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The numerical radius of a weighted shift operator
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Abstract

This article briefly resumes previous works of the author, joint with
Professor Hiroshi Nakazato, on the g-numerical radius of a weighted shift
operator with geometric weights and periodic weights.

1. Introduction

Let T be a bounded linear operator on a complex Hilbert space H. For 0 < g <
1, the g-numerical range Wy(T) of T

Wo(T) = {{T¢&n) : I€ll = IInll = L, (&, m) = ¢}
W,(T) is a bounded convex subset of C(cf. [12]). Its g-numerical radius
wq(T) = sup{|z| : 2 € Wy(T)}.

When ¢ = 1, W,(T') reduces to the classical numerical range of 7' which is
defined by
W(T) = Wi(T) = {{T¢,&) : i€l = 1}-

Consider a weighted shift operator in infinite matrix form

0O 0 0 O
81 0 0

71 0 s 0 O ,
0 0 S3 0

where the weights {s, : n=1,2,3,...} is a bounded sequence. Define a unitary

operator
U= diag(cl, Ci1C2, C1C2C3, .. .),

1This work was partially supported by the J. T. Tai Foundation Research Exchange Pro-
gram of Soochow University.



c1 =1, chy1 =5,/|8n| if 8, #0, and cpq1 =1 if s, = 0. Then
UTU* = |T).

Hence, we may assume the weights of a weighted shift operator are nonnegative
when the g-numerical range is involved.

Let T be a weighted shift operator with weights {s, }. Shields [7] showed that
W(T) is a circular disk about the origin. Further, if the weights are periodic,
Ridge [6] proved W (T) is closed if any of weights is zero, and Stout [9] showed
W(T) is an open disk if all weights are nonzero. In particular, if s, = 1, for
all n, it is well known that W(T') is the open unit disk and w(T) = 1. Tam
[10] proved Wy(T) is the closed unit disk for all 0 < ¢ < 1. It is interesting
to ask what is the radius of the circular disk of W,(T)? Berger-Stampfli [1]
gave a partial answer showing that for weighted shift operator with weights
{1+h,1,1,...}, 1+h>2,

w(T) = %(((1 + R =1+ (LR - 1)7H).
In this paper, we examine the g-numerical radius of a weighted shift operator
when its weights are in geometric sequence and periodic sequence.

2. Geometric weights

Let T be a linear operator, and T = UP be its the polar decomposition. The
Aluthge transformation of T is defined by

A(T) = P3UP:.

Suppose T is a weighted shift operator with geometric weights s, = r"~1, 0 <
7 < 1. Then P = diag(1,r,r%,73,...,r"" 1, ..). and

A(T)=+rT.
Applying Yamazaki inequality [13],
w(T) < ||T)|/2 +w(A(T))/2,
we obtain a bound for the numerical radius.

Theorem 2.1 (cf.[2]) Let T be a weighted shift operator with geometric weights
{r"~1,n € N}, 0 < r < 1. Then W(T) is a closed disk about the origin, and

w(T) <1/(2 - Vr)

Let T be a weighted shift operator with finite square sum. Denote Fr(2)
the determinant of I — z(T + T*) given by

x
Pr(z) =14 (-1)"ca2®",
n=1
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where
_ 2 2 2
Cn = E:Silsiz"'sin’
the sum is taken over

fg— 11 >2,i3—122>2,...,in —in_1 > 2.

Stout [9] proved that w(T) = 1/(2A), where ) is the minimum positive root of
Fr(z). We present explicitly the series Fr(z) if T is a weighted shift operator
with geometric weights.

Theorem 2.2 (cf.[2]) Let T be a weighted shift operator with geometric weights
{r"Y,neN},0<r <1 Then

(_1)n,r2n(n—1)

) =14 L T A

For instance, if » = 0.2, s, = (0.2)""!, then by Theorem 2.1, w(T) <
1/(2 — /r) ~ 0.644. While from Theorem 2.2, the minimum positive root of
Fr(2) is estimated by 0.980552, and thus w(T") = 1/(2 x 0.980552) = 0.50991.

Substituting z = ir into Fr(z) in Theorem 2.2,

o (_1)nr2n(n—1) n
) =14 L AT G

00 2n2
Fr(ir)=1+ ; = ,,.2)(1 ~Tr4) s Tzn).

i r" o 1
P N e Rl | N e B

Sloane-Robinsonv [8] mentioned that the coefficients of the power series in the
right-hand side of (1) are in expansion of permanent of the infinite tridiagonal
matrix

1 1 0 O

r 1 1 0

0 r2 1 1

0 0 = 1 ...

R
We consider a finite matrix of size n,

0 1 0 0 ... 1
r 0 1 O
0 r2 0 1

Aln,r)=10 0 3 0

L0
o OO0
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We are able to describe the numerical ranges of these tridiagonal matrices.

Theorem 2.3 (cf.[3]) For n > m > 3 and any real number r, W(A(n,r)) D
W(A(m,r)).

Theorem 2.4 (cf.[3]) Let n = 2¢—1 > 5. Then W(A(n, —1)) is the convex hull
of the two ellipses

{(z,y) € R?,2® £ 2cos(27/(n + 1))zy + y* = sin®(2n/(n + 1)}.

When n = co. We define the operator

0 1 0 0
) o 1 0
132
Ao, = O (1 o

The numerical range of this operator has a special type of shape.
Theorem 2.5 (cf.[3]) For
W(A(oo,-1)) ={2€ C: -1 < R(2) <1,~1 < ¥(2) < 1]\ {144, 1—i, —1+4, —1—3}.

