Problem session

Makoto Sakuma (Hiroshima University)*

I. Finite representations of knot groups.

The method of mapping knot groups onto finite groups is a very effective method for distinguishing the groups (see [10, 11, 3]). So, it is natural to ask if this method is always successful at distinguishing the groups (see [11, Page 30]).

Problem 1 (1) Can we distinguish knot groups by counting the numbers of transitive representations of the knot groups to the symmetric group S_n of degree n? To be precise, for a knot group G and a positive integer n, let R(G;n) be the set of transitive representations of G to S_n modulo post composition of inner automorphisms of S_n . Then its cardinality |R(G;n)| is of course an invariant of the knot group. Is the family of invariants, $\{|R(G;n)|\}_n$, a complete invariant of the knot group? Namely, for two non-isomorphic knot groups G_1 and G_2 , can we always find a positive integer n such that $|R(G_1;n)| \neq |R(G_2;n)|$?

(2) When a meridian, μ , of G is specified, we can refine R(G;n) as follows. Let (n_1, n_2, \dots, n_k) be a sequence of positive integers such that $n_1 + n_2 + \dots + n_k = n$ and $n_1 \leq n_2 \leq \dots \leq n_k$. Let $R(G, \mu; n_1, n_2, \dots, n_k)$ be the subset of R(G;n) consisting of those representations which map μ to a product of mutually disjoint cyclic permutations of length n_1, n_2, \dots, n_k . Then is the family of the invariants, $\{|R(G, \mu; n_1, n_2, \dots, n_k)|\}$, a complete invariant of (G, μ) ?

(3) We can also consider the homology of branched/unbranched coverings associated with transitive representations of G to finite symmetric groups. Is the combination of the invariants $\{|R(G;n)|\}_n$ (resp. $\{|R(G,\mu;n_1,n_2,\cdots,n_k)|\}$) and the homology of associate finite branched/unbranched coverings a complete invariant of G (resp. (G,μ))?

Remark 2 In [3], we had to distinguish various pairs of mutants, and this was carried out by using the above methods with the help of Kodama's software [2].

Problem 1 motivates the following problem.

Problem 3 Is it true that two non-isomorphic knot groups have non-isomorphic profinite completions?

II. Simple loops on bridge spheres.

We present variations of the problems on Heegaard splittings of 3-manifolds raised by Y. Minsky [1, Question 5.4]. For a knot K in the 3-sphere S^3 , let $(S^3, K) = (B_1^3, t_1) \cup (B_2^3, t_2)$ be an n-bridge decomposition of K and set $S := \partial B_1^3 \setminus t_1 (= \partial B_2^3 \setminus t_2)$.

Problem 4 (1) Which essential simple loop in S is null-homotopic in $S^3 \setminus K$?

(2) Which essential simple loops in S are mutually homotopic in $S^3 \setminus K$?

Let $\mathcal{M}(S)$ and $\mathcal{M}(B_i^3, t_i)$ (i = 1, 2), respectively, be the mapping class groups $\pi_0 \text{Diff}(S)$ and $\pi_0 \text{Diff}(B_i^3, t_i)$. For each i = 1, 2, let $\mathcal{M}_0(B_i^3, t_i)$ be the subgroup of

^{*}e-mail: sakuma@math.hiroshima-u.ac.jp

Figure 1:

 $\mathcal{M}(B_i^3, t_i)$ which consists of elements which induce the identity element in the outerautomorphism group $\operatorname{Out}(\pi_1(B_i^3 \setminus t_i))$. Let Γ be the subgroup of $\mathcal{M}(S)$ generated by $\mathcal{M}_0(B_1^3, t_1) \cup \mathcal{M}_0(B_2^3, t_2)$. Let Δ_i (i = 1, 2) be the set of essential simple loops in Swhich bounds a disk in $B_i^3 \setminus t_i$, and let Δ be the union of Δ_1 and Δ_2 . Note that Δ is a subcomplex of the curve complex $\mathcal{C}^{(0)}(S)$ of S.

Observation 5 Any simple loop in $\Gamma\Delta$ is null-homotopic.

Problem 6 Is the converse true if the bridge decomposition is "complicated enough"?

Let $\mathcal{PML}(S)$ be the projective measured lamination space of S. Though the action of $\mathcal{M}(S)$ on $\mathcal{PML}(S)$ is ergodic, the action of $\mathcal{M}_0(B_i^3, t_i)$ on $\mathcal{PML}(S)$ would have a non-empty domain of discontinuity for each i = 1, 2 (see Masur [9]).

Problem 7 If the bridge decomposition of K is "complicated enough", then does the action of $\Gamma(\subset \mathcal{M}(S))$ on $\mathcal{PML}(S)$ have a nonempty domain of discontinuity?

Problem 8 Is Γ isomorphic to the free product of $\mathcal{M}_0(B_1^3, t_1)$ and $\mathcal{M}_0(B_2^3, t_2)$?

Problem 9 Let $\Omega(\Gamma)$ be the domain of discontinuity of the action of Γ on $\mathcal{PML}(S)$. If a loop c on S belongs to the intersection of $\Omega(\Gamma)$ and $\mathcal{C}^{(0)}(S)$, then is c not null-homotopic in $S^3 \setminus K$?

Problem 10 Can we find an open set U in $\mathcal{PML}(S)$ such that any loop which belongs to the intersection of U and $\mathcal{C}^{(0)}(S)$ is not null-homotopic in $S^3 \setminus K$?

Let Δ^* be the closure in $\mathcal{PML}(S)$ of the set of loops in $\mathcal{C}^{(0)}(S)$ which is null-homotopic in $S^3 \setminus K$.

Problem 11 Does Δ^* have measure 0?

Remark 12 For 2-bridge spheres of 2-bridge links, Problems 4 - 11 are solved affirmatively (see [4, 5, 6, 7, 8]). In particular, for a 2-bridge link K(r), the action of Γ on $\mathcal{PML}(S)$ has the domain of discontinuity, and the union of two intervals $I_1 \cup I_2$ in Figure 1 forms a fundamental domain.

References

- C. Gordon, *Problems*, Workshop on Heegaard splittings, 401–411, Geom. Topol. Monogr. 12, Geom. Topol. Publ., Coventry, 2007.
- [2] K. Kodama, KNOT program, http://www.math.kobe-u.ac.jp/ kodama/knot.html
- [3] K. Kodama and M. Sakuma, Symmetry groups of prime knots up to 10 crossings, Knots 90 (Osaka, 1990), ed. by A. Kawauchi, pp. 323-340, de Gruyter, Berlin, 1992.
- [4] D. Lee and M. Sakuma, Epimorphisms between 2-bridge link groups: Homotopically trivial simple loops on 2-bridge spheres, to appear in Proc. Lond. Math. Soc.
- [5] D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (I), preprint, arXiv:1010.2232.
- [6] D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (II), preprint, arXiv:1103.0856.
- [7] D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (III), preliminary notes.
- [8] D. Lee and M. Sakuma, Simple loops on 2-bridge spheres in 2-bridge link complements, Electron. Res. Announc. Math. Sci, 18 (2011), 97-111.
- [9] H. Masur, Measured foliations and handlebodies, Ergodic Theory Dynamics, 6 (1986), pp.99-116
- [10] K. Perko, Invariants of 11-crossings knots, Publications Math. d'Orsay, 1980.
- [11] M.B. Thistlethwaite, Knot tabulations and related topics, Aspects of topology, pp.1-111, London Math. Soc. Lecture Note Ser., 93, Cambridge Univ. Press, Cambridge, 1985.