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Abstract
We prove a property of positive polynomials on a compact set with
a small perturbation. When applied to a POP, the property implies
that the optimal value of the corresponding SDP relaxation with
sufficiently large relaxation order is bounded from below by $f^{*}-\epsilon$

and from above by $f^{*}+\epsilon(n+1)$ , where $f^{*}$ is the optimal value of
the POP. This may help us to understand the funny phenomena of
SDP relaxations for polynomial optimization problems observed in
[4, 17, 18].

1 Introduction

1.1 Lasserre’s SDP relaxation for POP
We consider the POP:

minimize $f(x)$ subject to $f_{i}(x)\geq 0(i=1, \ldots, m)$ , (1)

where $f,$ $f_{1},$
$\ldots,$

$f_{m}$ : $\mathbb{R}^{n}arrow \mathbb{R}$ are polynomials. The feasible region is denoted by $K=$

$\{x\in \mathbb{R}^{n}|f_{j}(x)\geq 0(j=1, \ldots, m)\}$ . Then it is easy to see that the optimal value $f^{*}$ can
be represented as

$f^{*}= \sup\{\rho|f(x)-\rho\geq 0(\forall x\in K)\}$ .
We briefly describe the framework of the SDP realxation method for POP (1) proposed

by Lasserre [8]. See also [13].
We denote the set of polynomials and sums of squares by $\mathbb{R}[x]$ and $\Sigma$ , respectively.

$\mathbb{R}[x]_{r}$ is the set of polynomials whose degree is less than or equals to $r$ . We let $\Sigma_{r}=$

$\Sigma\cap \mathbb{R}[x]_{2r}$ . We define the quadratic module generated by $f_{1},$
$\ldots,$

$f_{m}$ as

$M(f_{1}, \ldots, f_{m})=\{\sigma_{0}+\sum_{j=1}^{m}\sigma_{j}f_{j}|\sigma_{0},$
$\ldots,$

$\sigma_{m}\in\Sigma\}$ .

The truncated quadratic module whose degree is less than or equal to $2r$ is defined by

$M_{r}(f_{1}, \ldots, f_{m})=\{\sigma_{0}+\sum_{i=1}^{m}\sigma_{j}f_{j}|\sigma_{0}\in\Sigma_{r},$ $\sigma_{j}\in\Sigma_{r_{j}}(j=1, \ldots, m)\}$ ,
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where $r_{j}=r-\lceil\deg f_{j}/2\rceil$ for $j=1,$ $\ldots,$
$m$ .

Substituting the condition that $f(x)-\rho$ is nonnegative by another relaxed condition
that the polynomial is contained in $M_{r}(f_{1}, \ldots, f_{m})$ , we obtain the following SOS relaxation
problem:

$\rho_{r}=\sup\{\rho|f(x)-\rho\in M_{r}(f_{1}, \ldots, f_{m})\}$ . (2)

Lasserre[8] showed that $\rho_{r}arrow f^{*}$ as $rarrow\infty$ if $M(f_{1}, \ldots, f_{m})$ is Archimedean. See [12, 14]
for the definition of Archimedean. In particluar, we point out that when $M(f_{1}, \ldots, f_{m})$

is Archimedean, then $K$ is compact.
The problem (2) can be encoded to an SDP problem. Note that we can express a sum of

squares $\sigma\in\Sigma_{r}$ by using a positive semidefinite matrix $X\in S_{+}^{s(r)}$ as $\sigma(x)=u_{r}(x)^{T}Xu_{r}(x)$ ,
where $s(r)=(\begin{array}{l}n+rn\end{array})$ and $u_{r}(x)$ is a monomial vector which contains all the monomials in
$n$ variables up to degree $r$ . By using this relation, the containment by $M_{r}(f_{1}, \ldots, f_{m})$ in
(2), i.e.,

$f- \rho=\sigma+\sum_{j=1}^{m}\sigma_{j}f_{j}$ ,

can be transformed to equality constraints between semidefinite matrix variables corre-
sponding to $\sigma$ and $\sigma_{j}’ s$ .

Note that, in this paper, we do not assume that $K$ is compact nor that $M(f_{1}, \ldots, f_{m})$

is Archmedean. Still the framework of Lasserre‘s SDP relaxation can be applied to (1),
althogh the good theoretical convergence property is lost.

