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ABSTRACT. We denote the Mandelbrot set by $\mathbb{M}$ , the Riemann sphere by $\hat{\mathbb{C}}$ and
the unit disk by D. Let $f$ : $Darrow C\backslash \{1/z : z\in M\}$ and $\Psi$ : $\hat{\mathbb{C}}\backslash \overline{D}arrow\hat{\mathbb{C}}\backslash M$

be the Riemann mapping functions and let their expansions be $z+ \sum_{m=2}^{\infty}a_{m}z^{m}$

and $z+ \sum_{m=0}^{\infty}b_{m}z^{-m}$ , respectively. We consider several interesting properties
of the coefficients $a_{m}$ and $b_{m}$ . The detailed studies of these coefficients were
given in [1, 3, 4, 5, 8]. This is a partial summary of [11], which contains $Za\mathscr{D}er$ ’s
observations (see [1]).

1. INTRODUCTION

For $c\in \mathbb{C}$ , let $P_{c}(z)$ $:=z^{2}+c$ and $P_{c}^{on}(z)=P_{c}(P_{c}(\ldots P_{c}(z)\ldots))$ be the n-th itera-
tion of $P_{c}(z)$ with $P_{c}^{00}(z)=z$ . In the theory of one-dimensional complex dynamics,
there is a detailed study of the dynamics of $P_{c}(z)$ on the Riemann sphere $\hat{\mathbb{C}}$ . For each
fixed $c$ , the (filled in) Julia set of $P_{c}(z)$ consists of those values $z$ that remain bounded
under iteration. The Mandelbrot set $M$ consists of those parameter values $c$ for which
the Julia set is connected. It is known that $\mathbb{M}[=$ { $c\in \mathbb{C}$ : $\{P_{c}^{on}(0)\}_{n=0}^{\infty}$ is bounded},
compact and is contained in the closed disk of radius 2. Furthermore, $M$ is connected.
However, its local connectivity is still unknown, and there is a very important con-
jecture which states that $R\mathbb{I}$ is locally connected (see [2]).

Let $G\subsetneq \mathbb{C}$ be a simply connected domain with $w_{0}\in G$ . Furthermore let $G’\subsetneq\hat{\mathbb{C}}$

be a simply connected domain with $\infty\in G’$ which has more than one boundary
point. Due to the Riemann mapping theorem there exist unique conformal mappings
$f$ : $Darrow G$ such that $f(O)=0$ and $f’(0)>0$ and $g:D^{*}arrow G’$ such that $g(\infty)_{\text{へ}}=\infty$

and $\lim_{zarrow\infty}g(z)/z>0$ respectively, where $D:=\{z\in \mathbb{C} : |z|<1\}$ and $D^{*}$ $:=\mathbb{C}\backslash$ D.
We call $f$ (and g) the Riemann mapping function of $G$ (and $G’$ ).

Douady and Hubbard demonstrated in [2] the connectedness of the Mandelbrot
set by constructing a conformal isomorphism $\Phi$ : $\mathbb{C}$

へ

$\backslash Marrow D^{*}$ . Note that $\Psi$ $:=\Phi^{-1}$

is the Riemann mapping function of $\mathbb{C}$

へ

$\backslash$ M. We recall a lemma of Caratli\’eodory.

Lemma 1 (Carath\’eodory‘s Continuity Lenuna). Let $G\subset\hat{\mathbb{C}}$ be a simply connected
domain and a function $f$ maps $D$ conformally onto G. Then $f$ has a continuous
extension to $\overline{D}$ if and only if the boundary of $G$ is locally connected.

This implies if $\Psi$ can be extended continuously to the unit circle. then the Man-
delbrot set is locally connected. This is the motivation of our study.

Jungreis presented an algorithm to compute the coefficients $b_{m}$ of the Laurent
series expansion of $\Psi(z)$ at $\infty$ in [7].
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Several detailed studies of $b_{m}$ are given in [1, 3, 4, 8] and remarkable empirical
observations are mentioned in [1] by Zagier. Especially a formula for $b_{m}$ is given in
[3]. Many of these coefficients are shown to be zero and infinitely many non-zero
coefficients $dl\cdot e$ deterrnined.

