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ABSTRACT. In this paper, we are going to discuss the recent devel-
opment in the nonlocal the integro-differential equations and their
applications.

1. INTRODUCTION
In this paper, we are going to consider nonlocal equations. The

linear elliptic and parabolic integro-dffferential operators are given as

(1) $\mathcal{L}u(x)=p.v.\int_{\mathbb{R}^{n}}\mu(u,x,y)K(y)dy$

for $\mu(u,x,y)=u(x+y)-u(x)-(\nabla u(x)\cdot y)\chi_{B_{1}}(y)$, which describes the
infimitesimal generator of given purelyjump processes, i.e. processes
without diffusion or drift part [CS]. We refer the detailed definitions
ofnotations to [CS, KLl, KL2]. Then we see that $\mathcal{L}u(x)$ is well-defined
provided that $u\in C_{\chi}^{1,1}(x)\cap B(\mathbb{R}^{n})$ where $B(\mathbb{R}^{n})$ denotes the family of
all real-valued bounded functions defined on $\mathbb{R}^{n}$ and $C_{\chi}^{1,1}(x)$ means $C^{1,1_{-}}$

function at $x$ . If $K$ is symmetric $(i.e. K(-y)=K(y))$, then an odd
function $[(\nabla u(x)\cdot y)\chi_{B_{1}}(y)]K(y)$ will be canceled in the integral, and
so we have that

$\mathcal{L}u(x)=$ p.v. $f_{\mathbb{R}^{n}}[u(x+y)+u(x-y)-2u(x)]K(y)dy$.

Nonlinear integro-differential operators come from the stochastic
control theory related with

$\mathcal{I}u(x)=\sup_{\alpha}$ L.$u(x)$ ,

or game theory associated with
(2)

$\mathcal{I}u(x)=\inf_{\beta}\sup_{\alpha}\mathcal{L}_{\alpha\beta}u(x)$ ,

when the stochastic process is of L\‘evy type allowing jumps; see
[$S$, CS, KLl]. Also an operator like tu$(x)= \sup_{\alpha}$ in$f_{\beta}\mathcal{L}_{\alpha\beta}u(x)$ can be
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considered. Characteristic properties of these operators can easily be
derived as follows;

$\inf l_{\alpha\beta}v(x)\leq I[u+v](x)-tu(x)\leq\sup \mathcal{L}_{a\beta}v(x)$ .(3) $a\beta$
$\alpha\beta$

1.1. Operators. In this section, we introduce a class of operators.
All notations and the concepts of viscosity solution follow [CS] with
minor changes.

For parabolic setting and our purpose, we shall consider functions
$u(x)$ defined on $\mathbb{R}^{n}\cross[0,T]$ and restrict our attention to the operators $\mathcal{L}$

where the measure is givenby a positive kemel $K$ which is symmetric.
That is to say, the operators $\mathcal{L}$ are given by

(4) $lu(x)=$ p.v. $\int_{\mathbb{R}^{n}}\mu(u,x,y)K(y)dy$

where $p(u,x,y)=u(x+y)+u(x-y)-2u(x)$ . And we consider the
class 2 of the operators $\mathcal{L}$ associated with positive kemels $K\in K_{0}$

satisfying that

(5) $(2- \sigma)\frac{\lambda}{|y|^{n+\sigma}}\leq K(y)\leq(2-\sigma)\frac{\Lambda}{|y|^{n+\sigma}}\prime 0<\sigma<2$ .

The maximal operator and the minimal operator with respect to 2
are defined by

(6)
$\Lambda t_{\mathfrak{L}}^{+}u(x)=\sup_{l\in \mathfrak{L}}Lu(x)$

and $\mathcal{M}_{\mathfrak{L}}^{-}u(x)=l\in \mathfrak{L}jMLu(x)$ .

