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1. INTRODUCTION
Let $\Sigma_{g,1}$ be a compact oriented surface of genus $g\geq 1$ with one boundary component.
Homology cylinders over a surface were first introduced by Goussarov [4] and Habiro [6] in

their surgery theory of 3-manifolds developed for the study of finite-type invariants. In [3, 9]
Garoufalidis and Levine introduced the homology cobordism group of homolo$gy$ cylinders,
which can be seen as an enlargement of the mapping class group of the surface. We denote by
$C_{g},{}_{1}C_{g,1}^{\iota rr}$ and $\prime H_{g,1}$ the monoid of homology cylinders over $\Sigma_{g,1}$ , the submonoid consisting of
irreducible ones as 3-manifold and the smooth homology cobordism group respectively. The
Johnson filtrations $C_{g,1}[k],$ $\prime H_{g,1}[k]$ of $C_{g,1},$ $\prime H_{g,1}$ are defined as the kemels of the actions on
$\pi_{1}\Sigma_{g.1}/(\pi_{1}\Sigma_{g,1})_{k}$ , where the lower central series $G_{k}$ of a group $G$ is defined inductively by $G_{1}$ $:=$

$G$ and $G_{k+1}$ $:=[G_{k},G]$ .
Sakasai [15, 16] studied torsion invariants of homology cylinders with in general non-

commutative coefficients and showed by the degrees of these invariants associated to elements
of $H^{1}(\Sigma_{g,1})$ as a reduction that the submonoids $C_{g,1}^{irr}\cap C_{g,1}[k]$ for $k\geq 2$ and $Ker(C_{g.1}arrow \mathcal{H}_{g.1})$

have abelian quotients isomorphic to $(Z_{\geq 0})^{\infty}$ . Note that since the connected sum of a homology
cylinder and a homology 3-sphere is another homology cylinder, it is reasonable to restrict our
attention to $C_{g,1}^{j\gamma\gamma}$ in considering “size” of $C_{g,1}[k]$ . Morita [12] showed by using his “trace maps”
defined in [11] that the abelianization of $H_{g,1}[2]$ has infinite rank. Goda and Sakasai [5] showed
by using sutured Floer homology theory that $C_{g,1}^{irr}$ has an abelian quotient isomorphic to $(Z_{\geq 0})^{\infty}$ .
Cha, Friedl and Kim [1] showed by using abelian torsion invariants that the abelianization of
${}^{t}H_{g,1}$ contains a direct summand isomorphic to $(Z/2)^{\infty}$ , and that the abelianization of $\prime H_{g.1}[2]$

contains a direct summand isomorphic to $(Z/2)^{\infty}$ and one isomorphic to $Z^{\infty}$ if $g\geq 2$ .
The aim of this note is to present another reduction of non-commutative torsion invariants

introduced in [8] and to give another approach to Sakasai’s result for $C_{g,1}^{irr}\cap C_{g.1}[k]$ . More pre-
cisely, we consider the coefficients of the maximum order terms of torsion invariants associated
to bi-orders of $\pi_{1}\Sigma_{g,1}/(\pi_{1}\Sigma_{g,1})_{k}$ and use them to prove that the group completion of $C_{g.1}^{j\gamma\gamma}\cap C_{g.1}[k]$

has an abelian group quotient of infinite rank for $k\geq 2$ . In [8] we can find an analogous work
on submonoids of $C_{g,1}^{\iota rr}$ associated to solvable quotients of $\pi_{1}\Sigma_{g,1}$ .

In this note all homology groups and cohomology groups are with respect to integral coeffi-
cients unless specifically noted.

2. HOMOLOGY CYLINDERS

First we recall the definitions of homology cylinders and their homology cobordisms. See
[7], [17] for more details on homology cylinders.