In addition, Ewing and Schober [5] studied the coefficients $a_{m}$ of the Taylor series
expansion of the function $f(z):=1/\Psi(1/z)$ at the origin. Note that $f$ is the Riemann
mapping function of the bounded domain $\mathbb{C}\backslash \{1/z : z\in M\}$ and $f$ has a continuous
extension to the boundary if and only if the Mandelbrot set is locally connected.

In [12], Komori and Yamashita studied a generalization of $b_{m}$ . Let $P_{d,c}(z)=z^{d}+c$

with an integer $d\geq 2$ and let $M_{d}:=$ { $c\in \mathbb{C}$ : $\{P_{\mathring{d},c}^{n}(0)\}_{n=0}^{\infty}$ is bounded}. Construct-
ing the Riemann mapping function $\Psi_{d}$ of $\mathbb{C}\backslash \mathbb{M}_{d}$へ, they analyzed the coefficients $b_{d,m}$

of the Laurent series at $\infty$ .
The author has been studying $b_{d,m}$ and the coefficients $a_{d,m}$ of the Taylor series

at the origin of the function $f_{d}(z):=1/\Psi_{d}(1/z)$ in [11].
In [12] and [11], there is a generalization of the results for $d=2$ , propositions for

$d>3$ and a verffication of $Zagier^{j}s$ observations.
In this paper, we focus on the case $d=2$ . Especially we mention the observations

by Zagier and the asymptotic behavior of $b_{m}$ .

2. COMPUTING THE LAURENT SERIES OF $\Psi$

Now we introduce how to construct $\Phi$ . This is established by Douady and Hub-
bard (see [1]).

Theorem 2. Let $c\in\hat{\mathbb{C}}\backslash$ M. Then

$\phi_{c}(z):=z\prod_{k=1}^{\infty}(1+\frac{c}{P_{c}^{\circ k-1}(z)^{2}})^{\overline{2}}\tau 1$

is well-dcfincd on somc ncighborhood $of\infty$ which includes $c$ . Moreover, $\Phi(c)$ $:=\phi_{c}(c)$

maps $\hat{\mathbb{C}}\backslash M$ conformally onto $\mathbb{C}\backslash \overline{D}$へ, and satisfies $\Phi(c)/carrow 1$ as $carrow\infty$ . Thus $\mathbb{C}\backslash M$

へ

is simply connected and $M$ is connected.

Set $A_{m}(c)=P_{c}^{on}(c)$ for simplicity. Applying the following proposition, we can
calculate the coefficients $b_{m}$ of $\Psi$ .
Proposition 3 (see [1]).

$A_{n}( \Psi(z))=z^{2^{n}}+O(\frac{1}{z^{2^{n}-1}})$ .

Jungreis [7] presented an algorithm to compute $b_{m}$ and calculated the first 4095
numerical values of $b_{m}$ . Bielefeld, Fisher and Haeseler calculated the first 8000 terms
in [1].

Ewing and Schober [4] computed the first 240000 numerical values of $b_{m}$ , using
an backward recursion formula in the following way.

Let $n$ be a non-negative integer, and let

(1) $A_{n}( \Psi(z))=\sum_{m=0}^{\infty}\beta_{n,m}z^{2^{n}-m}$ for $|z|>1$ .
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Using proposition 3, $\beta_{n,m}=0$ for $n\geq 1$ and $1\leq m\leq 2^{n+1}-2$ . Furthermore
$\beta_{n,0}=1$ for all $n\in N\cup\{0\}$ . Since $P_{0}(\Psi(z))=\Psi(z)$ , obviously $\beta_{0,m}=b_{m-1}$ for
$m\geq 1$ . Applying the recursion $A_{n}(z)=A_{n-1}(z)^{2}+z$ to equation (1), we get

$\sum_{m=0}^{\infty}\beta_{n,m}z^{2^{n}-m}=\sum_{m=0}^{\infty}\sum_{k=0}^{m}\beta_{n-1,k}\beta_{n-1,m-k^{Z^{2^{n}-m}}}+\sum_{m=2^{n}-1}^{\infty}\beta_{0,m-2^{n}-1^{Z^{2^{n}-m}}}$.

