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1. INTRODUCTION
By extending the concept of a geometrically infinite end of a Kleinian group, Bowditch [3]

introduced the notion of the end invariants of a type-preserving $SL(2, \mathbb{C})$-representation of
the fundamental group $\pi_{1}(T)$ of the once-punctured torus $T$ . Tan, Wong and Zhang [14,
15] extended this notion (with slight modification) to an arbitrary $SL(2, \mathbb{C})$ -representation
of $\pi_{1}(T)$ . The purpose of this note is to explain the idea of the end invariants and to
announce a result obtained in [9] which explicitly describes the sets of end invariants
of the $SL(2, \mathbb{C})$-characters of the once-punctured torus corresponding to the holonomy
representation of a hyperbolic 2-bridge link (Theorem 4.1).

2. THURSTON $S$ END INVARIANTS OF PUNCTURED TORUS KLEINIAN GROUPS

In this section, we recall the definition of Thurston $s$ end invariants of punctured torus
Kleinian groups, following [10, 11], and recall the classification theorem of punctured torus
Kleinian groups due to Minsky [11].

Let $\rho$ : $\pi_{1}(T)arrow PSL(2, \mathbb{C})$ be a faithful discrete representation, which is type-
preserving, i.e., the image of conjugacy class associated to the boundary, $\rho(\partial T)$ , is par-
abolic. The image $\Gamma$ $:=\rho(\pi_{1}(T))$ is a free Kleinian group, and $\Gamma$ together with its
marking $\rho$ is called a punctured torus Kleinian group or simply a punctured torus group.
Let $M=\mathbb{H}^{3}/\Gamma$ be the quotient hyperbolic manifold and let $P$ be the rank 1 cusp cor-
responding to $\rho(\partial T)$ . Then $P$ is homeomorphic to a product of an open annulus with
the interval $(0, \infty)$ . By [2], $M$ is homeomorphic to $T\cross \mathbb{R}$ , and the non-cuspidal part
$M$ $:=M-P$ is homeomorphic to $T_{0}\cross \mathbb{R}$ , where $T_{0}$ is $T$ minus an open neighborhood
of the puncture. Thus $M$ has two ends $e_{-}$ and $e+\cdot$ To be precise, $\check{M}$ is identified with
$T_{0}\cross(-1,1)\subset T_{0}\cross[-1,1]$ , and $e+$ denotes the end of $\check{M}$ whose neighborhoods are
neighborhoods of $T_{0}\cross\{1\}$ , and $e_{-}$ the other end.

Let $\Omega$ be the (possibly empty) domain of discontinuity of $\Gamma$ , and let $\overline{M}$ be the quotient
$(\mathbb{H}^{3}\cup\Omega)/\Gamma$ . Note that $\Omega/\Gamma$ is divided into two (possibly empty) pieces $\Omega+/\Gamma$ and $\Omega_{-}/\Gamma$

corresponding to the ends $e_{+}$ and $e_{-}$ (where $\Omega\pm$ are the corresponding $\Gamma$-invariant subsets
of $\Omega)$ . There are three possibilities for each of the ends $e_{\epsilon}(\epsilon\in\{+, -\})$ , corresponding to
three types of the end invariant $\nu_{\epsilon}(\rho)$ of the end $e_{\epsilon}$ :

(1) $\Omega_{\epsilon}$ is a topological disk, and $\Omega_{\epsilon}/\Gamma$ is a punctured torus. This determines a point
in the Teichm\"uller space, $\mathcal{T}(T)$ , of $T$ , i.e., the space of conformal structures on $T$

modulo isotopy. The end invariant $\nu_{\epsilon}(\rho)\in \mathcal{T}(T)$ is defined to be the point.
(2) $\Omega_{\epsilon}$ is an infinite union of round disks, and $\Omega_{\epsilon}/\Gamma$ is a trice-punctured sphere, ob-

tained from the boundary component $T\cross\{\epsilon 1\}$ by removing a simple closed curve
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$\gamma_{\epsilon}$ . In this case the end invariant $\nu_{\epsilon}(\rho)\in\hat{\mathbb{Q}}$ $:=\mathbb{Q}\cup\{\infty\}$ is defined to be the slope
of $\gamma_{\epsilon}$ . It should be noted that the conjugacy class $\rho(\gamma_{\epsilon})$ is parabolic.