1.2 Problems in the SDP relaxation for POP
Because POP is NP-hard, solving POP practically is sometimes extremely difficult. The
SDP relaxation method described above also has some difficulty. The major difficulty
consists in the size of the SDP relaxation problem (2). In fact, (2) contains $(\begin{array}{l}n+2rn\end{array})$ variables
and $s(r)\cross s(r)$ matrix. When $n$ and$/orr$ get larger, solving (2) is just impossible.

To overcome this difficulty, several techniques using sparsity of polynomials are pro-
posed. See, e.g., [6, 15]. Based on the fact that most of the practical POPs are sparse in
some sense, these techniques exploit special sparse structure of POPs to reduce the size
and the number of variables of the SDP (2).

Another problem of the SDP relaxation is that (2) is often ill-posed. In [4, 17, 18],
strange behaviors of SDP solvers are reported. Among them is that an SDP solver returns
an ‘optimal’ value of (2) which is significantly different from the true optimal value without
reporting no numerical errors. Even more strange is that the returned value by the SDP
solver is nothing but the real optimal value of the POP (1). This is a ‘super-accurate’
property of the SDP relaxation for POP.

1.3 Contribution of this paper
We assume that there exists an optimal solution $x^{*}$ of (1). Let

$b$ $=$ $\max(1, \max\{|x_{i}^{*}||i=1, \ldots, n\})$

$B$ $=$ $[-b, b]^{n}$ .
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Obviously $x^{*}\in B$ . We define:

$\overline{K}$

$=$ $B\cap K$

$R_{j}$ $= \max\{|f_{j}(x)||x\in B\}(j=1, \ldots, m)$

$R= \sum_{j=1}^{m}R_{j}$ .

Define also, for a positive integer $r$ ,

$\psi_{r}(x)$ $=$ $- \sum_{j=1}^{m}f_{j}(x)(1-\frac{f_{j}(x)}{R_{j}})^{2r}$ ,

$\Theta_{r}(x)$ $=$ $1+ \sum_{i=1}^{n}x_{i}^{2r}$ ,

$\Theta_{r,b}(x)$ $=$ $1+ \sum_{i=1}^{n}(\frac{x_{i}}{b})^{2r}$

We will prove the following theorem.

Theorem 1 Suppose that for $\rho\in \mathbb{R},$ $f(x)-\rho>0$ for every $x\in\overline{K}$ , i. e., $\rho$ is an lower
bound of $f^{*}$ .

$i$ . Then there exists $\tilde{r}\in \mathbb{N}$ such that for all $r\geq\tilde{r},$ $f-\rho+\psi_{\overline{r}}$ is positive over $B$ .

$ii$ . In addition, for any $\epsilon>0$ , there exists a positive integer $\hat{r}$ such that, for every $r\geq\hat{r}$ ,

$f-\rho+\epsilon\Theta_{r,b}+\psi_{\overline{r}}\in\Sigma$ .

We remark that $\hat{r}$ depends on $\rho$ and $\epsilon$ , while $\tilde{r}$ depends on $\rho$ , but not $\epsilon$ .
The implication of this theorem is twofold. First, it elucidates the super-accurate

property of the SDP relaxation for POPs. Notice that by construction, $-\psi_{\overline{r}}(x)\in$

$M_{\overline{r}}(f_{1}, \ldots, f_{m})$ where $\overline{r}=\tilde{r}\max_{j}(\deg(f_{j}))$ . Now assume that in (2), $r\geq\overline{r}$ . Then, for any
lower bound $\overline{\rho}$ of $f^{*}$ , Theorem 1 means that $f-\overline{\rho}+\epsilon\Theta_{r,b}\in M_{r}(f_{1}, \ldots, f_{m})$ for arbitrary
small $\epsilon>0$ and sufficiently large $r$ . Such small perturbation is inevitably introduced
everywhere in the floating point arithmetics which is used by the interior-point methods
for solving the SDP relaxation problems. Note that we chose an artibrary lower bound of
$f^{*}$ , and in (2), the lower bound is being maximized. Therefore, we may obtain $f^{*}$ due to
the implicit perturbation introduced by the floating point arithmetics.

Second, we can use the result to construct new sparse SDP relaxations for POP (1).
A naive idea is that we use (1) as is. Note that $-\psi_{\overline{r}}(x)$ contains only monomials whose
exponents are contained in
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where $\mathcal{F}_{j}$ is the support of the polynomial $f_{j}$ , i. e., the set of exponents of monomials
with nonzero coefficients in $f_{j}$ , and $\tilde{\mathcal{F}}_{j}=\mathcal{F}_{j}\cup\{0\}$ . To state the idea more precisely,
we introduce a notation. For a finite set $\mathcal{F}\subseteq \mathbb{N}^{n}$ and a positive integer $r$ , we denote
$r\mathcal{F}=\mathcal{F}+\cdots+\mathcal{F}\tilde{r}$

and

$\Sigma(\mathcal{F})=\{\sum_{k=1}^{q}g_{k}(x)^{2}|supp(g_{k})\subseteq \mathcal{F}\}$ ,

where $supp(g_{k})$ is the support of $g_{k}$ . Note that $\Sigma(\mathcal{F})$ is the set of sums of squares of
polynomials whose supports are contained by $\mathcal{F}$ .

