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Abstract

This article briefly resumes previous works of the author, joint with
Professor Hiroshi Nakazato, on the q-numerical radius of a weighted shift
operator with geometric weights and periodic weights.

1. Introduction
Let $T$ be a bounded linear operator on a complex Hilbert space $H$ . For $0\leq q\leq$

$1$ , the q-numerical range $W_{q}(T)$ of $T$

$W_{q}(T)=\{\{T\xi, \eta\}:||\xi||=||\eta||=1, \{\xi, \eta\}=q\}$ .

$W_{q}(T)$ is a bounded convex subset of $C$ (cf. [12]). Its q-numerical radius

$w_{q}(T)= \sup\{|z|:z\in W_{q}(T)\}$ .

When $q=1,$ $W_{q}(T)$ reduces to the classical numerical range of $T$ which is
defined by

$W(T)=W_{1}(T)=\{\{T\xi, \xi\rangle:||\xi||=1\}$ .
Consider a weighted shift operator in infinite matrix form

$T=\{\begin{array}{llll}00 0 0 \cdots 0s_{l} 0 0 \cdots 0s_{2} 0 0 \cdots 00 s_{3} 0 \cdots.. | \end{array}\}$ ,

where the weights $\{s_{n} : n=1,2,3, \ldots\}$ is a bounded sequence. Define a unitary
operator

$U=$ diag $(c_{1}, c_{1}c_{2}, c_{1}c_{2}c_{3}, \ldots)$ ,
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$c_{1}=1,$ $c_{n+1}=\overline{s_{n}}/|s_{n}|$ if $s_{n}\neq 0$ , and $c_{n+1}=1$ if $s_{n}=0$ . Then

$UTU^{*}=|T|$ .
Hence, we may assume the weights of a weighted shift operator are nonnegative
when the q-numerical range is involved.

Let $T$ be a weighted shift operator with weights $\{s_{n}\}$ . Shields [7] showed that
$W(T)$ is a circular disk about the origin. Further, if the weights are periodic,
Ridge [6] proved $W(T)$ is closed if any of weights is zero, and Stout [9] showed
$W(T)$ is an open disk if all weights are nonzero. In particular, if $s_{n}=1$ , for
all $n$ , it is well known that $W(T)$ is the open unit disk and $w(T)=1$ . Tam
[10] proved $W_{q}(T)$ is the closed unit disk for all $0\leq q<1$ . It is interesting
to ask what is the radius of the circular disk of $W_{q}(T)$ ? Berger-Stampfli [1]
gave a partial answer showing that for weighted shift operator with weights
$\{1+h, 1,1, \ldots\},$ $1+h>\sqrt{2}$ ,

$w(T)= \frac{1}{2}(((1+h)^{2}-1)^{\frac{1}{2}}+((1+h)^{2}-1)^{-\frac{1}{2}})$ .

In this paper, we examine the q-numerical radius of a weighted shift operator
when its weights are in geometric sequence and periodic sequence.

2. Geometric weights
Let $T$ be a linear operator, and $T=UP$ be its the polar decomposition. The
Aluthge transformation of $T$ is defined by

$\triangle(T)=P^{\frac{1}{2}}UP^{\frac{1}{2}}$ .
Suppose $T$ is a weighted shift operator with geometric weights $s_{n}=r^{n-1},0<$
$r<1$ . Then $P=$ diag $(1, r, r^{2}, r^{3}, \ldots, r^{n-1}, \ldots)$ . and

$\triangle(T)=\sqrt{r}T$.
Applying Yamazaki inequality [13],

$w(T)\leq||T||/2+w(\triangle(T))/2$ ,

we obtain a bound for the numerical radius.