For $m\geq 2^{n}-1,\cdot$ we compare the coefficients of the right and left-hand side. Hence

$\beta_{n,m}=\sum_{k=0}^{m}\beta_{n-1,k}\beta_{n-1,m-k}+\beta_{0,m-2^{n}-1}$ .

Since $\beta_{n-1,0}=1$ and $\beta_{n,m}=0$ for $n\geq 1$ and $1\leq m\leq 2^{n+1}-2$ , we obtain the
following formula:

$\beta_{n,m}=2\beta_{n-1,m}+\sum_{k=2^{n}-1}^{m-2^{n}+1}\beta_{n-1,k}\beta_{n-1,m-k}+\beta_{0,m-2^{n}-1}$ for $n\geq 1$ and $m\geq 2^{n}-1$ .

This is the forward recursion to determine $\beta_{n,m}$ in terms of $\beta_{j,k}$ with $j<n$ . A
corresponding backward recursion formula is derived to be

$\beta_{n-1,m}=\frac{1}{2}(\beta_{n,m}-\sum_{k=2^{n}-1}^{m-2^{n}+1}\beta_{n-1,k}\beta_{n-1,m-k}-\beta_{0,m-2^{n}-1})$ .

The formula gives $\beta_{m,n}$ in terms of $\beta_{j,k}$ with $j>n,$ $k\leq m$ . If $n$ is sufficiently
large, then $\beta_{n,m}=0$ for a fixed $m$ . Hence, using this backward recursion formula,
we can determine $\beta_{j,m}$ for all $j$ .
Example 4. Considering $b_{0}=\beta_{0,1}=(0-\beta_{0,0})/2=-1/2,$ $b_{1}=\beta_{0,2}=(0-\beta_{0,1}^{2}-$

$\beta_{0,1})/2=1/8,$
$\ldots$ yields

$\Psi(z)=z-\frac{1}{2}+\frac{1}{8z}-\frac{1}{4z^{2}}+\frac{15}{128z^{3}}+\frac{0}{z^{4}}-\frac{47}{1024z^{5}}-\frac{1}{16z^{6}}+\frac{987}{32768z^{7}}+\cdots$

One can make a program for this procedure and derive the exacts value of $b_{m}$ ,
because $b_{m}$ is a binary rational number.

Theorem 5 (see [4]). If $n\geq 0$ and $m\geq 1$ , then $2^{2m+3-2^{n+2}}\beta_{n,m}$ is an integer. $In$

particular, $2^{2m+1}b_{m}$ is an integer.

The coefficient, $a_{m}$ is also a binary rational number, since

$a_{m}=-b_{m-2}- \sum_{j=2}^{m-1}a_{j}b_{m-1-j}$ for $m\geq 2$ .

Remark 6. In [1] Zagier made an empirical observation about the growth of the
denominator of $b_{m}$ , which we are going to mention in the next section.

Komori and Yamashita computed the exact values for the first 2000 terms in [12].
In [11], the autor made a program to compute the exact values of $b_{m}$ by using $C$

programing language with multiple precision arithmetic library GMP (see [6]), and
the first 30000 exact values of $b_{m}$ were determined.
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3. OBSERVATIONS BY ZAGIER

Based on roughly 1000 coefficients, Zagier made several observations. In this
paper, two of them are mentioned. We write $m=m_{0}2^{n}$ with $n\geq 0,$ $m_{0}$ is odd.

Observation 7 (see [1]). It is $b_{m}=0$ , if and only if $m_{0}\leq 2^{n+1}-5$ .

