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Abstract

The scmi-infinite program (SIP) is normally represented with infinitely
many inequality constraints, and has been studied extensively so far. However,
there have been very few studies on the SIP involving conic constraints, even
though it has important applications such as Chebyshev-like approximation,
filter design, and so on.

In this paper, we focus on the SIP with a convex objective function and
infinitely many conic constraints, called an SICP for short. We show that,
under Slater‘s constraint qualification, an optimum of the SICP satisfies the
KKT conditions that can be represented only with a finite subset of the conic
constraints.

1 Introduction

In this paper, we focus on the following optimization problem with an infinite number
of conic constraints:

Minimize f(x)

1.1
subject to A(t)Tz —b(t) € C forallt €T, (1)

where f : R” — R is a continuously differentiable convex function, 4 : T — R™*™
and b : T — R™ are continuous functions, ' C R¢ is a given compact set, and
C C R™ is a closed convex cone with nonempty interior. We call this problem the
semi-infinite conic program, SICP for short. Throughout this paper, we assume that
SICP (1.1) has a nonempty solution set.
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When m = 1 and C = Ry := {z € R | 2 > 0}, SICP(1.1) reduces to the
classical semi-infinite program (SIP) [3, 5, 7, 9, 10, 13], which has wide appli-
cations in engineering, e.g., the air pollution control, the robot trajectory plan-
ning, the stress of materials, etc.[7, 9]. So far, many algorithms have been pro-
posed for solving SIPs, such as the discretization method [3], the local reduction
based method [4, 8, 14] and the exchange method [5, 6, 13]. A more general
choice for C is the symmetric cone such as the second-order cone (SOC) K™ :=
{(zl, 22,y 2m) €R™| 21 > ||(22, 23, . .. ,zm)T||2} and the semi-definite cone ST :=
{ZeR™m™ | Z=2T, Z =0}

There are some important applications of SICP (1.1). For example, when C is an
SOC, SICP (1.1) can be used to formulate a Chebyshev-like approximation problem
involving vector-valued functions. Specifically, let Y C R"™ be a given compact set,
and ® : Y — R™ and F : R®* x Y — R™ be given functions. Then, we want to
determine a parameter u € R¢ such that ®(y) ~ F(u,y) for all y € Y. One relevant
approach is to solve the following problem:

Minimize max ||®(y) — F(u,y)||o-
u yeYy

By introducing the auxiliary variable r € R, we can transform the above problem
to

Minimize 7

u,r

subject to ( r

e K™ forally e,
(y) - Flu, y>> Y

which is of the form (1.1) when F is affine with respect to w.

The main purpose of the paper is to study the Karush-Kuhn-Tucker (KKT)
conditions for SICP (1.1). Although the original KKT conditions for SICP (1.1)
could be described by means of integration and Borel measure, we show that they
can be represented by a finite number of elements in T under Slater’s constraint
qualification.

Throughout the paper, we use the following notations. ||-|| denotes the Euclidean
norm defined by ||z|| := V272 for z € R™. For a given cone C C R™, C¢ denotes
the dual cone defined by C¢ := {z € R™ | zTw > 0, Yw € C}. For vectors z € R™
and w € R™, the conic complementarity condition, 2w =0, z € C and w € C9,
is also written as C 3 z L w € C? For a nonempty set D C R™ and a function
h:R™ — R, argmin,.ph(2z) denotes the set of minimizers of h over D. In addition,
for z € R™ and § > 0, B(2,6) C R™ denotes the closed ball with center z and radius
d, i.e., B(z,9) :=={weR™| ||lw-z| < d}.