Theorem 2.1 (cf.[2]) Let $T$ be a weighted shift operator with geometric weights
$\{r^{n-1}, n\in N\},$ $0<r<1$ . Then $W(T)$ is a closed disk about the origin, and
$w(T)\leq 1/(2-\sqrt{r})$

Let $T$ be a weighted shift operator with finite square sum. Denote $F_{T}(z)$

the determinant of $I-z(T+T^{*})$ given by

$F_{T}(z)=1+ \sum_{n=1}^{\infty}(-1)^{n}c_{n}z^{2n}$ ,
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where
$c_{n}= \sum s_{i_{1}}^{2}s_{i_{2}}^{2}\cdots s_{i_{n}}^{2}$ ,

the sum is taken over
$i_{2}-i_{1}\geq 2,$ $i_{3}-i_{2}\geq 2,$

$\ldots,$
$i_{n}-i_{n-1}\geq 2$ .

Stout [9] proved that $w(T)=1/(2\lambda)$ , where $\lambda$ is the minimum positive root of
$F_{T}(z)$ . We present explicitly the series $F_{T}(z)$ if $T$ is a weighted shift operator
with geometric weights.

Theorem 2.2 (cf.[2]) Let $T$ be a weighted shift operator with geometric weights
$\{r^{n-1}, n\in N\},$ $0<r<1$ . Then

$F_{T}(z)=1+ \sum_{n=1}^{\infty}\frac{(-1)^{n}r^{2n(n-1)}}{(1-r^{2})(1-r^{4})(1-r^{6})\cdots(1-r^{2n})}z^{2n}$.

For instance, if $r=0.2,$ $s_{n}=(0.2)^{n-1}$ , then by Theorem 2.1, $w(T)\leq$

$1/(2-\sqrt{r})\approx 0.644$ . While $hom$ Theorem 2.2, the minimum positive root of
$F_{T}(z)$ is estimated by 0.980552, and thus $w(T)\approx 1/(2\cross 0.980552)=0.50991$ .

Substituting $z=ir$ into $F_{T}(z)$ in Theorem 2.2,

$F_{T}(z)=1+ \sum_{n=1}^{\infty}\frac{(-1)^{n}r^{2n(n-1)}}{(1-r^{2})(1-r^{4})(1-r^{6})\cdots(1-r^{2n})}z^{2n}$ ,

$F_{T}(ir)=1+ \sum_{n=1}^{\infty}\frac{r^{2n^{2}}}{(1-r^{2})(1-r^{4})\cdots(1-r^{2n})}$

$1+ \sum_{n=1}^{\infty}\frac{r^{n^{2}}}{(1-r)(1-r^{2})\cdots(1-r^{n})}=\prod_{n=0}^{\infty}\frac{1}{(1-r^{5n+1})(1-r^{5n+4})}$ (1)

Sloane-Robinsonv [8] mentioned that the coefficients of the power series in the
right-hand side of (1) are in expansion of permanent of the infinite tridiagonal
matrix

$[00r1$

$r_{0}^{2}11$ $r^{3}011$ $0011^{\cdot}$

$\cdot.\cdot]$

We consider a finite matrix of size $n$ ,

$A(n, r)=[0000r$

$r_{0}^{2}01$

.

$r^{3}001$

.

$00001$

$r^{n-1}$

$000001]$
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We are able to describe the numerical ranges of these tridiagonal matrices.

Theorem 2.3 (cf.[3]) For $n\geq m\geq 3$ and any real number $r,$ $W(A(n, r))\supset$

$W(A(m, r))$ .
Theorem 2.4 (cf.[3]) Let $n=2\ell-1\geq 5$ . Then $W(A(n, -1))$ is the convex hull
of the two ellipses

$\{(x, y)\in R^{2}, x^{2}\pm 2\cos(2\pi/(n+1))xy+y^{2}=\sin^{2}(2\pi/(n+1))\}$ .
When $n=\infty$ . We define the operator

$A(\infty, -1)=[(-1)000$ $(-.1)^{2}001$

$(-1)^{3}001$ $0001$

$...\cdot\ovalbox{\tt\small REJECT}$ .

The numerical range of this operator has a special type of shape.