To simplify notation we often write $\Sigma,\pi$ instead of $\Sigma_{g,1},\pi_{1}\Sigma_{g,1}$ , respectively. We take a base
point for $\pi$ in $\partial\Sigma$ .
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Definition 2.1. A homology cylinder $(M, i_{\pm})$ over $\Sigma$ is defined to be a compact oriented 3-
manifold $M$ together with embeddings $i_{+},$ $i_{-};\Sigmaarrow\partial M$ satisfying the following:

(i) $i_{+}$ is orientation preserving and $i_{-}$ is orientation reversing,
(ii) $\partial M=i_{+}(\Sigma)\cup i_{-}(\Sigma)$ and $i_{+}(\Sigma)\cap i_{-}(\Sigma)=i_{+}(\partial M)=i_{-}(\partial M)$,
(iii) $i_{+}|_{\partial\Sigma}=i_{-}|_{\partial\Sigma}$,
(iv) $(i_{+})_{*},$ $(i_{-})_{*}:$ $H.(\Sigma)arrow H_{*}(M)$ are isomorphisms.

Two homology cylinders $(M, i_{\pm}),$ $(N, j_{\pm})$ are called isomorphic if there exists an orientation pre-
serving homeomorphism $f:Marrow N$ satisfying $j_{\pm}=foi_{\pm}$ . We denote by $C_{g,1}$ the set of all
isomorphism classes of homology cylinders over $\Sigma_{g,1}$ .

A product operation on $C_{g,1}$ is given by stacking:
$(M, i_{\pm}) \cdot(N,j_{\pm});=(M\bigcup_{i_{-}\circ(j_{*})^{-1}}N, i_{+}, j_{-})$,

which tums $C_{g.1}$ into a monoid. The unit is given by the standard cylinder $(\Sigma\cross[0,1], id\cross l, u\cross O)$ .
As pointed out in [5, Proposition 2. 4] there is an epimorphism $F;C_{g,1}arrow\theta^{3}$ as follows,

where $\theta^{3}$ is the monoid of homology 3-spheres with the connected sum operation. For $(M, i_{\pm})\in$

$C_{g.1}$ , we can write $M=M’\# M’’$ , where $M’$ is the prime factor of $M$ containing $\partial M$ . Then
$F(M, i_{\pm})$ $:=M”$ . Therefore it is reasonable to consider the submonoid $C_{g,1}^{irr}$ consisting of all
homology cylinders whose underlying 3-manifolds are irreducible.

Deflnition 2.2. Two homology cylinders $(M, i_{\pm})\sim_{m}(N, j_{\pm})$ are said to be homology cobordant
if there exists a compact oriented smooth 4-manifold such that:

(i) $\partial W=M\bigcup_{i_{*}i_{-J_{-}^{arrow 1}}}\circ j_{+}^{-1},\circ(-N)$ ,
(ii) $H_{*}(M)arrow H_{*}(W),$ $H_{*}(N)arrow H_{*}(W)$ are isomorphisms.

We denote by $\mathcal{H}_{g,1}$ the quotient set of $C_{g.1}$ with respect to the equivalence relation of homology
cobordism.

The monoid structure of $C_{g,1}$ naturally induces a group structure of $\prime H_{g.1}$ . The inverse of
$[M, i_{\pm}]\in {}^{t}H_{g,1}$ is given by $[-M,i_{\tau}]$ .

We set $N_{k}$ $:=\pi/\pi_{k}$ . For $(M, i_{\pm})\in C_{g,1},$ $(i_{\pm})$. : $N_{k}arrow\pi_{1}M/(\pi_{1}M)_{i}$ are isomorphisms according
to Stallings’ theorem [18]. We define a homomorphism $\varphi_{k}:C_{g.1}arrow$ Aut $N_{k}$ by $\varphi_{k}(M, i_{\pm})$ $:=$

$(i_{+})_{*}^{-1}\circ(i_{-}).$ . By abuse of notation we also denote by $\varphi_{k}$ the namrally induced homomorphism
$\prime H_{g.1}arrow$ Aut $N_{k}$ .
Definition 23. The Johnsonfiltrations of $C_{g,1}$ and ${}^{t}H_{g,1}$ are the sequences

$...\subset C_{g,1}[k]\subset\cdots\subset C_{g,1}[2]\subset C_{g,1}[1]=C_{g,1}$ ,

$...\subset {}^{t}H_{g,1}[k]\subset\cdots\subset’H_{g,1}[2]\subset {}^{t}H_{g,1}[1]=lt_{g,1}$

respectively, where $C_{g.1}[k]$ and ${}^{t}H_{g.1}[k]$ are the kemels of $\varphi_{k}$ .

