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Abstract. We present a new proof of the convergence of the conical algorithm for concave mini-
mization under a pure $\omega$-subdivision strategy. For this purpose, we introduce a weaker condition
of nondegeneracy for sequences of nested cones generated in the algorithm. We show that this
condition is not only usefUl for proving the convergence but also suggests a possible class of
convergent subdivision strategies.
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1 Introduction

Let $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ be a quasiconcave function and consider the following problem:

$|minimizesubjectto$ $Ax\leq bf(x)$

, $x\geq 0$ , (1)

where A $\in \mathbb{R}^{mxn}$ and $b\in \mathbb{R}^{m}$ . Over the past four decades, many algorithms have been de-
veloped to solve this multiextremal global optimization problem. Among them is the conical
algorithm, the convergence of which is the main concem in this paper. This algorithm uses a
branch-and-bound technique, and repeatedly deletes a portion of the feasible set intersected with
some polyhedral cone unless it contains some $x$ such that $f(x)<\gamma$ for the incumbent value $\gamma$ .
To subdivide the cone for branching, Tuy proposed the concept of $\omega$-subdivision process in 1964
[9]. In this subdivision process, each cone is subdivided radially from a feasible point, which is
given as a byproduct of the bounding operation. In spite of extensive studies, the convergence
of this process remained an open question until the late $1990s$ . In 1991, Tuy [10] showed that
the convergence is guaranteed if the $\omega$-subdivision process satisfies a certain kind of nondegen-
eracy condition. To the present, however, yet none has succeeded in proving the nondegeneracy
of the $\omega$-subdivision process. At last, after ten years of [10], Jaumard and Meyer showed the
convergence of $\omega$-subdivision with no help of the nondegeneracy [3, 5]. Around the same time,
Locatelli separately proved it in a different way, but still without using the nondegeneracy [7].

Those earlier studies allowed us to apply the algorithm with $\omega$-subdivision to (1) without
having to worry about its convergence. However, it remains unsolved whether or not the $\omega-$

subdivision process is nondegenerate. In this paper, we introduce a new notion of nondegener-
acy, calledpseudo-nondegeneracy, which is a weaker condition than the original nondegeneracy.
We then show the $\omega$-subdivision process is pseudo-nondegenerate, and give another proof of the
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convergence using the pseudo-nondegeneracy, along the lines of Tuy’s research [10]. Further-
more, we present a certain class of pseudo-nondegenerate subdivision strategies, which includes
$\omega$-subdivision as a special case.

2 Conical Algorithm

Let us denote the feasible set of (1) by the intersection of two polyhedral sets:

$D=\{x\in \mathbb{R}^{n}| Ax\leq b\}$ , $\Lambda_{1}=\{x\in \mathbb{R}^{n}|x\geq 0\}$ .

For simplicity, we assume that

(a) the feasible set $D\cap\Lambda_{1}$ is bounded, and

(b) the origin $0\in \mathbb{R}^{n}$ is a vertex of $D\cap\Lambda_{1}$ and incident to exactly $n$ linearly independent edges.

Also let $\gamma$ be an arbitrary number satisfying

$\gamma<f(0)$ ,

and let
$C_{\gamma}=\{x\in \mathbb{R}^{n}|f(x)\geq\gamma\}$ .

In addition to (a) and (b), assume through the paper that

(c) $C_{\gamma}$ is a bounded set.

In the rest of this section, after providing some basic operations needed in the conical algorithm,
we give a description of the algorithm.

$\gamma$-extension

For any nonzero vector $d\in \mathbb{R}^{n}$ , let

$\theta=\max\{\alpha|f(\alpha d)\geq\gamma, \alpha d\in C_{\gamma}, \alpha\geq 0\}$ .

We refer to $q=\theta d$ as the $\gamma$-extension along $d$ . Note that $\Vert q\Vert$ is always finite under the assump-
tion (c).

Deletion test

Suppose that $q_{1},$ $\ldots,$ $q_{n}$ are $\gamma$-extensions and linearly independent. Let $\Lambda$ denote the simplicial
cone spanned by $q_{1},$ $\ldots,$ $q_{n}$ , i.e.,

$\Lambda=conQ\equiv\{x\in \mathbb{R}^{n}|x=\sum_{j=1}^{n}q_{j}\lambda_{j}, \lambda\geq 0\}$ ,

where
$Q=[q_{1}, \ldots, q_{n}]\in \mathbb{R}^{n\cross n}$ .
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Also let
$G^{-}=\{x\in \mathbb{R}^{n}|eQ^{-1}x\leq 1\}$ ,

where $e\in \mathbb{R}^{n}$ is the all-ones row vector. Note that

$0\in G^{-}\cap\Lambda\subset C_{\gamma}$ . (2)