In what follows, we let $\Omega\subset \mathbb{R}^{n}$ be a bounded open domain. For
$(x)\in\Omega$ and a function $u$ : $\mathbb{R}^{n}$ which is semicontinuous on ), we say
that $\varphi$ belongs to the function class $C_{\Omega}^{2}(u,x)^{+}$ (resp. $C_{\Omega}^{2}(u,x)^{-}$) and
we write $\varphi\in C_{\Omega}^{2}(u,\cdot x)^{+}$ $($resp. $\varphi\in C_{\Omega}^{2}(u,x)^{-})$ if there exists a $U_{t,\delta}$ such
that $\varphi(x)=u(x)$ and $\varphi>u$ (resp. $\varphi<u$) on $U\backslash \{(x)\}$ for some open
neighborhood $U\subset\Omega$ of $\chi$, where $U$ . We note that geometrically $u-\varphi$

having a local maximum at $(x)$ in $\Omega$ is equivalent to $\varphi\in C_{\Omega}^{2}(u,x)^{+}$ and
$u-\varphi$ having a local minimmum at $(x)$ in $\Omega$ is equivalent to $\varphi\in C_{\Omega}^{2}(u,x)^{-}$

And the expression for $\mathcal{L}_{a\beta}u(x)$ and $Iu(x)$ may be written as

$\mathcal{L}_{a\beta}u(x)=\int_{\mathbb{R}^{n}}\mu(u,x,y)K_{a\beta}(y)dy$,

tu$(x)= iffl\sup_{\alpha}\mathcal{L}_{\alpha\beta}u(x)\beta$’
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where $K_{\alpha\beta}\in K_{0}$ . Then we see $M_{\mathfrak{L}}^{-}u(x)\leq tu(x)\leq \mathcal{M}_{\mathfrak{L}}^{+}u(x)$ , and $\mathcal{M}_{\mathfrak{L}}^{+}u(x)$

and $\mathcal{M}_{\mathfrak{L}}^{-}u(x)$ have the following simple forms,

$\mathcal{M}_{\mathfrak{L}}^{+}u(x)=(2-\sigma)f_{\mathbb{R}^{n}}\frac{\Lambda\mu^{+}(u,x,y)-\lambda\mu^{-}(u,x,y)}{|y|^{n+\sigma}}dy$,
(7)

$\mathcal{M}_{\mathfrak{L}}^{-}u(x)=(2-\sigma)f_{\mathbb{R}^{n}}\frac{\lambda\mu^{+}(u,x,y)-\Lambda\mu^{-}(u,x,y)}{|y|^{n+\sigma}}dy$,

where $\mu^{+}$ and $\mu^{-}$ are given by
$\mu^{\pm}(u,x, y)=\max\{\pm\mu(u, x, y), 0\}$ .

A function $u$ : $\mathbb{R}^{n}arrow \mathbb{R}$ is said to be $C_{x,\pm}^{1,1}$ at $(x)\in \mathbb{R}^{n}$ (we write
$u\in C_{x,\pm}^{1,1}(x))$, if there are $r_{0}>0$ and $M>0$ (independent of s) such that

(8) $\pm(u(x+y)+u(x-y)-2u(x))\leq M|y|^{2}$

for any $y\in B_{r_{0}}(0)$ .
We write $u\in C_{x,\pm}^{1,1}(U)$ if $u\in C_{x}^{1}|_{\pm}^{1}(x)$ for any $(x)\in U$ and the constant

$M$ in (8) is independent of $(x)$, where $U\subset \mathbb{R}^{n}$ for some $\delta>0$ for an
open subset $U$ of $\mathbb{R}^{n}$ . And we denote $C_{x}^{1,1}(x)=C_{x,+}^{1,1}(x)\cap C_{\chi,-}^{1,1}(x),and$

$C_{x}^{1,1}(U)=C_{x,+}^{1,1}(U)\cap C_{x,-}^{1,1}(U),$ .
We note that if $u\in C_{x}^{1,1}(x)$ , then tu$(x)$ and $\mathcal{M}_{\mathfrak{L}}^{\pm}u(x)$ will be well-

defined. We shall use these maximal and minimal operators to obtain
regularity estimates.