Now, fix an admissible error $\epsilon>0$ and $\tilde{r}$ as in Theorem 1, and consider:

$\hat{\rho}(\epsilon,\tilde{r}, r)=\sup\{\rho$ $f- \rho+\epsilon\Theta_{r,b}-\sum_{j=1}^{m}f_{j}\sigma_{j}=\sigma_{0},$ $\sigma_{0}\in\Sigma_{r},$ $\sigma_{j}\in\Sigma(\tilde{r}\tilde{\mathcal{F}}_{j})\}$ (3)

for some $r\geq\tilde{r}$ . Due to Theorem 1, (3) has a solution for a sufficiently large $r$ .

Theorem 2 For any $\epsilon>0$ , there exists $r\in \mathbb{N}$ such that $f^{*}-\epsilon\leq\hat{\rho}(\epsilon,\tilde{r}, r)\leq f^{*}+\epsilon(n+1)$ .

Proof: We apply Theorem 1 to POP (1) with $\rho=f^{*}-\epsilon$ . Then for any $\epsilon>0$ , there exist
$\hat{r},\tilde{r}\in \mathbb{N}$ such that for every $r\geq\hat{r},$ $f-(f^{*}-\epsilon)+\epsilon\Theta_{r,b}+\psi_{\overline{r}}\in\Sigma$ . We choose a positive
integer $r\geq\hat{r}$ which satisfies

$r \geq\max\{\lceil\deg(f)/2\rceil, \lceil(\tilde{r}+1/2)\deg(f_{1})\rceil, \ldots, \lceil(\tilde{r}+1/2)\deg(f_{m})\rceil\}$. (4)

Then there exists $\tilde{\sigma}_{0}\in\Sigma_{r}$ such that $f-(f^{*}-\epsilon)+\epsilon\Theta_{r,b}+\psi_{\overline{r}}=\tilde{\sigma}_{0}$ because the degree of
the polynomial in the left hand side is equal to $2r$ . We denote $\tilde{\sigma}_{j}$

$:=(1-f_{j}/R_{j})^{2\overline{r}}$ for all
$j$ . The triplet $(f^{*}-\epsilon,\tilde{\sigma}_{0},\tilde{\sigma}_{j})$ is feasible in (3) because $(1-f_{j}/R_{j})^{2\overline{r}}\in\Sigma(\tilde{r}\tilde{\mathcal{F}}_{j})$ . Therefore,
we have $f^{*}-\epsilon\leq\hat{\rho}(\epsilon,\tilde{r}, r)$ .

We prove that $\hat{\rho}(\epsilon,\tilde{r}, r)\leq f^{*}+\epsilon(n+1)$ . We choose $r$ as in (4) and consider the
following POP:

$f;= \inf_{x\in R^{n}}\{f(x)+\epsilon\Theta_{r,b}(x)|f_{1}(x)\geq 0, \ldots, f_{m}(x)\geq 0\}$ . (5)

Apply Lasserre‘s SDP relaxation with relaxation order $r$ to (5), we obtain the following
SOS relaxation problem:

$\hat{\rho}(\epsilon, r):=\sup\{\rho$ $f- \rho+\epsilon\Theta_{r,b}=\sigma_{0}+\sum_{j=1}^{m}f_{j}\sigma_{j},$ $\sigma_{0}\in\Sigma_{r},$ $\sigma_{j}\in\Sigma_{r_{j}}\}$ (6)

where $r_{j}$ $:=r-\lceil\deg(f_{j})/2\rceil$ for $j=1,$ $\ldots,$
$m$ . Then we have $\hat{\rho}(\epsilon, r)\geq\hat{\rho}(\epsilon,\tilde{r}, r)$ because

$\Sigma(\tilde{r}\tilde{\mathcal{F}}_{j})\subseteq\Sigma_{r_{j}}$ for all $j$ . Indeed, it follows from (4) and definition of $r_{j}$ that $r_{j}\geq\tilde{r}\deg(f_{j})$ ,
and thus $\Sigma(\tilde{r}\tilde{\mathcal{F}}_{j})\subseteq\Sigma_{r_{j}}$ .