(3) $\Omega_{\epsilon}$ is empty. In this case the end invariant $\nu_{\epsilon}(\rho)\in \mathbb{R}-\mathbb{Q}$ is defined as follows. The
condition $\Omega_{\epsilon}=\emptyset$ implies the existence of an infinite sequence, $\{\gamma_{n}\}$ , of essential
simple loops on $T$ , such that the geodesic representatives $\gamma_{n}^{*}$ are eventually con-
tained in any neighborhood of $e_{\epsilon}$ (see [2, 16]). Moreover the slope of $\gamma_{n}$ converges
in $\mathbb{R}$ to a unique irrational number. The end invariant $\nu_{\epsilon}(\rho)$ is defined to be this
limiting irrational number.

In the first two cases, the end $e_{\epsilon}$ is said to be geometmcally finite, whereas it is said to be
geometrically infinite in the last case. In the last case, the end invariant is also called the
ending lamination of the end.
Example 2.1. Let $A$ be a matrix in $SL(2, Z)$ with $|trA|>2$ , and let $\varphi_{A}$ be the self-
homeomorphism of $T$ induced by $A$ . Let $M_{A}$ be the punctured torus bundle with mon-
odromy $A$ , i.e.,

$M_{A}=T\cross \mathbb{R}/(x, t)\sim(\varphi_{A}(x), t+1)$ .
Then it is shown by Jorgensen and Thurston that $M_{A}$ admits a complete hyperbolic
structure. Let $\rho$ : $\pi_{1}(T)arrow PSL(2, \mathbb{C})$ be the restriction of the holonomy representation
of $\pi_{1}(M_{A})$ to the subgroup $\pi_{1}(T)$ . Then we have $(\nu_{-}(\rho), \nu_{+}(\rho))=(\mu_{-}, \mu_{+})$ , where $\mu+$ and
$\mu_{-}$ , respectively, are the slopes of the attractive and repulsive eigen spaces of $A$ . This can
be see as follows. Consider the infinite cyclic cover $\tilde{M}_{A}=T\cross \mathbb{R}$ of the complete hyperbolic
manifold $M_{A}$ . Then the covering tansformation $(x, t)\mapsto(\varphi_{A}(x), t+1)$ determines a
hyperbolic isometry, $h$ , of $\tilde{M}_{A}$ . Now pick any essential simple loop $\gamma$ in $T$ , and consider
its geodesic representative $\gamma^{*}$ in $\tilde{M}_{A}$ . Then the closed geodesics $h^{n}(\gamma^{*})$ are eventually
contained in any neighborhood of $e_{+}$ as $narrow\infty$ . Since the slope of the simple loops $h^{n}(\gamma)$

converges to $\mu+$ , this implies that $\nu_{+}(\rho)=\mu_{+}$ . Similarly, we have $\nu_{-}(\rho)=\mu_{-}$ .

Remark 2.2. In the definition of the end invariant of a geometrically infinite end, the
loops $\gamma_{n}$ can be chosen so that the length $\ell(\gamma_{n}^{*})$ is bounded above by a constant. This is
because, we can extend each $\gamma_{n}^{*}$ to a pleated surface, and we can find a simple loop on
the pleated surface whose length is bounded above by some constant (see [2, 16]).

If both two ends $\nu_{-}(\rho)$ and $\nu_{+}(\rho)$ lie in the Teichm\"uller space, then the group $\Gamma$ is
quasi-Fuchsian, namely, there is a self-homeomorphism $Q:\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ which conjugates the
representation $\rho$ to a Fuchsian representation $\rho_{0}:\pi_{1}(T)arrow PSL(2, \mathbb{R})$ , i.e.,

$\rho(g)=Q\circ\rho_{0}(g)\circ Q^{-1}$

for all $9\in\pi_{1}(T)$ . For quasi-Fuchsian representations, the pair of the end invariants
$(\nu_{-}(\rho), \nu_{+}(\rho))$ completely determines the group. To be precise, let $\mathcal{Q}\mathcal{F}(T)$ be the space
of quasi-Fuchsian representations of $\pi_{1}(T)$ . Then the following is due to Bers.

