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ON A REDUCTION OF NON-COMMUTATIVE REIDEMEISTER TORSION FOR
HOMOLOGY CYLINDERS

TAKARIRO KITAYAMA

1. INTRODUCTION

Let X, | be a compact oriented surface of genus g > 1 with one boundary component.

Homology cylinders over a surface were first introduced by Goussarov [4] and Habiro [6] in
their surgery theory of 3-manifolds developed for the study of finite-type invariants. In [3, 9]
Garoufalidis and Levine introduced the homology cobordism group of homology cylinders,
which can be seen as an enlargement of the mapping class group of the surface. We denote by
Cg1, CT" 2y and H,,1 the monoid of homology cylinders over Z, 1, the submonoid consisting of
1rreduc1ble ones as 3-manifold and the smooth homology cobordism group respectively. The
Johnson filtrations C,,[k], H, i[k] of C,,, H, are defined as the kernels of the actions on
T Z 1 /(M1 Zg 1k, where the lower central series Gy of a group G is defined inductively by G, :=
G and Gk+1 = [Gk, G]

Sakasai [15, 16] studied torsion invariants of homology cylinders with in general non-
commutative coefficients and showed by the degrees of these invariants associated to elements
of H! (Z,,1) as a reduction that the submonoids C‘" N Cg 1[k} for k > 2 and Ker(C,,y — H, )
have abelian quotients isomorphic to (Zyo)>. Note that since the connected sum of a homology
cylinder and a homology 3-sphere is another homology cylinder, it is reasonable to restrict our
attention to C‘"1 in considering “size” of Cy ;[k]. Morita [12] showed by using his “trace maps”
defined in [11] that the abelianization of H, (2] has infinite rank. Goda and Sakasai [5] showed
by using sutured Floer homology theory that C"’ has an abelian quotient isomorphic to (Z,¢)™.
Cha, Friedl and Kim [1] showed by using abehan torsion invariants that the abelianization of
‘H,, contains a direct summand isomorphic to (Z/2)®, and that the abelianization of H,1[2]
contains a direct summand isomorphic to (Z/2)™ and one isomorphic to Z* if g > 2.

The aim of this note is to present another reduction of non-commutative torsion invariants
introduced in [8] and to give another approach to Sakasai’s result for C"’ N Cg1[k]. More pre-
cisely, we consider the coefficients of the maximum order terms of torsmn invariants associated
to bi-orders of m,Z, | /(71;Z,1 )x and use them to prove that the group completion of C‘" NC,,1[k]
has an abelian group quotient of infinite rank for k > 2. In [8] we can find an analogous work
on submonoids of C;’ ', associated to solvable quotients of X, ,

In this note all homology groups and cohomology groups are w1th respect to integral coeffi-
cients unless specifically noted.

2. HoMOLOGY CYLINDERS

First we recall the definitions of homology cylinders and their homology cobordisms. See
[71, [17] for more details on homology cylinders.

To simplify notation we often write X, r instead of 2.1, M, 1, respectively. We take a base
point for 7 in 9.
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Definition 2.1. A homology cylinder (M, i) over X is defined to be a compact oriented 3-
manifold M together with embeddings i,,i_: ¥ — dM satisfying the following:

(i) i, is orientation preserving and i_ is orientation reversing,

(ii) OM = i, (Z) Vi_(Z) and i.(Z) N i_(Z) = i,(OM) = i_(OM),

(iid) itloz = i-lox,

@1v) (i), (i-).: H(Z) —» H,(M) are isomorphisms.
Two homology cylinders (M, i.), (N, j.) are called isomorphic if there exists an orientation pre-
serving homeomorphism f: M — N satisfying j. = f o i,. We denote by C,; the set of all
isomorphism classes of homology cylinders over %, ;.

A product operation on C,; is given by stacking:
M,i.) (N, js) =M Ui_o(js)-! N, iy, j-),

which turns C, ; into a monoid. The unit is given by the standard cylinder (Zx[0, 1], idx1, idx0).

As pointed out in [5, Proposition 2. 4] there is an epimorphism F: C;; — & as follows,
where 6° is the monoid of homology 3-spheres with the connected sum operation. For (M, i.) €
Cq.1, We can write M = M’'iM”, where M’ is the prime factor of M containing M. Then
F(M,i,) := M". Therefore it is reasonable to consider the submonoid C;’,’l consisting of all
homology cylinders whose underlying 3-manifolds are irreducible.

Definition 2.2. Two homology cylinders (M, i,) ~, (N, j.) are said to be homology cobordant
if there exists a compact oriented smooth 4-manifold such that:

D OW =MU; i1 ot (-N),

(ii) H (M) — H.(W), H,(N) —» H.(W) are isomorphisms.
We denote by H,,, the quotient set of C,,; with respect to the equivalence relation of homology
cobordism.

The monoid structure of C,,; naturally induces a group structure of #,;. The inverse of
[M,i,] € H,, is given by [-M, iz].