3. Periodic weights

Let T be a weighted shift operator with periodic weights
{81,582, -+, 8m,51,82,...,8m,.. .}. Consider the m x m weighted cyclic matrix
S with weights {s1, s2,...,8m}

0 0 O 0 Sm
s1 0 O 0 0
S=28(s1,82,...,8m)=| 0 52 0 0 0 (2)
| 0 0O 0 ... Sm—1 0 |

Numerical ranges of weighted cyclic matrices (2) have been developed by several
authors, for examples, [4, 11]. '

Theorem 3.1 (cf.[11]) Let S(s1, s2,...,8mn) be a weighted cyclic matrix defined
in (2). Then

(¢) S(s1,82,...,8m) is normal if and only if |s;| = |s3| = -+ = |8y,|, which
is also equivalent to W (S(s1, s2,...,8m)) is a regular m-polygonal region
centered at the origin and the distance from the center to its vertices equal
£0 |81+ - - 8 |H/™.

(it) OW(S(s1,82,...,5m)) contains a line segment if and only if the s; are
nonzero and the numerical ranges of the (m — 1)-by-(m — 1) submatrices
of S are all equal.
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The g-numerical radius of a weighted shift operator with periodic weights is
exactly the g-numerical radius of the corresponding weighted cyclic matrix.

Theorem 3.2 (cf.[4]) Let T be a weighted shift operator with periodic weights
{s1,82,..,8m} and S be the m x m weighted cyclic matrix with weights
{s1,82,...,8m}. Then wy(T) = wq(S) for every 0 < g < 1.

Notice that the case ¢ = 1 of Theorem 3.2 is proved by Ridge [6]. We are
capable of presenting the closed form of the g-numerical radius of a weighted
shift operator with 2-periodic weights.

Theorem 3.3 (cf.[4]) Let T be a weighted shift operator with periodic weights

{s1,82}. Then
wy(T) = 255 4 gl

Let T be a weighted shift operator with periodic weights {s1,82,...,8m}.
Denote w, (T') = wg([s1, 82, - - - » Sm]). We have the following fundamental results
of g-numerical radii.

Theorem 3.4 (cf.[4])
(a) wq([81,82;---,8m]) = we([ls1l;[s2], .-, lsml])-
(b) wq([csh C82y. .. ,CSm]) = |Cl7.Uq([81, 82y ,sm])'
c) f0<s; <s;j=12,...,m,then wq([s1,825+ -+, 8m]) < wg([s], 85, -+, 5m])-

(
(@) wg([1,1,...,1]) = wy([1]) = 1.

(e) min{|s1],...,|sm|} < we([s1,---)5m]) < max{|si],...,|sm|}
(£) we([SmySm—1,-..,82,81]) = wg([s1, 52, .- y8m—1;Sm))-
(8) wg([s2y.--,8m,s1]) = wq([51,825 -+, 8m)).

The g-numerical radii may change while the order of the weights are changed.

Theorem 3.5(cf.[4]) Let T be a weighted shift operators with 4-periodic. Sup-
pose that s4 > s3 > 83 > s1 > 0. Then

wq([s2, 84, 83, 81]) > we([s1, 84, 83, 82]) > wq([s1, 54, 52, 83])

for 0 <¢g<1.

4. Perturbations

In this section, we perturb the g-numerical radius of a weighted shift operator
with periodic weights.



Theorem 4.1 (cf.[5]) Let T be a weighted shift operator with periodic nonnega-

tive weights {s1, s2, 53, 54,...,8n}, m > 5, such that s3 > max{s1,52,54,...,8m}-
Then the perturbation of the g-numerical radius is
2
—85)(s5 — s
wo(T) = 83 — (s3 — s3)(s3 3 1) o q +c(4)q4+0(q ),

2s3(2s3 — 55 — s5)

(4)

where c3’' =c3 )(81,52, 83,84, 85).

Let T be a weighted shift operator with 4-periodic. we are able to find the
perturbed coefficients up to the 4th degree.

Theorem 4.2 (cf.[5]) Let T be a weighted shift operator with periodic non-
negative weights {s1, s, s3, s4} such that

s3 > max{si, 82,84}

Then the perturbation of the g-numerical radius is

_ (53 32)(53“34) 2 4 (4)4
wn(T) = 55 = oo " + 0"+ O(¢),

where
(4) 1 8 83
C = —_—— —_— =
3 8a T 1654 16a4 8’
. 53(2s3 —s5—53) ~ [
a = - , B=="
2(s5 — s3s3) B’
2
B = 8s3( )%,
( 32 (53 - 34)
2 2 2
s s2 s 8%
B = —( 2 3 )2 2 2 _ )3
s3—55 83— s 53 — 83 83~82
2 2 4
s s
_(222 2)4+4( 2223
83 — 83 33 (83 — s3)
251828384 3 - s?
(s% - 5%)(3:2’, 32)(33 - 34) (33 32)2 33 - 5%
I B SN BN 1)
(s3 — s3)2 (3 —s3)3 — s}

For 3-periodic weighted shift operator, we obtain the following perturbation.

Theorem 4.3 (cf.[5]) Let T be a weighted shift operator with periodic non-
negative weights {s1, s, s3} such that s3 > max{s1,s2}. Then, for sufficiently
small g, the perturbation of the g-numerical radius is

(33 — 31)(53 — 32) 2 8132(33 — 51)2(33

253(285 — 57 — 53) 53(253 — 57 — s2)3

(55 — 53)2(s3 — 53)2
8s3(2s3 — 52 — s3)°

2)2 3

we(T) = s3-—

¢* +0(¢%),
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where
v = 16832 — 32(s? + 52)s30 + (30s% + 725253 + 30s3)s3
— (1188 + 935252 4+ 935255 + 1155)s5 + (55 + 345852 + 1625755
+345255 + 8)s% + (35852 — 755853 — 75578 + 35253)s3 + 365553,
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