Theorem 2.5 (cf.[3]) For

$W(A(\infty, -1))=\{z\in C:-1\leq\Re(z)\leq 1, -1\leq\Im(z)\leq 1\}\backslash \{1+i, 1-i, -1+i, -1-i\}$ .

3. Periodic weights
Let $T$ be a weighted shift operator with periodic weights
$\{s_{1}, s_{2}, \ldots, s_{m}, s_{1}, s_{2}, \ldots, s_{m}, \ldots\}$ . Consider the $m\cross m$ weighted cyclic matrix
$S$ with weights $\{s_{1}, s_{2}, \ldots, s_{m}\}$

$S=S(s_{1}, s_{2}, \ldots, s_{m})=\{\begin{array}{llllll}0 0 0 \cdots 0 s_{m}s_{l} 0 0 \cdots 0 00 s_{2} 0 \cdots 0 0| | | | |0 0 0 \cdots s_{m-l} 0\end{array}\}$ . (2)

Numerical ranges of weighted cyclic matrices (2) have been developed by several
authors, for examples, [4, 11].

Theorem 3.1 (cf.[ll]) Let $S(s_{1}, s_{2}, \ldots, s_{m})$ be a weighted cyclic matrix defined
in (2). Then

(i) $S(s_{1}, s_{2}, \ldots, s_{m})$ is normal if and only if $|s_{1}|=|s_{2}|=\cdots=|s_{m}|$ , which
is also equivalent to $W(S(s_{1}, s_{2}, \ldots, s_{m}))$ is a regular m-polygonal region
centered at the origin and the distance from the center to its vertices equal
to $|s_{1}\cdots s_{m}|^{1/m}$ .

(ii) $\partial W(S(s_{1}, s_{2}, \ldots, s_{m}))$ contains a line segment if and only if the $s_{j}$ are
nonzero and the numerical ranges of the $(m-1)-by-(m-1)$ submatrices
of $S$ are all equal.
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The q-numerical radius of a weighted shift operator with periodic weights is
exactly the q-numerical radius of the corresponding weighted cyclic matrix.

Theorem 3.2 (cf. [4]) Let $T$ be a weighted shift operator with periodic weights
$\{s_{1}, s_{2}, \ldots, s_{m}\}$ and $S$ be the $m\cross m$ weighted cyclic matrix with weights
$\{s_{1}, s_{2}, \ldots, s_{m}\}$ . Then $w_{q}(T)=w_{q}(S)$ for every $0\leq q\leq 1$ .

Notice that the case $q=1$ of Theorem 3.2 is proved by Ridge [6]. We are
capable of presenting the closed form of the q-numerical radius of a weighted
shift operator with 2-periodic weights.

Theorem 3.3 (cf.[4]) Let $T$ be a weighted shift operator with periodic weights
$\{s_{1}, s_{2}\}$ . Then

$w_{q}(T)= \frac{s_{1}+s_{2}}{2}+\sqrt{1-q^{2}}\frac{|s_{1}-s_{2}|}{2}$ .

Let $T$ be a weighted shift operator with periodic weights $\{s_{1}, s_{2}, \ldots, s_{m}\}$ .
Denote $w_{q}(T)=w_{q}([s_{1}, s_{2}, \ldots, s_{m}])$ . We have the following fundamental results
of q-numerical radii.

Theorem 3.4 (cf.[4])

(a) $w_{q}([s_{1}, s_{2}, \ldots, s_{m}])=w_{q}([|s_{1}|, |s_{2}|, \ldots, |s_{m}|])$ .

(b) $w_{q}([cs_{1}, cs_{2}, \ldots, cs_{m}])=|c|w_{q}([s_{1}, s_{2}, \ldots, s_{m}])$ .

(c) $If0\leq s_{j}\leq s_{j}’,j=1,2,$ $\ldots,$ $m$ , then $w_{q}([s_{1}, s_{2}, \ldots, s_{m}])\leq w_{q}([s_{1}’, s_{2}’, \ldots, s_{m}’])$ .