2 Karush-Kuhn-Tucker Conditions

In this section, we provide the optimality conditions for SICP (1.1). When m =1
and C = R,, SICP (1.1) reduces to the classical semi-infinite program and the
optimality conditions are given as follows [9, Theorem 2].
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Let Z be an optimum of SICP (1.1) with m = 1 and C = R,. Suppose
that the Slater constraint qualification holds for SICP (1.1) with C' = R,
i.e., there exists an zg € R" such that A(t)"zo—b(t) > 0 (Vt € T). Then,
there exist p elements ¢1,5,...,t, € T such that p < n and

V@) - miAlt) =0,
=1
Ry>m LA Z-bt;)€R, (1=1,2,...,p). (2.1)

In this section, we define the generalized Slater coustraint qualification (GSCQ),
and show that the optimality conditions can be represented with finitely many conic
constraints under the GSCQ.

This section consists of two subsections. In Subsection 2.1, we define the GSCQ
and the generalized Abadie constraint qualifications (GACQ) and show that the
GACQ holds under the GSCQ. In Subsection 2.2, we derive the optimality conditions
for SICP (1.1) by using the results of Subsection 2.1 and Carathéodory’s Theorem.

Before going to the subsections, we provide some propositions, which play im-
portant roles in proving the propositions and theorems.

Proposition 2.1. [11] Let C C R™ be an arbitrary nonempty cone. Then, we have
C% =clcoC.

Particularly, when C is a closed conver cone, we have C = C%.

Proposition 2.2. Let D C R™ be an arbitrary conver set with nonempty interior.
Then, we have

rzeintD, yeclD, A€[0,1) = (1-A)z+ Ay €intD. (2.2)

Proof. Choose z € int D, y € c1D and A € [0,1) arbitrarily. We will show that
there exists an € > 0 such that (1 — M)z + Ay + B(0,e) C D, where B(0,¢) := {z €
R™ | |lz|| < €}. From y € cl D, we have y € D + B(0,¢) for any € > 0. Therefore,
by choosing a sufficiently small € > 0, we have

(1=XNz+ A y+ B(0,e) C (1 - Xz + XD+ B(0,¢)) + B(0,¢)

(1=X(z+ (1 =X"11+N)B(0,¢)) + AD
C(1-AND+AD=D,

where the equalities hold since aX + X = (a + )X for any a,3 > 0 and any
convex set X, and the last inclusion is due to z € int D. O

2.1 Generalized Slater and Abadie constraint qualifications

In the case of the convex optimization problem with finitely many inequality con-
straints, it is known that Abadie’s constraint qualification holds under Slater’s con-
straint qualification, and then the KKT conditions serve as a necessary and sufficient
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condition for the global optimality [1]. In this subsection, we define the generalized
Slater and Abadie constraint qualifications (GSCQ and GACQ) for SICP (1.1), and
show that the GACQ always holds under the GSCQ. Let T be an arbitrary feasible
solution of SICP (1.1), and S be the feasible solution set of SICP (1.1), that is,

S:={zeR"|A@t)Tz-b(t) e C (VteT)}.

We define the following cones:

Gi(Z) == {a(A(t)'Z - b(t)) | a < 0},

A(Z) := C + Gi(T), (2.3)
Ci(z):={ye R"| A(t) Ty € clA(2)}

Cs(Z) =) Cu(2). (2.5)

We note that the closure of A;(Z) is the tangent cone of C at A(t)"z — b(¢), and the
dual cone of A;(Z) characterizes the directions satisfying the conic complementarity
conditions for A(t)TZ — b(t), i.e., Ay(Z)?={yeR™ | C >y L A(t)"z — b(t) € C}.
(See Proposition 2.9 below.) Also, Cs(Z) is a generalization of the linearized cone
as defined in [2], for the case where |T| < oo and C' = R;,.

Now, we define GSCQ and GACQ by using the above cones.

Definition 2.3 (GSCQ). We say that the generalized Slater constraint qualification
(GSCQ) holds for SICP(1.1) if there exists some xg € R™ such that

A(t)Tzo — b(t) €intC (Vt e T). (2.6)

Definition 2.4 (GACQ). Let S and T € S be the feasible set and a feasible solution
of SICP(1.1), respectively. Then, we say that the generalized Abadie constraint
qualification GACQ holds at T € S if

Cs(Z) € Ts(z), (2.7)
where Cs(Z) is defined by (2.5) and Ts(Z) is the tangent cone to S at Z.