3. A REDUCTION OF THE TORSION HOMOMORPHISM

Next we review torsion invariants of homology cylinders and introduce another reduction of
the group where these torsion invariants ate defined, using a bi-order of the nilpotent quotient
$N_{k}:=\pi/\pi_{k}$ .

Let $K$ be a skew field. We write write $K_{ab}^{x}$ for the abelianization of the unit group $K^{x}$ . For
a finite CW-pair $(X, Y)$ and a homomorphism $\rho:Z[\pi_{1}X]arrow K$ such that the twisted homology
group $H_{*}^{\rho}(X, Y;K)$ associated to $\rho$ vanishes, the Reidemeister torsion $\tau_{\rho}(X, Y)\in K_{ab}^{x}/\pm\rho(\pi_{1}X)$

associated to $\rho$ is defined. See [10] and [19] for more details.
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We set $A_{k}$ $:=\pi_{k-1}/\pi_{k}$ . Since $A_{k}$ is torsion-free for $aI1k,$ $N_{k}$ has a finite filtration of normal
subgroups such that all successive quotient are torsion-free abelian groups. It is known that
for such a group $G$ (called poly-torsion-free-abelian), $Q[G]$ is a right (and left) Ore domain;
namely $\mathbb{Q}[G]$ embeds in its classical right ring of quotients $\mathbb{Q}(G)$ $:=\mathbb{Q}[G](\mathbb{Q}[G]\backslash 0)^{-1}[13]$ . For
$(M, i_{\pm})\in C_{g,1}$ , we denote by $\rho_{k}$ the composition of the homomorphisms

$Z[\pi_{1}M]arrow Z[\pi_{1}M/(\pi_{1}M)_{k}]arrow Z[N_{k}](i_{+})^{-1}arrow \mathbb{Q}(N_{k})$.
See [2, Proposition 2. 10] for a proof of the following lemma.

Lemma 3.1. For $(M, i_{\pm})\in C_{g},{}_{\}}H_{*}^{\rho\iota}(M, i_{+}(\Sigma);\mathbb{Q}(N_{k}))=0$ .
Definition 3.2. We define a map $\tau_{k}:C_{g.1}arrow \mathbb{Q}(N_{k})_{ab}^{\cross}/\neq N_{k}$ by

$\tau_{k}(M, i_{\pm}):=\tau_{\rho_{k}}(M, i_{+}(\Sigma))$.
The following proposition is a version of [1, Proposition 3. 5] and [8, Corollary 3.10]. See

also [16, Proposition 6. 6] for a related result. The proof is almost same as that of [8, Corollaly
3.10], and so we omit the proof.

Proposition 3.3. The map $\tau_{k}>\triangleleft\varphi_{k}:C_{g,1}arrow(\mathbb{Q}(N_{k})_{ab}^{\cross}/\pm N_{k})\triangleleft Aut(N_{k})$ is a homomorphism.

Corollary 3.4. The map $\tau_{k}:C_{g,1}[k]arrow \mathbb{Q}(N_{k})_{ab}^{X}/\pm N_{k}$ is a homomorphism.