The optimal solution $x^{*}$ of POP (1) is feasible in (5) and the objective value is $f^{*}+$

$\Theta_{r,b}(x^{*})$ . We have $f^{*}+\Theta_{r,b}(x^{*})\geq\hat{\rho}(\epsilon, r)$ because (3) is the relaxation problem of (1).
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In addition, it follows from $x^{*}\in B$ that $n+1\geq\Theta_{r,b}(x^{*})$ , and thus
$\hat{\rho}(\epsilon,\tilde{r}, r)\leq\hat{\rho}(\epsilon, r)\square \leq$

$f^{*}+\epsilon(n+1)$ .

In the above sparse relaxation (3), we have only to consider positive semidefinite
matrices whose rows and columns correspond to $\tilde{r}\tilde{\mathcal{F}}_{j}$ for $f_{j}$ . In contrast in Lasserre‘s SDP
relaxation, we have to consider the whole set of monomials whose degree is less than or
equals to $r_{j}$ for each polynomial $f_{j}$ . Only $\sigma_{0}$ is large; it contains all the set of monomials
whose degree is less than or equals to $r$ . However, because the other polynomials do not
contain most of the monomials of $\sigma_{0}$ , such monomials may be safely eliminated to reduce
the size of $\sigma_{0}$ using the technique proposed in [6]. As a result, our sparse relaxation
reduces the size of the matrix significantly if each $|\mathcal{F}_{j}|$ is small enough. We note that in
most of the practical cases, in fact this is true.

Finally, we consider the case where the feasible region $K$ is empty. $If-1\in M(f_{1}, \ldots, f_{m})$ ,
then the feasible region $K$ is empty. Indeed, there exist sums of square polynomials
$\sigma_{0},$

$\ldots,$
$\sigma_{m}$ such that-l $= \sigma_{0}(x)+\sum_{j=1}^{m}\sigma_{j}(x)f_{j}(x)$ . If $K$ is non empty, then we obtain a

contradiction by substituting $\tilde{x}\in K$ into this identity.
However, the converse does not hold in general. For instance, let $f_{1}=x,$ $f_{2}=y,$ $f_{3}=$

$-1-xy$ . Then $K$ is empty, but $-1\not\in M(f_{1}, f_{2}, f_{3})$ . We can prove this fact by using a
discussion in [14, Example 6.3.1].

The following result is directly obtained as a corollary of Theorem 1. We omit the
proof.

Theorem 3 We assume that $K$ is empty. Then for any $\epsilon>0$ , there exists $\hat{r}\in \mathbb{N}$ such
that for every $r\geq\hat{r},$ $-1+\epsilon\Theta_{r}\in M(f_{1}, \ldots, f_{m})$ .

The rest of this paper is organized as follows. In the next section, we prove Theorem
1. In Section 3, we give two extensions of Theorem 1. The former is a sparse version, and
the latter, a symmetric cone version.

2 A Proof of Theorem 1
Lemma 4 For any $\epsilon>0$ , there exists $\overline{r}$ such that for all $r\geq\overline{r}$ and $x\in B,$ $\psi_{r}(x)\geq-\epsilon$

holds.

Proof: We have

$\psi_{r}(x)$ $=$ $- \sum_{j=1}^{m}f_{j}(x)(1-\frac{f_{j}(x)}{R_{j}})^{2r}$

$=$ $- \sum_{jf_{j}(x)>0}f_{j}(x)(1-\frac{f_{j}(x)}{R_{j}})^{2r}-\sum_{jf_{j}(x)<0}f_{j}(x)(1-\frac{f_{j}(x)}{R_{j}})^{2r}$

$\geq$ $- \sum_{j:f_{j}(x)>0}R_{j}\frac{f_{j}(x)}{R_{j}}(1-\frac{f_{j}(x)}{R_{j}})^{2r}$
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Note that, for any $0\leq\lambda\leq 1$ ,

$\lambda(1-\lambda)^{2r}\leq(\frac{2r}{2r+1})^{2r}\frac{1}{2r+1}\leq\frac{1}{2r+1}\leq\frac{1}{2r}$,

and that if $r\geq R/(2\epsilon)$ , then $\lambda(1-\lambda)^{2r}\leq\epsilon/R$ on $\lambda\in[0,1]$ . Therefore, for such $r$ , we can
further evaluate $\psi_{r}(x)$ as