We can check if $D\cap\Lambda\subset G^{-}\cap\Lambda$ , by solving a linear programming problem:

$|maximizesubjectto$ $Ax\leq beQ^{-1_{X}}$

, $Q^{-1}x\geq 0$ . (3)

Let $\omega(\Lambda)$ be an optimal solution of (3) and $\zeta(\Lambda)$ the optimal value. If $((\Lambda)\leq 1$ , then $D\cap\Lambda\subset$

$G^{-}\cap\Lambda$ , and hence $f(x)\geq\gamma$ for any $x\in D\cap\Lambda$ . If $\gamma=f(x^{*})$ for the incumbent $x^{*}$ , we can
remove $\Lambda$ from consideration because it contains no feasible solution better than $x^{*}$ .

$\omega$-subdivision

Starting from $\Lambda=\Lambda_{1}$ , the conical algorithm subdivides $\Lambda$ recursively, via a given point $p\in\Lambda$ .
Let $J$ be an index set such that $i\in J$ if $p$ is linearly independent of $q_{1},$ $\ldots,$ $q_{i-1},$ $q_{i+1},$ $\ldots,$ $q_{n}$ .
Let ext(p) denote the $\gamma$-extension along $p$ . Then $\Lambda$ is partitioned into $|J|$ children

con $[q_{1},$
$\ldots,$ $q_{i-1}$ , ext (p), $q_{i+1},$ $\ldots,$

$q_{n}]$ , $j\in J$.

Recall that the optimal solution $\omega(\Lambda)$ of (3) is a point in $\Lambda$ . If we choose $p=\omega(\Lambda)$ , this
subdivision is called $\omega$-subdivision.

Algorithm description

For a given tolerance $\epsilon\geq 0$ , the conical algorithm can be described as follows:

ConicalAlgorithm with $\omega$-subdivision

Step 1. (Initialization) Let $x^{*}arrow 0,$ $f^{*}arrow f(O),$ $\gammaarrow f^{*}-\epsilon$ . Solve (3) with $\Lambda=\Lambda_{1}$ to obtain
$\omega(\Lambda_{1})$ and $\zeta(\Lambda_{1})$ . If $\zeta(\Lambda_{1})\leq 1$ , then terminate. Otherwise, let $karrow 1$ , and $\ovalbox{\tt\small REJECT}arrow\{\Lambda_{1}\}$ .

Step 2. (Subdivision) Select a $\Lambda_{k}\in$ arg max$\{\zeta(\Lambda)|\Lambda\in\ovalbox{\tt\small REJECT}\}$ . Let $\omega^{k}arrow\omega(\Lambda_{k}),$ $\zeta^{k}arrow\zeta(\Lambda_{k})$ ,
and subdivide $\Lambda_{k}$ via $\omega^{k}$ . Let $\ovalbox{\tt\small REJECT}$ denote the set of the resultin$g$ subcones.

Step 3. (Deletion test) For each cone $\Lambda\in\ovalbox{\tt\small REJECT}$ , solve (P) to obtain $\omega(\Lambda)$ and $\zeta(\Lambda)$ . If $\zeta(\Lambda)>1$ ,
then add $\Lambda$ to $\ovalbox{\tt\small REJECT}$ .

Step 4. (Updating the incumbent) If $f(\omega(\Lambda))<f^{*}$ for some $\Lambda\in\ovalbox{\tt\small REJECT}$, then $x^{*}arrow\omega(\Lambda),$ $f^{*}arrow$

$f(\omega(\Lambda))$ , and $\gammaarrow f^{*}-\epsilon$ .

Step 5. (Optimality test) Let $\ovalbox{\tt\small REJECT}arrow\ovalbox{\tt\small REJECT}\backslash \{\Lambda_{k}\}$ . If $\ovalbox{\tt\small REJECT}$ is empty, terminate. Otherwise, retum to
Step 2 with $karrow k+1$ . 口

If this algorithm terminates after finitely many iterations, then $x^{*}$ is a globally $\epsilon$-optimal
solution of (1), i.e., it holds that

$f^{*}=f(x^{*})\leq f(x)+\epsilon$ , $\forall x\in D\cap\Lambda_{1}$ .
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3 Pseudo-Nondegeneracy

Suppose the conical algorithm does not terminate and generates an infinite sequence of nested
cones:

$\Lambda_{1}\supset\cdots\supset\Lambda_{k}\supset\Lambda_{k+1}\supset\cdots$ ,

where $\Lambda_{k+1}$ is a cone generated by subdividing $\Lambda_{k}$ via $\omega^{k}$ . For each $k$ , the cone $\Lambda_{k}$ is spanned by
$n$ linearly independent vectors $q_{k}^{j}$ , which are $\gamma$-extensions and the columns of $Q_{k}$ . Let us denote
the problem (3) with $\Lambda=\Lambda_{k}$ by

$(P_{k})|maximizesubjectto$ $Ax\leq beQ_{k}^{-1_{X}}$

, $Q_{k}^{-1}x\geq 0$ .