One direction of this statement has been proven in [1] and separately from that
in [8].

Theorem 8. If $n\geq 2$ and $m_{0}\leq 2^{n+1}-5$ , then $b_{m}=0$ .

It is still unknown whether the converse of this theorem is true. In [4], the
only coefficients which have been observed to be zero are those mentioned in this
theorem. In this publication Ewing and Schober proved the following theorem about
zero-coefficients of $a_{m}$ .

Theorem 9 (see [5]). If $3\leq m_{0}\leq 2^{n+1}$ , then $a_{m}=0$ .

The truth of the converse of this theorem is unknown. They reported that their
computation of 1000 terms of $a_{m}$ has not produced a zero-coefficient besides those
indicated in theorem 9.

Now we consider the growth of the power of 2. For every non-zero rational number
$x$ , there exists a unique integer $v$ such that $x=2^{v}p/q$ with some integers $p$ and $q$

indivisible by 2. The 2-adic valuation $\nu_{2}$ : $\mathbb{Q}\backslash \{0\}arrow \mathbb{Z}$ is defined as:

$\nu_{2}(x)=v$ .

We extend $\nu_{2}$ to the whole rational field $\mathbb{Q}$ as follows,

$\nu(x)=\{\begin{array}{ll}\nu_{2}(x) for x\in \mathbb{Q}\backslash \{0\}+\infty for x=0.\end{array}$

Due to theorem 5, if $b_{m}\neq 0$ then $b_{m}=C/2^{-\nu(b_{m})}$ , where $C$ is an odd number. Note
that $\nu((2m+2)!)\leq 2m+1$ for a non-negative integer $m$ .

Observation 10 (see [1]). It $is-\nu(b_{m})\leq\nu((2m+2)!)$ for all $m$ . Equality attained
exactly when $m$ is odd.

In [12] a theorem for $b_{d,m}$ which includes this observation was presented. However,
$d$ has to be prime and not an arbitrary integer as it was originally stated.

Corollary 11. It is $-\nu(b_{m})\leq\nu((2m+2)!)$ for all $m$ . Equality attained exactly
when $m$ is odd.

For $a_{m}$ we have the following:

Corollary 12. It is $-\nu(a_{m})\leq\nu((2m-2)!)$ for all $m$ . Equality attained exactly
when $m$ is odd.

The generalization of these result is given in [11].
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4. OBSERVATION FOR THE ASYMPTOTIC BEHAVIOR OF $b_{m}$

The result which Ewing and Schober obtained shows that the inequality $|b_{m}|<$

$1/m$ holds for $0<m<240000$ . If there exist positive constants $c$ and $K$ such that
the inequality $|b_{m}|<K/m^{1+\epsilon}$ holds for any natural number $m$ , this would imply
its absolute convergence and give that the Mandelbrot set is locally connected.
Furthermore, such a bound imply H\"older continuity (see [1]). However it is not
valid because of the following claim given in [1].

Claim 13. There is no Holder continuous extension of $\Psi$ to $\overline{D}$ .
On the other hand, the coefficients $b_{m}$ satisfying $|b_{m}|\geq 1/m$ have not been found

yet.
The author focused on the local maximum of $|b_{m}|$ and considered the period of

Jungreis’ algorithm. The observation below for the behavior of $b_{m}$ can be made.
Observation 14 (see [11]). For fixed $1\leq n\leq 7$ , the maximum value of $|b_{2^{2n}-2}|$ ,
$|b_{2^{2n}-1}|,$

$\ldots,$
$|b_{2^{2(n+1)}-3}|$ is $|b_{2^{2n}-2}|$ . Furthermore, the sequence $|b_{2^{2}-2}|,$ $|b_{2^{4}-2}|,$ $|b_{2^{6}-2}|$ ,

, $|b_{2^{2n}-2}|,$ $\cdots$ is strictly monotonically decreasing.
It is still unknown whether it would be true for every $n$ , and the behavior of

$\{|b_{2^{2n}-2}|\}$ is the material of further research.
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