We set Ni := nt/ny. For (M, i.) € Cg1, (ix)e: Ny = myM/(mr; M), are isomorphisms according
to Stallings’ theorem [18]. We define a homomorphism ¢;: C;; — AutN; by ¢u(M, i) :=
(i+);! o (i-).. By abuse of notation we also denote by ¢ the naturally induced homomorphism
7.{8»1 — Aut N;.

Definition 2.3. The Johnson filtrations of C,; and H,, are the sequences
r+o CCgulkl € -+ € Cgal2]) € Call] = Cgus
o CHgalk) € oo € He 1[2] € H, 1 [1] = H,

respectively, where C,  [k] and H, (k] are the kernels of ;.

3. A REDUCTION OF THE TORSION HOMOMORPHISM

Next we review torsion invariants of homology cylinders and introduce another reduction of
the group where these torsion invariants are defined, using a bi-order of the nilpotent quotient
Ny=nm /7r ke

Let K be a skew field. We write write K, for the abelianization of the unit group K*. For
a finite CW-pair (X, Y) and a homomorphism p: Z[r,X] — K such that the twisted homology
group H?(X, Y; K) associated to p vanishes, the Reidemeister torsion 7,(X, Y) € K,/ + p(m X)
associated to p is defined. See [10] and [19] for more details.



We set A ;= m_;/m;. Since Ay is torsion-free for all k, N} has a finite filtration of normal
subgroups such that all successive quotient are torsion-free abelian groups. It is known that
for such a group G (called poly-torsion-free-abelian), Q[G] is a right (and left) Ore domain;
namely Q[G] embeds in its classical right ring of quotients Q(G) := QIGIQIGI\0)7! [13]. For
(M,i.) € Cg,1, we denote by p, the composition of the homomorphisms

;!

Z[m M] — Z[m M/ (m M)i] —— Z[N;] — Q(N,).
See [2, Proposition 2. 10] for a proof of the following lemma.
Lemma 3.1. For (M, i.) € C,,, H*(M,i.(Z); Q(Ny)) = 0.
Definition 3.2. We define a map 7, : Ce1 — QN / + Ny by
(M, i) := 1, (M, i.(Z)).

The following proposition is a version of [1, Proposition 3. 5] and [8, Corollary 3.10]. See
also [16, Proposition 6. 6] for a related result. The proof is almost same as that of [8, Corollary
3.10], and so we omit the proof.

Proposition 3.3. The map 14 > ¢;: Cpy — (QINW,/ = Ni) = Aut(Ny) is a homomorphism.
Corollary 3.4. The map 7;: C,[k] — Q(NV,/ £ Ni is a homomorphism.

We denote by *: Z[N;] — Z[N] the involution defined by ¥ = y~! for y € N; and naturally
extend it to Q(N;). We set

Dy :={xy-q-3€ QN ¥ € Nt.q € QUm)%)

The following theorem is also a version of [1, Theorem 3. 10] and [8, Corollary 3.13]. See them
for the proof.

Theorem 3.5. The map 7; = y: H,, — (QINW),/Di) = Aut(Ny) is a homomorphism.
Corollary 3.6. The map 7;: H, [k] — QN3 / Dy is a homomorphism.

A bi-order < of a group G is a total order of G satisfying that if x < y, then axb < ayb for all
a,b,x,y € G. A group G is called bi-orderable if G admits a bi-order. It is well-known that every
finitely generated torsion-free nilpotent group is residually p for any prime p. Rhemtulla [14]
showed that a group which is residually p for infinitely many p is bi-orderable. Together with
the fact that N is torsion-free, we see that N, is a bi-orderable.

In the following we fix a bi-order of N;_;. We define a map c¢: Z[Ni] \ 0 — Q(Ax)*/ £ Ax by

12,2 L5 )]

€Np—| YEN; [y]=6 N, [¥1=0max

- where 6pax € N is the maximum with respect to the fixed bi-order such that for some y € N,
with [¥] = 6pmax, ay # 0, and ¥, € Ny is an element with [Yg] = Spax. The proof of the following
lemma is straightforward.

Lemma 3.7. The map c: Z[N;] \ 0 — Q(A:)*/ + A, does not depend on the choice of yo and is
a monoid homomorphism.
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By the lemma we have a group homomorphism Q(N:)},/ + Ny — Q(Apy*/ £ A, which maps
f-gltoc(f) clg)! for f,g € Z[N,] \ 0. By abuse of notation, we use the same letter ¢
for the homomorphism. Since there is a natural section Q(Ax)*/ + Ax = Q(NW),/ = Ni of d,
Q(Ar)*/ + Ay can be seen as a direct summand of Q(Ny)5,/ + M.