Note that we can assume
$\zeta^{k}>1$ , $k=1,2,$ $\ldots$ . (4)

Otherwise, $\Lambda_{k}$ must have been discarded by the deletion test.
Let us denote by $y^{k}$ the intersection point ofthe ray emanating from $0$ to $\omega^{k}$ with the bound-

ary of $G_{k}^{-}$ .

Deflnition 1. [10] The sequence ofnested cones $\{\Lambda_{k}|k=1,2, \ldots\}$ is said to be nondegenemte
if there exists a subsequence $\{k_{t}|t=1,2, \ldots\}$ and constant $M$ such that

$\Vert eQ_{k_{t}}^{-1}\Vert\leq M$ , $t=1,2,$ $\ldots$ .

Also, the subdivision process is nondegenerate ifevery sequence of nested cones is nondegener-
ate. 口

Proposition 1. [10] If $\{\Lambda_{k}|k=1, \ldots\}$ is nondegenerate, then

$\lim_{karrow+}\inf_{\infty}\Vert$ ext $(\omega^{k})-y^{k}\Vert=0$ . (5)

口

When $\{\Lambda^{k}|k=1,2, \ldots\}$ satisfies the condition (5), the sequence is said to be normal. It is
known [10] that the conical algorithm converges to a globally optimal solution ifevery sequence
of nested simplices is normal. In other words, to prove the convergence of the algorithm, we
need only show that the norm of the cost vector is bounded from above for every $(P_{k})$ . This can
be done at least for a problem equivalent to $(P_{k})$ .

By substituting $x=Q_{k}\lambda$, problem $(P_{k})$ can be rewritten as

$|maximizesubjectto$ $AQ_{k}\lambda\leq be\lambda$

, $\lambda\geq 0$ . (6)

The dual problem is given as follows:

$|minimizesubjectto$ $\mu AQ_{k}\mu b\geq e$

, $\mu\geq 0$ . (7)
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Let $\lambda^{k}$ and $\mu^{k}$ be optimal solutions of (6) and (7), respectively. Then $\omega^{k}=Q_{k}\lambda^{k}$ , and by the
assumption (4) we have

$\zeta^{k}=e\lambda^{k}=\mu^{k}b>1$ .
For the dual optimal solution $\mu^{k}$ , let us define

$(P_{k}’)|maximizesubjectto$ $Ax\leq b\mu^{k}Ax$

, $Q_{k}^{-1}x\geq 0$ .

This problem is equivalent to $(P_{k})$ in the following sense:

Lemma 2. An optimal solution of $(P_{k}’)$ is $\omega^{k}$ , and the optimal value is equal to $\zeta^{k}$ . Conversely,
$\iota fx’$ is an optimal solution of $(P_{k}^{l})$ , then $x$

‘ is an optimal solution of $(P_{k})$ . $\square$

Proof. Problem $(P_{k}’)$ is equivalent to

$|maximizesubjectto$ $AQ_{k}\lambda\leq b\mu^{k}AQ_{k}\lambda$

, $\lambda\geq 0$ , (8)

the dual ofwhich is
minimize $\mu b$

subject to $\mu AQ_{k}\geq\mu^{k}$AQ$k$ , $\mu\geq 0$ . (9)

It is obvious that $\lambda^{k}$ and $\mu^{k}$ are feasible for (8) and (9), respectively. By the complementary
slackness between 6 and 7, we have

$\mu^{k}(b-AQ_{k}\lambda^{k})=0$ ,

which reduces to the duality $\mu^{k}$AQ$k\lambda^{k}=\mu^{k}b$ between (8) and (9). Similarly, the converse can
also be proven. $\square$

Now let us introduce a new notion, pseudo-nondegeneracy, for the sequence $\{\Lambda_{k}|k=$

$1,2,$ $\ldots\}$ .