Theorem 2.3. The space $Q\mathcal{F}(T)$ is homeomorphic to $\mathcal{T}(T)\cross \mathcal{T}(T)\cong \mathbb{H}^{2}\cross \mathbb{H}^{2}$ via the
correspondence

$\rhorightarrow(\nu_{-}(\rho), \nu_{+}(\rho))=(\Omega_{-}/\Gamma, \Omega_{+}/\Gamma)$ .
Let $\mathcal{D}(T)$ be the space of discrete faithful type-preserving representations of $\pi_{1}(T)$ ,

modulo conjugation by elements of $PSL(2, \mathbb{C})$ . Minsky [11] established the following the-
orem which solves the density conjecture and the ending lamination conjecture of Thurston
for punctured torus groups.
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Theorem 2.4. (1) $\mathcal{D}(T)$ is equal to the closure (in the representation space) of $\mathcal{Q}\mathcal{F}(T)$ .
(2) The map $\rho\mapsto(\nu_{-}(\rho), \nu_{+}(\rho))$ determines a bijective correspondence between $D(T)$

and $\mathbb{H}^{2}\cross \mathbb{H}^{2}-$ diag$(\partial \mathbb{H}^{2})$ .
Remark 2.5. It is also shown that the map $\rho\mapsto(\nu_{-}(\rho), \nu_{+}(\rho))$ is not continuos, whereas
its inverse map is continuous.

3. BOWDITCH, $TAN-WoNG$-ZHANG END INVARIANTS

Motivated by the definition of the end of a geometrically infinite of a Kleinian group,
Bowditch [3] introduced the notion of the end invariants of an arbitrary type-preserving
$PSL(2, \mathbb{C})$ -representation of $\pi_{1}(T)$ . Tan, Wong and Zhang [14, 15] extended this notion
(with slight modification) to an arbitrary $PSL(2, \mathbb{C})$-representation of $\pi_{1}(T)$ . To describe
this, let $C$ be the set of free homotopy classes of essential simple loops on $T$ . Then $C$ is
identified with $\mathbb{Q}$ , the vertex set of the Farey tessellation $\prime D$ , by the following rule $s\mapsto\beta_{8}$ ,
where $\beta_{s}$ is the image of a line in $R^{2}$ $Z^{2}$ of slope $s$ in $T=(\mathbb{R}^{2}-\mathbb{Z}^{2})/Z^{2}$ . The projective
lamination space $\mathcal{P}\mathcal{L}$ of $T$ is then identified with $\hat{\mathbb{R}}$

$:=\mathbb{R}\cup\{\infty\}$ and contains $C$ as the
dense subset of rational points.

Definition 3.1. Let $\rho$ be a PSL $($ 2, $\mathbb{C})$-representation of $\pi_{1}(T)$ .
(1) An element $X\in \mathcal{P}\mathcal{L}$ is an end invariant of $\rho$ if there exists a sequence of distinct

elements $X_{n}\in C$ such that $X_{n}arrow X$ and that $\{|tr\rho(X_{n})|\}_{n}$ is bounded from above.
(2) $\mathcal{E}(\rho)$ denotes the set of end invariants of $\rho$ .
In the above definition, it should be noted that $|tr\rho(X_{n})|$ is well-defined though $tr\rho(X_{n})$

is defined only up to sign. Note also that the condition that $\{|tr\rho(X_{n})|\}_{n}$ is bounded from
above is equivalent to the condition that the (real) hyperbolic translation lengths of the
isometries $\rho(X_{n})$ of $\mathbb{H}^{3}$ are bounded from above. So, if $\rho$ is a faithful discrete type-
preserving representation and $\nu$ is the end invariant of a geometrically infinite end of the
quotient hyperbolic manifold, then $\iota/$ is an end invariant of $\rho$ in the sense of Definition 3.1
by virtue of Remark 2.2.

Tan, Wong and Zhang [14, 15] showed that $\mathcal{E}(\rho)$ is a closed subset of $\mathcal{P}\mathcal{L}$ and proved
various interesting properties of $\mathcal{E}(\rho)$ , including a characterization of those representations
$\rho$ with $\mathcal{E}(\rho)=\emptyset$ or $\mathcal{P}\mathcal{L}$ , generalizing results of Bowditch [3]. They also proposed an
interesting conjecture [15, Conjecture 1.8] concerning possible homeomorphism types of
$\mathcal{E}(\rho)$ . The following is a modified version of the conjecture which Tan [13] informed to
the authors.