Next, we show that the GACQ holds under the GSCQ. To this end, we show the
following two lemmas by using the following set:

Cs(z):=(1{y eR"| A(t) 'y € int C + G,(2)} . (2.8)
teT

Notice that Cg(Z) is not empty for the GSCQ.

Lemma 2.5. Assume that the GSCQ holds for SICP (1.1). Let T be an arbitrary
feasible solution of SICP(1.1). Let Cs(Z) and Cg(Z) be defined by (2.5) and (2.8),
respectively. Then, C&(Z) is nonempty and Cs(Z) = clC3(Z).



Proof. 1f we have Cs(Z) = c1C§(Z), then Cg(Z) must be nonempty since 0 € Cs(Z).
So, we only show Cs(Z) = c1Cg(z). Notice that Cs(Z) D C5(z). Then, we have
Cs(Z) 2 el C§(Z), since Cs(Z) is closed. Thus, it suffices to show Cs(Z) C cl C3(Z).
Let y € Cs(Z) be chosen arbitrarily. Then, we have to show that there exists some
{¥¥} C C3(z) such that y* — y as k — co. By the GSCQ, there is an 7z, € R®
such that A(t)"zq — b(¢) € int C for any ¢t € T. Let yy := xo — Z. Then, we have
A(t)Tyo = (A(t) Tmo — b(t)) — (A(t)TZ — b(t)) € int C + Gy(&). Since int C + G,(z)
is an open convex set, we have

A(t)Tyo € int C + G4(Z) = int (int C + G4(z)).

for any t € T. Since y € Cs(Z) and clAy(Z) = cl(C + G(Z)) = cl (int C + G4(Z))*,
we have

A(t)Ty € cl (int C + G4(2)).
Applying Proposition 2.2 with D := int C + G4(Z), = := A(t) "y, A := 1 — 7 and
y:= A(t)Ty, we have
A®) (1 =)y +ny) € int C + Gy () (2.9)

forany ¢t € T and n € (0,1]. Let {n:} C (0, 1] be a sequence such that limj_, 7z = 0
and {y*} be defined by y* := (1 — ne)y + 7xyo. Then, (2.9) implies that A(t)Ty* €
int C + G¢(Z) for any k and t € T. Therefore, {y*} C C3(Z) and limg_0o ¥* = .
This completes the proof. U

Lemma 2.6. Assume that the GSCQ holds for SICP (1.1). Let T be an arbitrary
feasible solution of SICP(1.1). Fory € R™ andt € T, let a,(t) € R be defined by

ay(t) = max {a | A(t)T(Z + ay) — b(t) € C}. (2.10)

Then, for any y € C3(Z), we have

%gay( ) > 0.

Proof. Let y € Cg(Z) and t € T be chosen arbitrarily. First note that a,(t) > 0,
since 7 is feasible to SICP (1.1). Then, we first prove a,(t) > 0. To this end, it
suffices to show the existence of a € (0, 1] such that

A)T(Z + ay) — b(t) € int C. (2.11)

Since y € C§(Z), we have A(t)Ty € int C+G,(Z), which together with the definition
of G;(Z) implies the existence of some 3 > 0 such that

B(A®) 'z b)) + A(t) Ty € int C. (2.12)

When g = 0, (2.12) reduces to A(t) "y € int C, which together with A(t)"z—b(t) € C
and Proposition 2.2 implies 3 A(t) Ty+3 (A(¢) 'z — b(t)) = 5 (4 (t)T( +y) —b(t) €

! This equality can be obtained easily from the fact that cl (int C) =
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int C, and hence, A(t)" (Z+y) —b(t) € int C. We thus have (2.11) with @ = 1. When
B > 0, by multiplying (2.12) by 87!, we have A(t)"(Z + 8~ 'y) — b(t) € int C. Due
to Proposition 2.2, we have A(t)" (Z + sy) — b(t) € int C for any s € (0, 37], which
implies A(t)T(Z + min(871,1)y) — b(t) € int C. Hence, we also have (2.11).