$\psi_{r}(x)\geq-\sum_{j.f_{j}(x)>0}R_{j}\frac{\epsilon}{R}\geq-\epsilon$
,

because $x\in B$ and $f_{j}(x)>0$ imply $0<f_{j}(x)/R_{j}\leq 1$ . This completes the proof. $\square$

Lemma 5 Let $\tilde{x}\in B\backslash \overline{K}$ , and $\kappa>0$ be given. Then there exist $\tilde{\delta}>0$ and $\tilde{r}$ such that
for all $r\geq\tilde{r}$ and for any $x\in B(\tilde{x},\tilde{\delta})\cap B,$ $\psi_{r}(x)\geq\kappa$ holds.

Proof: For every $x\in B$ , we have

$\psi_{r}(x)$ $=$ $- \sum_{jf_{j}(x)>0}f_{j}(x)(1-\frac{f_{j}(x)}{R_{j}})^{2r}-\sum_{jf_{j}(x)<0}f_{j}(x)(1-\frac{f_{j}(x)}{R_{j}})^{2r}$

$\geq$ $- \sum_{j.f_{j}(x)>0}f_{j}(x)-\sum_{jf_{j}(x)<0}f_{j}(x)(1-\frac{f_{j}(x)}{R_{j}})^{2r}$

$\geq$ $-R- \sum_{j:f_{j}(x)<0}f_{j}(x)(1-\frac{f_{j}(x)}{R_{j}})^{2r}$

Since $\tilde{x}\in B\backslash \overline{K}$ , the minimum of $f_{j}(\tilde{x})$ over $j=1,$ $\ldots,$
$m$ is negative. The continuity

of polynomials implies that there exist $\delta>0$ and $\overline{\lambda}<0$ such that if $x\in B(\tilde{x}, \delta)$ , then
$\min_{j}f_{j}(x)\leq\overline{\lambda}$ . Then we can further evaluate $\psi_{r}(x)$ as

$\psi_{r}(x)\geq-R-\overline{\lambda}(1-\frac{\overline{\lambda}}{R})^{2r}$

for every $x\in B(\tilde{x}, \delta)\cap B$ . Because $\overline{\lambda}<0$ and $1-\overline{\lambda}/R>1$ , there exists a positive integer
$\tilde{r}$ such that $\psi_{r}(x)\geq\kappa$ for every $r\geq\tilde{r}$ and $x\in B(\tilde{x}, \delta)\cap B$ . $\square$

Proof of (i) of Theorem 1 : Let $\tilde{x}^{r}$ be a minimizer of $f-\rho+\psi_{r}$ on $B$ . We show the
lemma by proving that there exists a positive integer $\tilde{r}$ such that $f(\tilde{x}^{r})-\rho+\psi_{r}(\tilde{x}^{r})>0$

for every $r\geq\tilde{r}$ .
Suppose to the contrary that for any $\tilde{r}>0$ , there exists $r$ such that $f(\tilde{x}^{r})-\rho+\psi_{r}(\tilde{x}^{r})\leq$

$0$ . Because $\tilde{r}$ is arbitrary, the set $L=\{r|f(\tilde{x}^{r})-\rho+\psi_{r}(\tilde{x}^{r})\leq 0\}$ is infinite. Since
$\{\tilde{x}^{r}|r\in L\}\subseteq B$ , we can take an accumulation point $\tilde{x}^{*}\in B$ of $\{\tilde{x}^{r}|r\in L\}$ and a
subsequence $\{\tilde{x}^{r}|r\in L’\}$ converging to $\tilde{x}^{*}$ .

In the following, we will prove there exist a positive integer $\tilde{r}$ and a positive number
$\tilde{\delta}$ such that $f(x)-\rho+\psi_{r}(x)>0$ for every $x\in B(\tilde{x}^{*},\tilde{\delta})\cap B$ and $r\geq\tilde{r}$ . Because
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$\tilde{x}^{r}\in B(\tilde{x}^{*},\tilde{\delta})\cap B$ for sufficiently large $r\in L’$ , this contradicts that $\tilde{x}^{*}$ is an accumulation
point of $\{\tilde{x}^{r}|r\in L’\}$ , establishing the lemma.