Conjecture 3.2. Suppose $\mathcal{E}(\rho)$ has at least two accumulation points. Then either $\mathcal{E}(\rho)=$

$\mathcal{P}\mathcal{L}$ or a Cantor set of $\mathcal{P}\mathcal{L}$ .
They constructed a family of representations $\rho$ which have Cantor sets as $\mathcal{E}(\rho)$ , and

proved the following supporting evidence to the conjecture (see [15, Theorem 1.7]).
Theorem 3.3. $Let\rho:\pi_{1}(T)arrow$ SL $($2, $\mathbb{C})$ be discrete in the sense that the set $\{$tr$(\rho(X))|X\in$
$C\}$ is discrete in $\mathbb{C}$ . Then if $\mathcal{E}(\rho)$ has at least three elements, then $\mathcal{E}(\rho)$ is either a Cantor
set of $\mathcal{P}\mathcal{L}$ or all of $\mathcal{P}\mathcal{L}$ .

However, the above set does not describe the set $\mathcal{E}(\rho)$ explicitly. In the next section,
we give an infinite family of representations $\rho$ for which $\mathcal{E}(\rho)$ is an explicitly described
Cantor set (Theorem 4.1).

39



4. THE SET OF END INVARIANTS OF THE HOLONOMY REPRESENTATION OF A
HYPERBOLIC 2-BRIDGE LINK

Consider the discrete group, $H$ , of isometries of the Euclidean plane $\mathbb{R}^{2}$ generated by
the $\pi$-rotations around the points in the lattice $\mathbb{Z}^{2}$ . Let $S:=(R^{2}-Z^{2})/H$ be the quotient
4-times punctures sphere. Let $\tilde{H}$ be the groups of transformations on $\mathbb{R}^{2}-\mathbb{Z}^{2}$ generated by
$\pi$-rotations about points in $( \frac{1}{2}\mathbb{Z})^{2}$ , and set $O=(\mathbb{R}^{2}-\mathbb{Z}^{2})/\tilde{H}$. Then $O$ is the $($ 2, 2, 2, $\infty)-$

orbifold (i.e., the orbifold with underlying space a once-punctured sphere and with three
cone points of cone angle $\pi$ ). There is a $\mathbb{Z}_{2}$-covering $Tarrow O$ and a $\mathbb{Z}_{2}\oplus \mathbb{Z}_{2}$-covering
$Sarrow O$ : the pair of these coverings is called the mche diagram, and each of $T,$ $S$ , and
$O$ is called a Mcke surface (see [12]),

A simple loop in a Fricke surface is said to be essential if it does not bound a disk, a
disk with one puncture, or a disk with one cone point. Similarly, a simple arc in a Fricke
surface joining punctures is said to be essential if it does not cut off a “monogon“, i.e.,
a disk minus a point on the boundary. Then the isotopy classes of essential simple loops
(essential simple arcs with one end in a given puncture, respectively) in a Ricke surface
are in one-to-one correspondence with $\hat{\mathbb{Q}}$ $:=\mathbb{Q}\cup\{1/0\}$ : A representative of the isotopy
class corresponding to $r\in\hat{\mathbb{Q}}$ is the projection of a line in $\mathbb{R}^{2}$ (the line being disjoint from
$\mathbb{Z}^{2}$ for the loop case, and intersecting $\mathbb{Z}^{2}$ for the arc case). The element $r\in\hat{\mathbb{Q}}$ associated to
a loop or an arc is called its slope. An essential simple loop of slope $s$ in $T$ or $O$ is denoted
by $\beta_{s}$ , while that in $S$ is denoted by $\alpha_{\epsilon}$ . The notation reflects the following fact: After
an isotopy, the restriction of the projection $Tarrow O$ to $\beta_{s}(\subset T)$ gives a homeomorphism
from $\beta_{f}(\subset T)$ to $\beta_{s}(\subset O)$ , while the restriction of the projection $Sarrow O$ to $\alpha_{s}$ gives a
two-fold covering from $\alpha_{s}(\subset S)$ to $\beta_{s}(\subset O)$ .

Now let $K(r)$ be a 2-bridge link of slope $r$ . Then the link complement $S^{3}-K(r)$ is
obtained from $S\cross[-1,1]$ by adding 2-handles aJong the loops $\alpha_{\infty}\cross\{-1\}$ and $\alpha_{r}\cross\{1\}$ .
Hence the link group $\pi_{1}(S^{3}-K(r))$ is identified with $\pi_{1}(S)/\langle\{\alpha_{\infty},$ $\alpha_{r})\rangle$ . Now assume
that $K(r)$ is hyperbolic. Let $\rho_{r}$ be the $PSL(2, \mathbb{C})$-representation of $\pi_{1}(S)$ obtained as the
composition