We denote by $-:$ $Z[N_{k}]arrow Z[N_{k}]$ the involution defined by $\overline{\gamma}=\gamma^{-1}$ for $\gamma\in N_{k}$ and naturally
extend it to $\mathbb{Q}(N_{k})$ . We set

$D_{k}:=\{\pm\gamma\cdot q\cdot\overline{q}\in \mathbb{Q}(N_{k})_{\ell rb}^{x};\gamma\in N_{k},q\in \mathbb{Q}(\Gamma_{m})_{ab}^{x}\}$ .
The following theorem is also a version of [1, Theorem 3. 10] and [8, Corollary 3.13]. See them
for the proof.

Theorem 3.5. The map $\tau_{k}\cross\varphi_{k}:\mathcal{H}_{g,1}arrow(\mathbb{Q}(N_{k})_{ab}^{\cross}/D_{k})\triangleleft Aut(N_{k})$ is a homomorphism.

Corollary 3.6. The map $\tau_{k}:^{t}H_{g,1}[k]arrow \mathbb{Q}(N_{k})_{ab}^{\cross}/D_{k}$ is a homomorphism.

A bi-order $\leq$ of a group $G$ is a total order of $G$ satisfying that if $x\leq y$ , then $axb\leq ayb$ for all
$a,b,$ $x,y\in G$ . A group $G$ is called bi-orderable if $G$ admits a bi-order. It is well-known that every
finitely generated torsion-free nilpotent group is residually $p$ for any prime $p.$ Rhemmlla [14]
showed that a group which is residually $p$ for infinitely many $p$ is bi-orderable. Together with
the fact that $N_{k}$ is torsion-ffee, we see that $N_{k}$ is a bi-orderable.

In the following we fix a bi-order of $N_{k-1}$ . We define a map $c:Z[N_{k}]\backslash 0arrow \mathbb{Q}(A_{k})^{x}/\pm A_{k}$ by

$c( \sum_{\delta\in N_{k-1}}\sum_{\gamma\in N_{k},[\gamma]=\delta}a_{\gamma}\gamma)=[[\sum_{\gamma\in N_{k},[\gamma]\underline{-}\delta_{m}}a_{\gamma}\gamma)\gamma_{0}^{-1}]$ ,

where $\delta_{m\infty(}\in N_{k-1}$ is the maximum with respect to the fixed bi-order such that for some $\gamma\in N_{k}$

with $[\gamma]=\delta_{\max},$ $a_{\gamma}\neq 0$ , and $70\in N_{k}$ is an element with $[\gamma_{0}]=\delta_{mx}$. The proof of the following
lemma is straightforward.

Lemma 3.7. The map $c;Z[N_{k}]\backslash 0arrow \mathbb{Q}(A_{k})^{X}/\pm A_{k}$ does not depend on the choice $of\gamma_{0}$ and is
a monoid homomorphism.
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By the lemma we have a group homomorphism $Q(N_{k})_{ab}^{\cross}/\pm N_{k}arrow \mathbb{Q}(A_{k})^{X}/\pm A_{k}$ which maps
$f\cdot g^{-1}$ to $c(f)\cdot c(g)^{-1}$ for $f,g\in Z[N_{k}]\backslash 0$ . By abuse of notation, we use the same letter $c$

for the homomorphism. Since there is a namral section $Q(A_{k})^{\cross}/\pm A_{k}arrow \mathbb{Q}(N_{k})_{ab}^{\cross}/\pm N_{k}$ of $d$,
$\mathbb{Q}(A_{k})^{\cross}/\pm A_{k}$ can be seen as a direct summand of $\mathbb{Q}(N_{k})_{ab}^{X}/\pm N_{k}$ .

For irreducible $p,q\in Z[A_{k}]\backslash 0$ , we write $p\sim q$ if there exists $a\in A_{k}$ such that $p=\pm a\cdot q$ . Since
$Z[A_{k}]$ is a unique factorization domain, every $x\in \mathbb{Q}(A_{k})^{X}/\pm A_{k}$ can be written as $x= \prod_{[p]}[p]^{e}[p]$ ,

where $e_{[p]}$ is a uniquely determined integer. We have an isomorphism $e:Q(A_{k})^{\cross}/\pm A_{k}arrow\oplus_{[p]}Z$

defined by $e(x)= \sum_{[p]}e_{[p]}$ . Thus we obtain a homomorphism $e\circ c\circ\tau_{k}:C_{g.1}[k]arrow\oplus_{[p]}Z=Z^{\infty}$ .

