + ﬁO,m—-Z"-—l for n > 1 and m 2 2" - 1.
k=2n—1
This is the forward recursion to determine B, ,, in terms of 8;; with j < n. A
corresponding backward recursion formula is derived to be

1 m—-2"+1
ﬁn—l,m = § (Bn,m - Z 5n—1,k,3n~1,m—-k - BO,m—-?"—l) .

k=2n~-1
The formula gives B, in terms of §;, with j > n,k < m. If n is sufficiently
large, then 8,m = 0 for a fixed m. Hence, using this backward recursion formula,
we can determine §3;,, for all j.

Example 4. Considering bo = ,30’1 = (O - ,80,0)/2 = "‘1/2, bl ,602 (0 ,801
Bo1)/2=1/8, ... yields
(z)_z_.]L+_l.__];_+__:l'_5_+.9._ 47 - ! + 987 4
2 8z 422 12823 2% 1024z° 1628 3276827

One can make a program for this procedure and derive the exacts value of b,,,
because b,, is a binary rational number.

Theorem 5 (see [4]). Ifn > 0 and m > 1, then 22™3-2"""g _ is an integer. In
particular, 22™*1b,, is an integer.

The coefficient a,, is also a binary rational number, since
m-—1

A = —bpo — Z ajbp—1-; for m > 2.
=2

Remark 6. In [1] Zagier made an empirical observation about the growth of the
denominator of b,,, which we are going to mention in the next section.

Komori and Yamashita computed the exact values for the first 2000 terms in [12].
In [11], the autor made a program to compute the exact values of b,, by using C
programing language with multiple precision arithmetic library GMP (see [6]), and
the first 30000 exact values of b,, were determined.
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3. OBSERVATIONS BY ZAGIER

Based on roughly 1000 coefficients, Zagier made several observations. In this
paper, two of them are mentioned. We write m = mo2" with n > 0, mg is odd.

Observation 7 (see [1]). It is b, = 0, if and only if mo < 2"+ - 5.

One direction of this statement has been proven in [1] and separately from that
in [8].

Theorem 8. Ifn > 2 and my < 2"t! — 5, then b, = 0.

It is still unknown whether the converse of this theorem is true. In [4], the
only coefficients which have been observed to be zero are those mentioned in this
theorem. In this publication Ewing and Schober proved the following theorem about
zero-coefficients of an,.

Theorem 9 (see [5]). If3 < mo < 2™t!, then a, = 0.

The truth of the converse of this theorem is unknown. They reported that their
computation of 1000 terms of a,, has not produced a zero-coefficient besides those
indicated in theorem 9.

Now we consider the growth of the power of 2. For every non-zero rational number
z, there exists a unique integer v such that z = 2Yp/q with some integers p and ¢
indivisible by 2. The 2-adic valuation 12 : Q \ {0} — Z is defined as:

(z) =v.
We extend v, to the whole rational field Q as follows,

v(z) = {vz(a:) for z € Q\ {0}

+00 forz = 0.

Due to theorem 5, if b,, # 0 then b,, = C/Q‘V(b'"), where C is an odd number. Note
that v((2m + 2)!) < 2m + 1 for a non-negative integer m.

Observation 10 (see [1]). It is —v(bm) < v((2m +2)!) for all m. Equality attained
exactly when m is odd.

In [12] a theorem for by, which includes this observation was presented. However,
d has to be prime and not an arbitrary integer as it was originally stated.

Corollary 11. It is —v(by,) < v((2m + 2)!) for all m. Equality attained ezactly
when m is odd.

For a,, we have the following:

Corollary 12. [t is —v(an) < v((2m — 2)!) for all m. Equality attained ezactly
when m is odd.

The generalization of these result is given in [11].



4. OBSERVATION FOR THE ASYMPTOTIC BEHAVIOR OF b,,

The result which Ewing and Schober obtained shows that the inequality |b,,| <
1/m holds for 0 < m < 240000. If there exist positive constants ¢ and K such that
the inequality |b,,| < K/m!*¢ holds for any natural number m, this would imply
its absolute convergence and give that the Mandelbrot set is locally connected.
Furthermore, such a bound imply Hélder continuity (see [1]). However it is not
valid because of the following claim given in [1].

Claim 13. There is no Hélder continuous extension of ¥ to D.

On the other hand, the coefficients b,, satisfying |b,,| > 1/m have not been found
yet.

The author focused on the local maximum of |b,,| and considered the period of
Jungreis’ algorithm. The observation below for the behavior of b,, can be made.

Observation 14 (see [11]). For fixed 1 < n < 7, the maximum value of |byzn_j)|,
b22a_1], ..., |Dgatns1y_g| is |boan_s|. Furthermore, the sequence |byz_j)|, |bas_al, [bos_a,
“++ ,|boen_s|, - - - is strictly monotonically decreasing.

It is still unknown whether it would be true for every n, and the behavior of
{|bg2n_s|} is the material of further research.
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