$\pi_{1}(S)arrow\pi_{1}(S)/\langle\langle\alpha_{\infty},$ $\alpha_{r}\}\rangle\cong\pi_{1}(S^{3}-K(r))arrow Isom^{+}(\mathbb{H}^{3})\cong PSL(2, \mathbb{C})$ ,

where the last homomorphism is the holonomy representation of the complete hyperbolic
structure of $S^{3}-K(r)$ . Since $S^{3}-K(r)$ is generated by two meridians, $\rho_{r}(\pi_{1}(S))$ is
generated by two parabolic transformations. Hence the hyperbolic manifold $S^{3}-K(r)$

admits an isometric $\mathbb{Z}/2\mathbb{Z}\oplus Z/2Z$-action (see [16, Section 5.4] and Figure knot-symmetry)
and so the $PSL(2, \mathbb{C})$-representation $\rho_{r}$ of $\pi_{1}(S)$ extends to that of $\pi_{1}(O)$ . Moreover, this
extension is unique (see [1, Proposition 2.2]). So we obtain, in a unique way, a $PSL(2, \mathbb{C})-$

representation of $\pi_{1}(T)$ by restriction. We continue to denote it by $\rho_{r}$ . Our main result
gives an explicit description of the set $\mathcal{E}(\rho_{r})$ .

To state the main result, let $\Gamma_{r}$ be the group of automorphisms of $D$ generated by
reflections in the edges of $D$ with an endpoint $r$ , and let $\hat{\Gamma}_{r}$ be the group generated by
$\Gamma_{r}$ and $\Gamma_{\infty}$ . Then the region, $R$ , bounded by a pair of Farey edges with an endpoint $\infty$

and a pair of Farey edges with an endpoint $r$ forms a fundamental domain of the action
of $\hat{\Gamma}_{r}$ on $\mathbb{H}^{2}$ (see Figure 1). Let $I_{1}(r)$ and $I_{2}(r)$ be the closed intervals in $\hat{\mathbb{R}}$ obtained as
the intersection with $\hat{\mathbb{R}}$ of the closure of $R$ . Suppose that $r$ is a rational number with
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2 $]$

FIGURE 1. A fundamental domain of $\hat{\Gamma}_{r}$ in the Farey tessellation (the
shaded domain) for $r=5/17=[3,2,2]$ .

$0<r<1$ . (We may always assume this except when we treat the trivial knot and the
trivial $2$-component link.) Write

$r= \frac{1}{a_{1}+\frac{1}{1}}=:[a_{1}, a_{2}, \ldots, a_{n}]$
,

$a_{2}+\cdot$ . .
$+_{\overline{a_{n}}}$

where $n\geq 1,$ $(a_{1}, \ldots, a_{n})\in(Z_{+})^{n}$ , and $a_{n}\geq 2$ . Then the above intervals are given by
$I_{1}(r)=[0, r_{1}]$ and $I_{2}(r)=[r_{2},1])$ where

$r_{1}=\{\begin{array}{ll}[a_{1}, a_{2}, \ldots, a_{n-1}] if n is odd,[a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}-1] if n is even,\end{array}$

$r_{2}=\{\begin{array}{ll}[a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}-1] if n is odd,[a_{1}, a_{2}, \ldots, a_{n-1}] if n is even.\end{array}$

Theorem 4.1. For a hyperbolic $2-b_{7}\dot{n}dge$ link $K(r)$ , the set $\mathcal{E}(\rho_{r})$ is equal to the limit set
$\Lambda(\hat{\Gamma}_{r})$ of the group $\hat{\Gamma}_{r}$ .

The proof is based on (1) the (well-known) discreteness of the marked length spectrum
of the (geometrically finite) hyperbolic manifold $S^{3}-K(r),$ (2) Bowditch $s$ result [3,
Proposition 3.13] on the end invariants, and (3) complete answers, obtained in the series
of papers [4, 5, 6, 7] (see also the announcement [8]), to the following question concerning
the simple loops in 2-bridge sphere $S$ of a 2-bridge link $K(r)$ .

(1) Which simple loop on $S$ is null-homotopic or pheripehral on $S^{3}-K(r)$ ?
(2) For given two simple loops on $S$ , when are they homotopic?

For the details of the proof, please see [9].
At the end of this note, we would like to propose the following conjecture.

Conjecture 4.2. Let $\rho$ : $\pi_{1}(T)arrow$ PSL $($2, $\mathbb{C})$ be a type-preserving representation such
that $\mathcal{E}(\rho)=\Lambda(\hat{\Gamma}_{r})$ . Then $\rho$ is conjugate to the representation $\rho_{r}$ .
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