We first consider the case where $\tilde{x}^{*}\in\overline{K}$ . Since $\overline{K}$ is compact, we can take $\epsilon>0$ such
that $f(x)-\rho\geq\epsilon$ for every $x\in\overline{K}$ . Then, there exists a positive number $\tilde{\delta}>0$ such that
$f(x)-\rho\geq\epsilon/2$ for every $x\in B(\tilde{x}^{*},\tilde{\delta})$ . On the other hand, Lemma 4 implies that there
exists $\tilde{r}>0$ such that $\psi_{r}(x)\geq-\epsilon/4$ for every $r\geq\tilde{r}$ and $x\in B$ . Therefore if $r\geq\tilde{r}$ and
$x\in B(\tilde{x}^{*},\tilde{\delta})\cap B$ , then $f(x)-\rho+\psi_{r}(x)\geq\epsilon/4>0$ .

Next we consider the case where $\tilde{x}^{*}\in B\backslash \overline{K}$ . Let $\kappa^{*}=-\inf\{f(x)-\rho|x\in B\}+1$ ,
which is finite because $B$ is compact. Then Lemma 5 implies that there exist a positive
number $\tilde{\delta}$ and a positive integer $\tilde{r}$ such that $\psi_{r}(x)\geq\kappa^{*}$ for every $x\in B(\tilde{x}^{*},\tilde{\delta})\cap B$ and
$r\geq\tilde{r}$ . For such $x$ and $r$ , we have $f(x)-\rho+\psi_{r}(x)\geq 1>0$ . This completes the proof. $\square$

Finally, to prove (ii) of Theorem 1, we need the following lemma estabilished by
Lasserre and Netzer [11].

Lemma 6 (Corollary 3.3 of [11]) Let $f\in \mathbb{R}[x]$ be a polynomial nonnegative on $[$ -1, $1]^{n}$ .
For arbitmry $\epsilon>0$ , there exists some $\hat{r}$ such that for every $r\geq\hat{r}$ , the polynomial $f+\epsilon\Theta_{r}$

is an $SOS$.

Proof of (ii) of Theorem 1 : We have already proved that there exist $\tilde{r}$ such that for all
$r\geq\tilde{r},$ $f(x)-\rho+\psi_{\overline{r}}(x)>0$ for every $x\in B=[-b, b]^{n}$ . If we put $g(y)=f(by)-\rho+\psi_{\overline{r}}$ (by),
then $g(y)>0$ over $[$ -1, $1]^{n}$ . Now Lemma 6 shows that for arbitrary $\epsilon>0$ , there exists
$\hat{r}$ such that for every $r\geq\hat{r},$ $g(y)+\epsilon\Theta_{r}(y)$ is an SOS. Putting $by=x$ , we conclude that
$f+\epsilon\Theta_{r,b}+\psi_{\overline{r}}$ is also an SOS. $\square$

3 Extensions
In this section, we give two extensions of Theorem 1. The first extension is for POP with
correlative sparsity. The second one is for POP over symmetric cones.

3.1 Extension to POP with correlative sparsity
In [15], the authors introduced the correlative sparsity for POP (1), proposed a sparse
SDP relaxation that exploits the correlative sparsity, and demonstrated that the sparse
SDP relaxation outperforms Lasserre‘s SDP relaxation. The sparse SDP relaxation is
implemented in [16] and its source code is freely available.

We give the definition of the correlative sparsity for POP (1). For this, we use $n\cross n$

symbolic symmetric matrix $R$ , whose element is either $0$ or $\star$ representing a nonzero value.
We assign either $0$ or $\star$ as follows:

$R_{k,\ell}=\{\begin{array}{l}\star if k=\ell,\star if \alpha_{k}\geq 1 and \alpha_{\ell}\geq 1 for some \alpha\in \mathcal{F},\star if x_{k} and x_{\ell} are involved in the polynomial f_{j} for some j=1, \ldots, m,0 o.w.\end{array}$

POP (1) is said to be correlatively sparse if the matrix $R$ is sparse.
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We give the detail of the sparse SDP relaxation proposed in [15]. We induce the
undirected graph $G(V, E)$ from $R$ . Here $V$ $:=\{1, \ldots, n\}$ and $E$ $:=\{(k, l)|R_{k,\ell}=$

$\star\}$ . After applying the chordal extension to $G(V, E)$ , we generate all maximal cliques
$C_{1},$

$\ldots,$
$C_{p}$ of the extension $G(V,\tilde{E})$ with $E\subseteq\tilde{E}$ . See [2, 15] and references therein for the

detail of the chordal extension. For a finite set $C\subseteq \mathbb{N},$ $x_{C}$ denotes the subvector which
consists of $x_{i}(i\in C)$ . For all $f_{1},$