In what follows, we show inficr ay(t) > 0. Suppose to the contrary that there
exists a sequence {t*} C T such that o, (t¥) — 0 as k — oco. Let t* be an arbitrary
accumulation point of {t*}. Then, by taking an appropriate subsequence, we have

lim t* =t*, Jlim oy (t*) = 0. (2.13)

k—oo

From (2.11), there exists an & > 0 such that

At (Z + ay) — b(t*) € int C. (2.14)
Hence, by the continuity of functions A and b, we have

At (Z + ay) — b(tF) € int C (2.15)

for all k sufficiently large. From (2.15) and (2.10), we have 0 < & < a,(¢*), which
together with (2.13) implies @ = 0. However, this contradicts & > 0. Hence, we
have infie7 ay(t) > 0.

O

Now, we show the main theorem of this section, which claims that the GSCQ
implies the GACQ for SICP (1.1).

Theorem 2.7. Let T be an arbitrary feasible solution of SICP (1.1). Assume that
the GSCQ holds. Then, the GACQ holds at Z.

Proof. Let Cg(Z) be defined by (2.8). Then we have c1Cg(Z) = Cs(Z) from Lemma
2.5. Therefore, due to the closedness of Ts(Z), we only have to show

Cs(z) € Ts(z).

Let y € C2(Z) be chosen arbitrarily and a, := infier a,(t), where o, (t) is given by
(2.10). Then, we have
A(t)T(z + By) —b(t) € C (2.16)

for any 8 € [0,a,] and t € T, since A(t)"Z — b(t) € C and C is convex.
By Lemma 2.6, we have «,, > 0. Hence, we can choose {bx} C (0, a,] such that
limg_,o b, = 0. By (2.16), we have

AR (Z+by) —b(t) e C (Ve T),
which implies Z + byy € S for all k. Now, recall that the definition of Ts(Z) is given
by
Ts(i‘) = {y €R" l klim ak(;z:k —-CE) = y,klim Ty =T, T €S, ax >0 (k = 1,2,...)}
(2.17)

Thus, by setting x; := T + bgy and ax := 1/b;, we have y € Ts(Z). The proof is
completed. O
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2.2 The KKT conditions for SICP

As we have shown in the previous subsection, the GACQ holds under the GSCQ.
In this subsection, by using this result, we show that the optimality condition for
SICP (1.1) can be represented as the KKT conditions with finitely many conic con-
straints. It is well known that the following Carathéodory’s Theorem plays a signif-
icant role in deriving the optimality condition for the ordinary SIP with inequality
constraints. The theorem is also important in deriving the optimality conditions for
SICP (1.1).

Lemma 2.8. (Carathéodory’s Theorem [11, Theorem 17.1]) Let D C R™ be an
arbitrary nonempty set, and co D be the convex hull of D. Then, for any x € co D,
there exist p elements s1,s3,...,8, € D and p positive numbers Ay, Ay, . . ., Ap >0
such thatp <m+1, 37 A =1, and = A\is1 + AeSa + -+ + ApSp.

The conic complementarity condition that appears in the KKT conditions is
written as C' 3 y(t) L A(¥)'z — b(t) € C with a Lagrange multiplier vector y(t).
The next proposition claims that the dual cone of A;(Z) defined by (2.3) characterizes
the Lagrange multiplier y(¢).

Proposition 2.9. Let t € T be chosen arbitrarily, and T be an arbitrary feasible
solution of SICP(1.1). Let Ay(Z) be defined by (2.3). Then, we have

={yeR™|C>y L Alt)'z-b(t) e C}.