(d) $w_{q}([1,1, \ldots, 1])=w_{q}([1])=1$ .

(e) $\min\{|s_{1}|, \ldots, |s_{m}|\}\leq w_{q}([s_{1}, \ldots, s_{m}])\leq\max\{|s_{1}|, \ldots, |s_{m}|\}$ .

(f) $w_{q}([s_{m}, s_{m-1}, \ldots, s_{2}, s_{1}])=w_{q}([s_{1}, s_{2}, \ldots, s_{m-1}, s_{m}])$ .

(g) $w_{q}([s_{2}, \ldots, s_{m}, s_{1}])=w_{q}([s_{1}, s_{2}, \ldots, s_{m}])$ .

The q-numerical radii may change while the order of the weights are changed.

Theorem 3.5(cf.[4]) Let $T$ be a weighted shift operators with 4-periodic. Sup-
pose that $s_{4}\geq s_{3}\geq s_{2}\geq s_{1}\geq 0$ . Then

$w_{q}([s_{2}, s_{4}, s_{3}, s_{1}])\geq w_{q}([s_{1}, s_{4}, s_{3}, s_{2}])\geq w_{q}([s_{1}, s_{4}, s_{2}, s_{3}])$

for $0\leq q\leq 1$ .

4. Perturbations
In this section, we perturb the q-numerical radius of a weighted shift operator
with periodic weights.
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Theorem 4.1 (cf.[5]) Let $T$ be a weighted shift operator with periodic nonnega-
tive weights $\{s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{m}\},$ $m\geq 5$ , such that $s_{3}> \max\{s_{1}, s_{2}, s_{4}, \ldots, s_{m}\}$ .
Then the perturbation of the q-numerical radius is

$w_{q}(T)=s_{3}- \frac{(s_{3}^{2}-s_{2}^{2})(s_{3}^{2}-s_{4}^{2})}{2s_{3}(2s_{3}^{2}-s_{2}^{2}-s_{4}^{2})}q^{2}+c_{3}^{(4)}q^{4}+O(q^{5})$,

where $c_{3}^{(4)}=c_{3}^{(4)}(s_{1}, s_{2}, s_{3}, s_{4}, s_{5})$ .
Let $T$ be a weighted shift operator with 4-periodic. we are able to find the

perturbed coefficients up to the 4th degree.

Theorem 4.2 (cf.[5]) Let $T$ be a weighted shift operator with periodic non-
negative weights $\{s_{1}, s_{2}, s_{3}, s_{4}\}$ such that

$s_{3}> \max\{s_{1}, s_{2}, s_{4}\}$ .
Then the perturbation of the q-numerical radius is

$w_{q}(T)=s_{3}- \frac{(s_{3}^{2}-s_{2}^{2})(s_{3}^{2}-s_{4}^{2})}{2s_{3}(2s_{3}^{2}-s_{2}^{2}-s_{4}^{2})}q^{2}+c_{3}^{(4)}q^{4}+O(q^{5})$,

where

$c_{3}^{(4)}$ $=$ $- \frac{1}{8\tilde{\alpha}}+\frac{\tilde{\beta}}{16\tilde{\alpha}^{4}}-\frac{s_{3}}{8}$ ,

$\tilde{\alpha}$ $=$ $- \frac{s_{3}(2s_{3}^{2}-s_{2}^{2}-s_{4}^{2})}{2(s_{3}^{4}-s_{2}^{2}s_{4}^{2})},\tilde{\beta}=\frac{\beta_{2}}{\beta_{1}}$ ,

$\beta_{2}$ $=$ $8s_{3}^{3}( \frac{s_{2}^{2}}{(s_{3}^{2}-s_{2}^{2})}+\frac{s_{3}^{2}}{(s_{3}^{2}-s_{4}^{2})})^{4}$ ,