$\ldots,$
$f_{m}$ in POP (1), $F_{j}$ denotes the set of indices whose

variables are involved in $f_{j}$ , i. e., $F_{j}$ $:=\{i\in\{1,$
$\ldots,$

$n\}|\alpha_{i}\geq 1$ for some $\alpha\in \mathcal{F}_{j}\}$ . For a
finite set $C\subseteq \mathbb{N}$ , the sets $\Sigma_{r,C}$ and $\Sigma_{\infty,C}$ denote the subsets of $\Sigma_{r}$ as follows:

$\Sigma_{r,C}$ $:=$ $\{\sum_{k=1}^{q}g_{k}(x)^{2}\forall k=1,$
$\ldots,$ $q,$ $g_{k}\in \mathbb{R}[x_{C}]_{r}\}$ ,

$\Sigma_{\infty,C}$ $:=$
$\bigcup_{r\geq 0}\Sigma_{r,C}$

.

Note that if $C=\{1, \ldots, n\}$ , then we have $\Sigma_{r,C}=\Sigma_{r}$ and $\Sigma_{\infty,C}=\Sigma$ . The sparse SDP
relaxation problem with relaxation order $r$ for POP (1) is obtained from the following
SOS relaxation problem:

$\rho_{r}^{sparse}:=\sup\{\rho$ $\sigma_{0,h}\in\Sigma_{r,C_{h}}(h=1, \ldots,p),\sigma_{j}\in\Sigma_{r_{j},D_{j}}f-\rho=\sum_{h=1}^{p}\sigma_{0,h}+\sum_{j=1}^{m}\sigma_{j}f_{j},(j=1, \ldots, m)\}$ , (7)

where $D_{j}$ is the union of some of the maximal cliques $C_{1},$
$\ldots,$

$C_{p}$ such that $F_{j}\subseteq C_{h}$ and
$r_{j}=r-\lceil\deg(f_{j})/2\rceil$ for $j=1,$ $\ldots,$

$m$ .
It should be noted that another sparse SDP relaxation is proposed in [3, 10, 12] and

the asymptotic convergence is proved. In contrast, the convergence of the sparse SDP
relaxation (7) is not shown although (7) is smaller than the SDP problem obtained by
using the sparse SDP relaxation proposed in [3, 10, 12].

We give an extension of Theorem 1 into POP with correlative sparsity. If $C_{1},$
$\ldots,$

$C_{p}\subseteq$

$\{1, \ldots, n\}$ satisfy the following property, we refer this property as the running intersection
property (RIP):

$\forall h\in\{1, \ldots,p-1\},$ ョ$t\in\{1, \ldots,p\}$ such that $C_{h+1}\cap(C_{1}\cup\cdots\cup C_{h})\subseteq C_{t}$ .

For $C_{1},$
$\ldots,$

$C_{p}\subseteq\{1, \ldots, n\}$ , we define sets $J_{1},$
$\ldots,$

$J_{p}$ as follows:

$J_{h}:=\{j\in\{1, \ldots, m\}|f_{j}\in \mathbb{R}[x_{C_{h}}]\}$ .

Clearly, we have $\bigcup_{h=1}^{p}J_{h}=\{1, \ldots, m\}$ . In addition, we define

$\psi_{r,h}(x)$ $:=$ $- \sum_{j\in J_{h}}(1-\frac{f_{j}(x)}{R_{j}})^{2r}$ ,

$\Theta_{r,h,b}(x)$ $;=$ $1+ \sum_{i\in C_{h}}(\frac{x_{i}}{b})^{2r}$

for $h=1,$ $\ldots,p$ .
By a similar proof of the theorem on convergence of the sparse SDP relaxation given

in [3], we can establish the correlatively sparse case of Theorem 1. Indeed, we can obtain
the theorem by using [3, Lemma 4] and Theorem 1.
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Theorem 7 Assume that nonempty sets $C_{1},$
$\ldots,$

$C_{p}\subseteq\{1, \ldots, n\}$ satisfy (RIP) and we
can decompose $f$ into $f=\hat{f}_{1}+\cdots+\hat{f}_{p}$ with $\hat{f}_{h}\in \mathbb{R}[x_{C_{h}}](h=1, \ldots,p)$ . Under assumptions
in Theorem 1, there exists $\tilde{r}\in \mathbb{N}$ such that for all $r\geq\tilde{r},$ $f- \rho+\sum_{h=1}^{p}\psi_{r,h}$ is positive over
$B=[-b, b]^{n}$ . In addition, for any $\epsilon>0$ , there exists $\hat{r}\in \mathbb{N}$ such that for every $r\geq\hat{r}$ ,

$f- \rho+\epsilon\sum_{h=1}^{p}\Theta_{r,h,b}+\sum_{h=1}^{p}\psi_{\overline{r},h}\in\Sigma_{\infty,C_{1}}+\cdots+\Sigma_{\infty,C_{p}}$.