4. CONSmUCnON AND COMPUTrlON

In this section we systematically construct the images of $e\circ c\circ\tau_{k}:C_{g.1}[k]arrow Z^{\infty}$ .
For nontrivia17 $\in\pi$ and a tame knot $K\subset S^{3}$ , we construct a homology cylinder $M(\gamma, K)$ as

follows. Let $*\in\Sigma$ be the base point for $\pi$ . We choose a smooth path $f:[0,1]arrow\Sigma$ representing
$\gamma$ such that $f^{-1}(*)=\{0,1\}$ , and define $f:[0,1]arrow\Sigma\cross[0,1],$ $h:[0,1]arrow\Sigma\cross[0,1]$ by $\tilde{f}(t)=$

$(f(t), t)$ and $h(t)=(*, 1-t)$. After pushed into the interior, $f\cdot h$ determines a tame knot $J\subset$

$Int(\Sigma\cross[0,1])$ . Let $E$, be the complement of an open tubular neighborhood $Z$ of $J$ . We take
a haming of $J$ so that a meridian of $J$ represents the conjugacy class of the generator of the
kemel of $\pi_{1}\partial Zarrow H_{1}(\Sigma\cross[0,1])$ compatible with the orientation of $J$ and that a longitude of $J$

represents the conjugacy class of the image of 7 by $(i_{-})_{*}:\piarrow\pi_{1}E_{J}$ . Let $E_{K}$ be the exterior of
$K$ . Now $M(\gamma, K)$ is the result of $attaching-E_{K}$ to $E_{J}$ along the boundaries so that alongimde
and a meridian of $K$ correspond to a meridian and a longimde of $J$ respectively.

Lemma 4.1. For all nontrivial $\gamma\in\pi$ and all knots $K\subset S^{3},$ $M( \gamma, K)\in C_{g.1}^{irr}\cap(\bigcap_{k}C_{g,1}[k])$ .

Proof. If $K$ is a trivial knot, then $M(\gamma, K)$ is the unit of $C_{g,1}$ for all nontrivial $\gamma\in\pi$ , and there is
nothing to prove. In the following we assume that $K$ is nontrivial.

Since $E_{J}$ and $E_{K}$ are both irreducible and $\partial Z$ and $\partial E_{K}$ are both incompressible, $M(\gamma, K)$ is
also irreducible.

Extending a degree 1 map $(E_{K}, \partial E_{K})arrow(Z,\partial Z)$ by the identity map on $E_{J}$ , we have
$f:M(\gamma, K)arrow\Sigma\cross[0,1]$ . The following commutative diagram of isomorphisms shows that
$M(\gamma, K)\in C_{g,1}[k]$ for all $k$ :

$\pi_{1}M(\gamma, K)/(\pi_{1}M(\gamma, K))_{k}$

$\pi_{1}(\Sigma\cross[0,1])/(\pi_{1}(\Sigma\cross[0,1]))_{k}$

$\square$

Proposition 4.2. Let $\gamma\in\pi_{k}\backslash 1$ . Then $\tau_{k+1}(M(\gamma, K))=[\Delta_{K}(\gamma)]$ for all $K$ .