Definition 2. The sequence ofnested cones $\{\Lambda_{k}|k=1,2, \ldots\}$ is said to bepseudo-nondegener-
ate if there exists a subsequence $\{k_{t}|t=1, \ldots\}$ and constant $M$ such that

$\Vert\mu^{k}A\Vert\leq M$ , $k=1,2,$ $\ldots$ . (10)

Also, the subdivision process is pseudo-nondegenerate if every sequence of nested cones is
pseudo-nondegenerate. 口

Let
$\Lambda_{k}^{+}=\{x\in \mathbb{R}^{n}|x=\sum_{j\in J_{k}}q_{j}^{k}\lambda_{j}, \lambda\geq 0\}$

, $J_{k}=\{j|\lambda_{j}^{k}>0\}$ .

We can show that $\{\Lambda_{k}|k=1,2, \ldots\}$ is pseudo-nondegenerate even when $\Lambda_{k+1}$ is generated by
subdividing $\Lambda_{k}$ via any $x^{k}\in\Lambda_{k}^{+}$ for $k=1,2,$ $\ldots$ . Let us refer to such a subdivision strategy
as generalized $\omega$-subdivision. To prove the pseudo-nondegeneracy of generalized $\omega$-subdivision,
we need further two lemmas, which are derived from the complementary slackness between
problems (6) and (7).

181



Lemma 3. It holds that
$\mu^{k}$Ax $\geq eQ_{k}^{-1_{X}}$ , $\forall x\in\Lambda_{k}$ .

In particular,
$x\in\Lambda_{k}^{+}\Rightarrow\mu^{k}$Ax $=eQ_{k}^{-1_{X}}$ .

口

Lemma 4. The optimal value $\zeta^{k}$ of $(P_{k})$ is nonincreasing in $k$, i. e.,

$\zeta^{1}\geq\cdots\geq\zeta^{k}\geq(^{k+1}\geq\cdots>1$ .

口

Theorem 5. Any generalized $\omega$-subdivision process is pseudo-nondegenerate.

Proof. Assume that $\Vert\mu^{k}A\Vert>0$, since otherwise there is nothing to prove, and define a halfspace

$H=\{x\in \mathbb{R}^{n}|\mu^{k}Ax \leq\zeta^{k}\}$ .

If $x\in D$ , then
$\mu^{k}$Ax $\leq\mu^{k}b=\zeta^{k}$ .

Hence, $D$ is a subset of $H$ . This also implies that the distance from $0$ , which is an interior point
of $D$ by assumption (b), to the boundary hyperplane of $H$ is bounded from below by the distance
from $0$ to the boundary of $D$ , i.e.,

$\rho(0, \partial H)\geq\rho(0, \partial D)>0$ .

It follows from this observation that

$\Vert\mu^{k}A\Vert\leq\zeta^{k}/\rho(0, \partial D)$ ,

Furthermore, since $\zeta^{k}$ is nonincreasing in $k$ , we have

$\Vert\mu^{k}A\Vert\leq\zeta^{1}/\rho(0, \partial D)$ ,

the right-hand-side ofwhich is bounded from above by a constant for each instance of (1). There-
fore, if we choose it as $M$, then (10) is ffilfilled for any $\{\Lambda_{k}|k=1,2, \ldots\}$ as long as $\Lambda_{k+1}$ is
generated by subdividing $\Lambda_{k}$ via an $x^{k}\in\Lambda_{k}^{+}$ . 口

4 Convergence of the subdivision process

We should remark that pseudo-nondegeneracy is a weaker condition than nondegeneracy, be-
cause the latter implies the former. Nevertheless, the normality (5) in Proposition 2 holds if the
sequence $\{\Lambda_{k}|k=1,2, \ldots\}$ just satisfies the pseudo-nondegeneracy.

Let

$G_{k}=\{x\in \mathbb{R}^{n}|eQ_{k}^{-1}x=1\}$

$H_{k}=\{x\in \mathbb{R}^{n}|\mu^{k}Ax=1\}$ , $H_{k}^{+}=\{x\in \mathbb{R}^{n}|\mu^{k}Ax\geq 1\}$ .
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Lemma 6. Let $x^{k}$ be any point in $\Lambda_{k}^{+}and$ $v^{k}$ the intersection ofthe ray emanatingfrom $0$ to $x^{k}$

with $G_{k}$ . Then
$v^{k}\in H_{r}^{+}$ , $r=1,$ $\ldots,$ $k-1$ .