We remark that it could follow from Theorem 5 in [3] that Theorem 7 holds without
the polynomial $\epsilon\sum_{h=1}^{p}\Theta_{r,h,b}$ if we assumed in Theorem 7 that all quadratic modules
generated by $f_{j}(j\in C_{h})$ for all $h=1,$ $\ldots,p$ are Archimedean. To prove Theorem 7, we
describe Lemma 4 in [3].

Lemma 8 ([3, Lemma $4l$) Assume that we decompose $f$ into $f=\hat{f}_{1}+\cdots+\hat{f}_{p}$ with
$\hat{f}_{h}\in \mathbb{R}[x_{C_{h}}]$ and $f>0$ on K. Then for any bounded set $B\subseteq \mathbb{R}^{n}$ , there exist $\lambda\in(0,1]$ ,
$r\in \mathbb{N}$ and $g_{h}\in \mathbb{R}[x_{C_{h}}]$ with $g_{h}>0$ on $B$ such that

$f= \sum_{h=1j}^{p}\sum_{\in J_{h}}(1-\lambda f_{j})^{2r}f_{j}+\sum_{h=1}^{p}g_{h}$ .

Proof of Theorem 7: We choose $\overline{K}$ as $B$ in Lemma 8 because $\overline{K}$ is compact. Applying
Theorem 1 into $g_{h}$ in Lemma 8, we obtain the desired result. $\square$

3.2 Extension to POP with symmetric cones
In this subsection, we extend Theorem 1 into POP over symmetric cones, i. e.,

$f^{*}:= \inf_{x\in \mathbb{R}^{n}}\{f(x)|G(x)\in \mathcal{E}_{+}\}$ , (8)

where $f\in \mathbb{R}[x],$ $\mathcal{E}_{+}$ is a symmetric cone associated with an N-dimensional Euclidean
Jordan algebra $\mathcal{E}$ , and $G$ is $\mathcal{E}$-valued polynomial in $x$ . The feasible region $K$ of POP (8)
is $\{x\in \mathbb{R}^{n}|G(x)\in \mathcal{E}_{+}\}$ . Note that if $\mathcal{E}$ is $\mathbb{R}^{m}$ and $\mathcal{E}_{+}$ is the nonnegative orthant $\mathbb{R}_{+}^{m}$ ,
then (8) is identical to (1). In addition, because $nxn$ symmetric positive semidefinite
cone $S_{+}^{n}$ is a symmetric cone, the bilinear matrix inequalities can be formulated as (8).

To construct $\psi_{r}$ for (8), we introduce some notation and symbols. The product and
inner product of $x,$ $y\in \mathcal{E}$ are, respectively, $xoy$ and $x\bullet y$ . Let $e$ be the identity element in
the Jordan algebra $\mathcal{E}$ . For any $x\in \mathcal{E}$ , we have $eox=x\circ e=x$ . We can define eigenvalues
for all elements in the Jordan algebra $\mathcal{E}$ as well as square matrices. See [1] for the detail.
We construct $\psi_{r}$ for (8) as follows:

$M$ $:=$ $\sup$ $\{$ maximum absolute eigenvalue of $G(x)|x\in K^{-}\}$ ,

$\psi_{r}(x)$ $:=$ $-G(x) \bullet(e-\frac{G(x)}{M})^{2r}$ (9)

where we define $x^{k}$ $:=x^{k-1}\circ x$ for $k\in \mathbb{N}$ and $x\in \mathcal{E}$ .
Lemma 4 in [7] shows that $\psi_{r}$ defined in (9) has the same properties as in Lemmas 4

and 5. Therefore, we can extend Theorem 1 into POP (8).
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Theorem 9 For a given $\rho$ , we assume that $f(x)-\rho>0$ for every $x\in\overline{K}$ . Then there
exists $\tilde{r}\in \mathbb{N}$ such that for all $r\geq\tilde{r},$ $f-\rho+\psi_{r}$ is positive over B. In addition, for any
$\epsilon>0$ , there $e$伽$sts\hat{r}\in N$ such $tha$オ for every $r\geq\hat{r}$ ,

$f-\rho+\epsilon\Theta_{r,b}+\psi_{\tilde{r}}\in\Sigma$ .
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