$\beta_{1}$ $=$ $-( \frac{s_{2}^{2}}{s_{3}^{2}-s_{2}^{2}}+\frac{s_{3}^{2}}{s_{3}^{2}-s_{4}^{2}})^{2}-2(\frac{s_{2}^{2}}{s_{3}^{2}-s_{2}^{2}}+\frac{s_{3}^{2}}{s_{3}^{2}-s_{4}^{2}})^{3}$

$-( \frac{s_{2}^{2}}{s_{3}^{2}-s_{2}^{2}}+\frac{s_{3}^{2}}{s_{3}^{2}-s_{4}^{2}})^{4}+4s_{3}^{2}(-\frac{s_{2}^{4}}{(s_{3}^{2}-s_{2}^{2})^{3}}$

$+ \frac{2s_{1}s_{2}s_{3^{S}4}}{(s_{3}^{2}-s_{1}^{2})(s_{3}^{2}-s_{2}^{2})(s_{3}^{2}-s_{4}^{2})}+\frac{s_{2}^{2}}{(s_{3}^{2}-s_{2}^{2})^{2}}(\frac{s_{1}^{2}}{s_{3}^{2}-s_{1}^{2}}$

$- \frac{s_{3}^{2}(2s_{3}^{2}-s_{2}^{2}-s_{4}^{2})}{(s_{3}^{2}-s_{4}^{2})^{2}})+\frac{s_{3}^{2}}{(s_{3}^{2}-s_{4}^{2})^{3}}(-s_{3}^{2}+\frac{s_{4}^{2}(s_{3}^{2}-s_{4}^{2})}{s_{3}^{2}-s_{1}^{2}}))$ .

For 3-periodic weighted shift operator, we obtain the following perturbation.

Theorem 4.3 (cf.[5]) Let $T$ be a weighted shift operator with periodic non-
negative weights $\{s_{1}, s_{2}, s_{3}\}$ such that $s_{3}> \max\{s_{1}, s_{2}\}$ . Then, for sufficiently
small $q$ , the perturbation of the q-numerical radius is

$w_{q}(T)$ $=$ $s_{3}- \frac{(s_{3}^{2}-s_{1}^{2})(s_{3}^{2}-s_{2}^{2})}{2s_{3}(2s_{3}^{2}-s_{1}^{2}-s_{2}^{2})}q^{2}+\frac{s_{1}s_{2}(s_{3}^{2}-s_{1}^{2})^{2}(s_{3}^{2}-s_{2}^{2})^{2}}{s_{3}^{3}(2s_{3}^{2}-s_{1}^{2}-s_{2}^{2})^{3}}q^{3}$

$- \frac{\gamma(s_{3}^{2}-s_{1}^{2})^{2}(s_{3}^{2}-s_{2}^{2})^{2}}{8s_{3}^{5}(2s_{3}^{2}-s_{1}^{2}-s_{2}^{2})^{5}}q^{4}+O(q^{5})$,
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where

$\gamma$ $=$ $16s_{3}^{12}-32(s_{1}^{2}+s_{2}^{2})s_{3}^{10}+(30s_{1}^{4}+72s_{1}^{2}s_{2}^{2}+30s_{2}^{2})s_{3}^{8}$

$-(11s_{1}^{6}+93s_{1}^{4}s_{2}^{2}+93s_{1}^{2}s_{2}^{4}+11s_{2}^{6})s_{3}^{6}+(s_{1}^{8}+34s_{1}^{6}s_{2}^{2}+162s_{1}^{4}s_{2}^{4}$

$+34s_{1}^{2}s_{2}^{6}+s_{2}^{8})s_{3}^{4}+(3s_{1}^{8}s_{2}^{2}-75s_{1}^{6}s_{2}^{4}-75s_{1}^{4}s_{2}^{6}+3s_{1}^{2}s_{2}^{8})s_{3}^{2}+36s_{1}^{6}s_{2}^{6}$ .
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