For irreducible p, g € Z[A;]\0, we write p ~ g if there exists a € A, such that p = xa-q. Since
Z[A] is a unique factorization domain, every x € Q(Az)*/ £ A; can be written as x = [Tnlpl1w,
where e[, is a uniquely determined integer. We have an isomorphism e: Q(A¢)*/ £ Ay — sz
defined by e(x) = Y, €(). Thus we obtain a homomorphism e o ¢ o 7¢: Cy1[k] = &pZ = Z7.

4. CONSTRUCTION AND COMPUTATION

In this section we systematically construct the images of e o ¢ o 7;.: Cy1[k] — Z°%.

For nontrivial y € 7 and a tame knot K ¢ §3, we construct a homology cylinder M(y, K) as
follows. Let * € Z be the base point for 7. We choose a smooth path f: [0, 1] — Z representing
y such that f~!(¥) = {0, 1}, and define f: [0,1] — £ % [0, 1], A: [0,1] — Z x [0, 1] by fo =
(f(®),t) and h(¢) = (*,1 — £). After pushed into the interior, f h determines a tame knot J C
Int(Z x [0, 1]). Let E; be the complement of an open tubular neighborhood Z of J. We take
a framing of J so that a meridian of J represents the conjugacy class of the generator of the
kernel of m,8Z — H,(Z x [0, 1]) compatible with the orientation of J and that a longitude of J
represents the conjugacy class of the image of y by (i_),: # — m,E;. Let Ex be the exterior of
K. Now M(y, K) is the result of attaching ~Ek to E; along the boundaries so that a longitude
and a meridian of K correspond to a meridian and a longitude of J respectively.

Lemma 4.1. For all nontrivial y € 7 and all knots K ¢ 3, M(y,K) € CZ 1 0 (OCy 1 KD).

Proof. If K is a trivial knot, then M(y, K) is the unit of C,, for all nontrivial y € =, and there is
nothing to prove. In the following we assume that K is nontrivial.
Since E; and Ey are both irreducible and 6Z and 8E are both incompressible, M(y, K) is

also irreducible.

Extending a degree 1 map (Ex,dEx) — (Z,0Z) by the identity map on E;, we have
f: M(y,K) - Z x[0,1]. The following commutative diagram of isomorphisms shows that
M(y,K) € C,,1[k] for all k:

7!'1M(')/, K)/(ﬂlM(y, K))k

% ‘K

Nk ft Nk

m(Z X [0, 1D/ (1 (Z X [0, 1Dk

Proposition 4.2. Let y € m \ 1. Then 14 (M(y, K)) = [Ax(¥)] for all K.
Proof. We have the following short exact sequences of twisted chain complexes:
0 — C*(8Ex) — CRH(E,i4(Z)) & CH(Ep) — CH(M(y, K), i+(2)) — 0,
0 - C(Z) — CH(E,i,(D) ® C(Z) —» CHE X[0,1],i4(2)) = O,



where all the coefficients are understood to be Q(Ny). It is easily checked that
HMOE; Q(NY) = HM(Ex; QNY) = H(0Z; Q(Ny) = HH(Z; Q(Ny)) = 0
Therefore by the homology long exact sequences
HMXE,;, i (Z); QNe)) =0
Considering multiplicativity of Reidemeister torsion in the above exact sequences we obtain
To(E1, 14(2)) - 15 (Ex) = 1, (OEx) * T,,(M(y, K), i,(Z)),
To(E1s 14(2)) - Tp(Z) = 7,,(0Z) - 7,,(M(id), i1 (Z)).

Here
TolEx) = [Ax(y)(y - D7},
Tw(2) = [(y - 1)7'],
To(OEg) = 75,(0Z) = 7,,(Z X [0,1),i,(D)) = 1,
which are easy to check. Now these equations give the desired formula. a

Recall that for every monoid §, there exists a monoid homomorphism g: § — U(S) to a
group U(S) satisfying the following: For every monoid homomorphism f: § — G to a group
G, there exists a unique group homomorphism f*: U(S) — G such that f = f’ o g. By the uni-
versality Z(S) is uniquely determined up to isomorphisms. Finally, using the homomorphism
eocoT: Cgilk] —» Z*, we give another proof of the following theorem which is a direct
corollary of Sakasai’s.

Theorem 4.3 ([16, Corollary 6.16]). The group ‘LI(C‘" NCq,1[k]) has an abelian group quotient
of infinite rank for k > 2.

Proof Lety € m; \ my and let K C §3 be a tame knot. By Lemma 4.1 we see M(y,K) €
C‘" N C,,1[k]. By Proposition 4.2 we have

coT(M(y, K)) = [Ax(p)].

Since it is well-known that for any p € Z[t,+'] with p(t"!) = p(?) and p(1) = 1, there exists
aknot K ¢ §3 such that Ax = p, the image of e o ¢ o 74: C’" N Cg1[k] — &, Z contains a
submonoid isomorphic to Z3,. Therefore the image of the mduced map ’LI( irr N Ceilk]) — Z*
is a free abelian group of mﬁmte rank, which proves the theorem. a
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