口

Lemma 7. Let $\{\Lambda_{k}|k=1,2, \ldots\}$ be a sequence ofnested cones such that $\Lambda_{k+1}$ is obtained by
subdividing $\Lambda_{k}$ via an $x^{k}\in\Lambda_{k}^{+}for$ $k=1,2,$ $\ldots$ . There exists a subsequence $\{k_{t}|t=1,2, \ldots\}$

such that
$\{x^{k_{2\epsilon-1}}, x^{k_{2s}}\}\subset\Lambda_{k_{2s}}^{+}$ , $s=1,2,$ $\ldots$ . (11)

口

Theorem 8. Let $\{\Lambda_{k}|k=1,2, \ldots\}$ be a sequence ofnested cones such that $\Lambda_{k+1}$ is obtained
by subdividing $\Lambda_{k}$ via an $x^{k}\in\Lambda_{k}^{+}for$ $k=1,2,$ $\ldots$ . Then

$\lim_{karrow+}\inf_{\infty}\Vert$ ext $(x^{k})-v^{k}\Vert=0$ , (12)

where $v^{k}$ is the intersection ofthe ray emanatingfrom $0$ to $x^{k}$ with $G_{k}$ .

Proof. Let $\{k_{t}|t=1,2, \ldots\}$ be a subsequence satisfying (11), and abbreviate $k_{t}$ to $t$ . As seen
in Lemma 6, while $v^{t}$ is not a point of $H_{t+1}^{+}$ , we have

$v^{t}\in\bigcap_{r=1}^{t}H_{r}^{+}$ .

Hence, according to the bounded convergence principle (see e.g., Lemma III.2 in [2], as $tarrow$

$+\infty$ , we have $\rho(v^{t}, H_{t+1}^{+})arrow 0$ , and

$\rho(v^{t}, H_{t+1})arrow 0$.

However, as is shown in Figure 1, we have

$\Vert$ ext $( x^{t})-v^{t}\Vert=\frac{\rho(\sqrt{},G_{t+1})}{\rho(0,G_{t+1})}\Vert$ext $(x^{t})\Vert$ (13)

Suppose $t$ is an odd number. Then both $v^{t}$ and ext $(x^{t})$ are points of $\Lambda_{t}^{+}\cap\Lambda_{t+1}^{+}$ because $x^{t}$

belongs to the two cones. From Lemma 3, we see that

$\mu^{t}Av^{t}=eQ_{t}^{-1}v^{t}$ , $\mu^{t}$Aext$(x^{t})=eQ_{t}^{-1}$ext $(x^{t})$ .

Therefore, if $t=2s-1$ , we may replace (13) by

$\Vert$ ext $( x^{2s-1})-v^{2s-1}\Vert=\frac{\rho(v^{2s-1},H_{2s})}{\rho(0,H_{2s})}\Vert$ext $(x^{2s-1})\Vert$ .

Since $\Lambda_{k}$ ’s are generated through a generalized $\omega$-subdivision process, there exists some $M$ such
that $1/\rho(0, H_{2s})=\Vert\mu^{2s}A\Vert<M$ . Also $\Vert$ ext $(x^{2s-1})\Vert$ is bounded because ext $(x^{2s-1})\in\partial C_{\gamma}$ ,
and besides $\rho(v^{2s-1}, H_{2s})arrow 0$ as $sarrow+\infty$ . Consequently, we have $\Vert$ ext $(x^{2s-1})-v^{2s-1}\Vertarrow 0$

as $sarrow+\infty$ . 口
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Figure 1: Similar triangles.

The normality of the sequence $\{\Lambda_{k}|k=1,2, \ldots\}$ generated by the usual $\omega$-subdivision is
guaranteed as a straightforward corollary ofTheorem 8, whether it is nondegenerate or not.

Corollary 9. Let $\{\Lambda_{k}|k=1,2, \ldots\}$ be a sequence ofnested cones such that $\Lambda_{k+1}$ is obtained
by subdividing $\Lambda_{k}$ via $\omega^{k}$ for $k=1,2,$ $\ldots$ . Then

$\lim_{karrow+}\inf_{\infty}\Vert$ ext$(\omega^{k})-y^{k}\Vert=0$ .

口

5 Concluding remark

In this paper, we have introduced a new cocept of nondegeneracy, named pseudo-nondegenracy,
for a sequence of nested cones generated in the conical algorithm. We have shown that the
$\omega$-subdivision process is pseudo-nondegenerate and therefore normal, even though it is still an
open question whether or not the process is nondegenerate in the original sense. We have also
shown in Theorem 8 that a class of generalized $\omega$-subdivision processes satisfies a condition
similar to the nolmality. The usual $\omega$-subdivision belongs to the class and its normality is just a
corollary ofthis theorem. However, this condition does not always guarantee the convergence of
the conical algorithm unlike the normality. To make it convergent, we need a hrther procedure
which determines a subdivision point for each cone generated in the algorithm. We will discuss
the procedure in detail, in the forthcoming paper.
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