Proof. First, we show A(Z) = C + G(Z) = co(C U G(Z)). Since 0 € G;(Z) and
0 € C, wehave C+G(Z) 2 C and C+Gy(Z) 2 G4(Z), that is, C+G:(T) D CUG(Z).
Noticing the convexity of C+G,(Z), we have C+G:(Z) 2 co (CUG,(Z)). Conversely,
we show C'+ G(Z) C co (CUG(Z)). Choose y € C + Gy(Z) arbitrarily. Then, there
exist some k € C and g € G4(Z) such that y = k + g. Since C and G;(Z) are cones,
we have 2k € C' and 2g € G4(Z), and hence y = (2k + 29)/2 € co (C U G4(Z)). This
shows C + G(Z) C co (C' U G¢(%)).

We can readily show A4 (Z)? = C N Gy(Z)? since Ay(Z)? = (co(C U Gy(E)))? =
(CUG{(2))* = CIN G4(Z)? = C N Gy(z)?, where the second equality follows since
(coC)? = C? for any cone C, the third equality holds since (C; U Cy)? = C4 N C4
for any cones C; and Cj, and the last equality holds since C is self-dual.

Finally we show C N Gy(z)? = {y e R™ | C > y L A(t)'z — b(t) € C}.
Note that {y € R™ | C > y L A@#)'Z —b(t) € C} = Cn (AR)"Z - b(t))*,
where v+ denotes the hyper plane orthogonal to vector v. Since it is not difficult
to see G¢(Z)? 2 (A(t)TZ — b(t))*, we have C NG, (Z)* D C N (A(t)Tz — b(t))*.
Therefore, the proof will be complete if we show the converse inclusion. Choose
z € C'NGy(z)? arbitrarily. Since z € G,(%)?, we have 2T (A(t)7Z — b(t)) < 0. On
the other hand, z € C and A(¢)"Z — b(t) € C imply 2" (A(¢t)"Z — b(t)) > 0. Hence,
2 (A(t)TZ - b(t)) =0, i.e., 2 € CN(A(t)"Z — b(t))*. This completes the proof. [
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Now, in order to obtain the optimality condition for SICP (1.1), we introduce
the following cones:

H,(Z) :={z € R" | z = A(t)\, X € A,(7)%}, (2.18)
H(z):= | H(=), (2.19)

where ¢ € T and 7 is a feasible solution. Note that H;(Z) is a convex cone but may
not be closed, and H,(Z) is a cone but may not be closed or convex.
The next proposition shows the relation between H(Z) and Cs(Z).

Proposition 2.10. Let Z € S be an arbitrary feasible solution of SICP(1.1). Let
Cs(Z) and H(Z) be defined by (2.5) and (2.19), respectively. Then, we have

Cs(Z)? C clco H(E).

Proof. Tt suffices to prove Cs(Z) 2 H(Z)¢. Choose y € H(z)4, t € T and A € A(Z)?
arbitrarily. Since y € H(Z)* and A(t)\ € H,(Z) C H(Z), we have (A(t)"y,)\) =
{y, A(t)A) > 0. Note that t € T and A € A;(Z)?¢ were chosen arbitrarily. Therefore,
we have A(t)Ty € A(Z)¥ = clecoA(Z) = clAy(Z) for any ¢t € T, which implies
y € Cs(Z). 0

The following lemma is also important for the proof of the subsequent theorem.

Lemma 2.11. Assume that the GSCQ holds for SICP (1.1). Let zq be an arbitrary
point satisfying (2.6) and z € C be an arbitrary vector. Then, there exists some
€ > 0 such that

(A(t) 20 — b))z 2 ez (2.20)

foranyteT.

Proof. For simplicity, let y(t) := A(t) zo — b(t). When 2z = 0, inequality (2.20)
holds obviously for any t € T. So we only consider the case where z # 0. Let

_y)z

ot) : TE (2.21)
To show (2.20), it suffices to prove inf;er d(t) > 0. Suppose that infic7 0(t) < 0 for
contradiction. Then, we must have inficr §(¢) = O since y(¢) € intC and z € C
implies §(f) > 0. Due to the compactness of T, there exist some subsequence
{t*} € T and t* € T such that limy_ 6(t*) = 0 and lim;_ . t* = t*. Moreover,
the continuity of y(t) yields limy_ y(t*) = y(t*). Then, by (2.21), we obtain
y(t*) Tz = 0. However, this contradicts 0 # z € C and y(t*) € int C. Therefore, we
have inf,e7 6(¢) > 0. O

Now, we are in the position to show the theorem on the optimality condition for
SICP (1.1).