Proof. We have the following short exact sequences of twisted chain complexes:

$0arrow C_{*}^{\rho_{k}}(\partial E_{K})arrow C_{*}^{\rho_{k}}(E_{J}, i_{+}(\Sigma))\oplus C_{*}^{\rho\iota}(E_{K})arrow C_{*}^{\rho\iota}(M(\gamma, K), i_{+}(\Sigma))arrow 0$,

$0arrow C_{*}^{\rho_{i}}(\partial Z)arrow C_{*}^{\rho\iota}(E_{J}, i_{+}(\Sigma))\oplus C_{*}^{\rho\iota}(Z)arrow C_{*}^{\rho\iota}(\Sigma\cross[0,1], i_{+}(\Sigma))arrow 0$ ,

34



where all the coefficients are understood to be $\mathbb{Q}(N_{k})$ . It is easily checked that
$H_{*}^{\rho_{k}}(\partial E_{K};\mathbb{Q}(N_{k}))=H_{*}^{\beta k}(E_{K};\mathbb{Q}(N_{k}))=H_{*}^{\rho_{k}}(\partial Z;\mathbb{Q}(N_{k}))=H_{*}^{\rho_{k}}(Z;\mathbb{Q}(N_{k}))=0$ .

Therefore by the homology long exact sequences
$H_{*}^{\rho k}(E_{J}, i_{+}(\Sigma);\mathbb{Q}(N_{k}))=0$.

Considering multiplicativity of Reidemeister torsion in the above exact sequences we obtain
$\tau_{\beta k}(E_{J}, i_{+}(\Sigma))\cdot\tau_{\rho k}(E_{K})=\tau_{\rho_{k}}(\partial E_{K})\cdot\tau_{\rho\kappa}(M(\gamma, K), i_{+}(\Sigma))$,

$\tau_{\rho_{k}}(E_{J}, i_{+}(\Sigma))\cdot\tau_{\rho_{k}}(Z)=\tau_{\beta t}(\partial Z)\cdot\tau_{\rho_{k}}(M(id), i_{+}(\Sigma))$ .
Here

$\tau_{\rho_{k}}(E_{K})=[\Delta_{K}(\gamma)(\gamma-1)^{-1}]$ ,

$\tau_{\rho_{k}}(Z)=[(\gamma-1)^{-1}]$ ,

$\tau_{\beta k}(\partial E_{K})=\tau_{\rho_{k}}(\partial Z)=\tau_{\rho_{k}}(\Sigma\cross[0,1], i_{+}(\Sigma))=1$ ,

which are easy to check. Now these equations give the desired formula. $\square$

Recall that for every monoid $S$ , there exists a monoid homomolphism $g:Sarrow u(s)$ to a
group $u(s)$ satisfying the following: For every monoid homomorphism $f:Sarrow G$ to a group
$G$ , there exists a unique group homomorphism $f’$ : $\prime u(S)arrow G$ such that $f=f’\circ g$ . By the uni-
versality $71(S)$ is uniquely determined up to isomorphisms. Finally, using the homomorphism
$eoc\circ 7_{k}:C_{g,1}[k]arrow Z^{\infty}$ , we give another proof of the following theorem which is a direct
corollary of Sakasai’s.

Theorem 4.3 ([16, Corollary 6.16]). The group $u(C_{g1}^{ir.r}\cap C_{g,1}[k])$ has an abelian group quotient
of infinite rankfor $k\geq 2$ .

Proof. Let $\gamma\in\pi_{k-1}\backslash \pi_{k}$ and let $K\subset S^{3}$ be a tame knot. By Lemma 4.1 we see $M(\gamma, K)\in$

$C_{g,1}^{\iota rr}\cap C_{g,1}[k]$ . By Proposition 4.2 we have
$co\tau_{k}(M(\gamma, K))=[\Delta_{K}(\gamma)]$ .

Since it is well-known that for any $p\in Z[t, t^{-1}]$ with $p(t^{-1})=p(t)$ and $p(1)=1$ , there exists
a knot $K\subset S^{3}$ such that $\Delta_{K}=p$ , the image of $eoco\tau_{k}:C_{g,1}^{irr}\cap C_{g,1}[k]arrow\oplus_{[p]}Z$ contains a
submonoid isomorphic to $Z_{\geq 0}^{\infty}$ . Therefore the image of the induced map $u(C_{g.1}^{irr}\cap C_{8,1}[k])arrow Z^{\infty}$

is a free abelian group of infinite rank, which proves the theorem. a
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