20



Theorem 2.12 (Optimality condition). Assume that the GSCQ holds for SICP
(1.1). Letz* be an arbitrary optimizer of SICP (1.1). Then, there existty, ty, ... ,t, €
T and y1,Y2,...,Yp € R™ such that p <n+1 and

VF@E) =) Aty =0, (2.22)
Coy L AZti)Tx* -b(t;) eC (i=1,2,...,p). (2.23)

Proof. From z* € argmin_ ¢ f(z) and [12, Theorem 3.6], we have V f(z*) € Tg(z*)%.
Also we have Tg(z*)? C Cs(z*)? C clco H(z*), where the first inclusion holds
since Cg(z*) € Ts(z*) from Theorem 2.7, and the second inclusion follows from
Proposition 2.10. Therefore, we have

Vf(z*) € clco H(z"),
which indicates the existence of a sequence {z*¥} C co H(z*) such that
klim 2F =V f(z*).

By Lemma 2.8, (2.18) and (2.19), there exist n+1 nonnegative scalars? of, o, ..., af

0 such that 3" of = 1 and

n+1
=" At akAE, N e Ap(a)?. (2.24)
=1

Denote yf 1= afAf € A (z)¢ for each i in (2.24).

In what follows, we show that the sequence {y¥} is bounded and any accumula-
tion point satisfies (2.22) and (2.23). From the GSCQ), there exists an zy € R" such
that A(t¥)Tzo — b(tF) € int C for each i. By y¥ € A(z*)? C C and Lemma 2.11,
there exists € > 0 such that Z

(e, A5 Two — b(tF)) 2 ellyf | (2.25)
for each 7. Since y¥ € Age ()¢ C Gy (z*)¢ from Proposition 2.9, we have
(Wh, A(t) T2 — b(#h)) < 0. (2.26)
It, then, follows from (2.26) and (2.25) that
(i, At)) T (zo — 27)) > eyt (2.27)

From (2.24), (2.27) and y¥ = af ¥, we have (%) (2o — 2*) = S0y, A(E9) T (20 —

z*)) > St ellyk||l. Moreover, since {z*} is convergent, there exists M > 0 such
that (2*)7(zo — 2*) < M for all k. Therefore, we have

n+1
M>e> |lyfll.
=1

?If we have p < n + 1 scalars, then we can set af,; = ak,, = --- = ak,, = 0 without loss of
generality.
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which implies the boundedness of {y¥}. Now, let y; and ¢; be arbitrary accumulation
points of {yf} and {t¥}, respectively. Then there exist subsequences such that
2 — Vf(z*), t¥ - t; and y¥ — y; for each i = 1,2,...,n + 1. From (2.24) with
y¥ = ofA¥ and the continuity of function A4, we obtain Vf(z*) = 307 A(t:)y:.
Hence, we have (2.22). From yf € Au(z*)¢ and Proposition 2.9, it follows that
C>yF L A(t¥) z* — b(t*) € C for each k. Since C is closed, we have y; € C and
A(t;)Tz* —b(t;) € C. Moreover, we have (y;, A(t;) z* —b(t;)) = 0, since the function
defined by 6(y,t) := (y, A(t)Tz* — b(t)) is continuous at any y € R™ and t € T.
Therefore, (2.23) is obtained. O

3 Concluding remarks

For the semi-infinite program with an infinite number of conic constraints (SICP),
we have shown that the KKT conditions can be represented with finitely many conic
constraints, as long as the Slater constraint qualification holds. It is an interesting
subject of future research to extend the result to the more general SICP without
the convexity assumption on the objective and constraint functions.
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