Let $K(x)= \sup_{\alpha}K_{\alpha}(x)$ where $K_{\alpha}$ ’s are all the kernels of all operators
in a class $\mathfrak{L}$ . For any class $\mathfrak{L}$ , we shall assume that

(9) $f_{\mathbb{R}^{n}}(|y|^{2}\wedge 1)K(y)dy<\infty$ .

The following is a kin$d$ of operators of which the regularity result
shall be obtained in this paper.
Definition 1.1. Let $\mathfrak{L}$ be a class of linear integro-dffferential operators.
Assume that (9) holdsfor $\mathfrak{L}$ . Then we say that an operator $J$ is elliptic with
respect to 8, if it satisfies thefollowing properties:

$(a)Ju(x)$ is well-definedfor any $u\in C_{x}^{1,1}(x)\cap B(\mathbb{R}^{n})$ .
$(b)Ju$ is continuous on an open $\Omega\subset \mathbb{R}^{n}$ , whenever $u\in C_{x}^{1,1}(\Omega)\cap B(\mathbb{R}^{n})$ .
$(c)$ If $u,v\in C_{x}^{1,1}(x)\cap B(\mathbb{R}^{n})$, then we have that

(10) $\Lambda t_{\mathfrak{L}}^{-}[u-v](x)\leq Ju(x)-Jv(x)\leq \mathcal{M}_{\mathfrak{L}}^{+}[u-v](x)$ .
And We denote by $S^{\mathfrak{L}}$ the class of integro-dffferential opemtors which is
elliptic with respect to 2.
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1.2. Fourier Transformation and Dirichlet to Neumann Map. In
this subsection, we are going to discuss fractional Laplacian interms
of Fourier transformation and Dirichlet to Neumann Map. Let us
consider the following simple Dirichlet problem:

(11) $\{\begin{array}{l}(-\triangle)^{\sigma}v=0 in\Omega v=0 on \mathbb{R}^{n}\backslash \Omega v(x)=v_{0}(x) non- negative and \dot{H}_{0}^{\sigma}- bounded\end{array}$

with $0<\sigma<1$ . The fractional Laplacian of a function $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ is
expressed by the formula

$(- \Delta)^{\sigma}f(x)=C_{n,\sigma}\int_{\mathbb{R}^{n}}\frac{f(x)-f(y)}{|x-y|^{n+2\sigma}}dy=C_{n,\sigma}\int_{\mathbb{R}^{n}}\frac{f(x+y)+f(x-y)-2f(x)}{|y|^{n+2\sigma}}dy$

where $C_{n,\sigma}$ is some normalization constant. The Fourier transforma-
tion of $(-\triangle)^{\sigma}[u]$ is $|\xi|^{2\sigma}\hat{\text{\^{u}}}$ and we have

$\bullet$ $(-\Delta)^{\sigma_{1}}(-\triangle)^{\sigma_{2}}[u]=(-\Delta)^{\sigma_{1}+\sigma_{2}}[u]$ and $(-\triangle)^{0}[u]=u$ .
$\bullet$ If $\sigmaarrow 1$, then $(-\triangle)^{\sigma}[u]=-\Delta u$ .

In addition, the norm in $\dot{H}^{\sigma}$ is given precisely by

(12) $||f||_{H^{\sigma}}=\sqrt{\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{|f(x)-f(y)|^{2}}{|x-y|^{n+2\sigma}}dxdy}$.

That is equivalent to

$||f||_{H^{\sigma}}\cong\sqrt{\int_{\mathbb{R}^{n}}|\xi|^{2\sigma}|f^{\wedge}(\xi)|^{2}d\xi}$.

for Fourier transform of $f$ in $x$ . Note that the Sobolev embedding
results say that $\dot{H}^{\sigma}\subset L^{2n/(n-2\sigma)}$ (Chap V in [St]). Indeed, $\dot{H}^{\sigma}$ is the
space of $L^{2n/(n-2\sigma)}$ functions for which (12) is integrable.

$(-\triangle)^{\sigma}v$ can be also thought as the normal derivative of some ex-
tension of $v$ (the Dirichlet to Neumann operator of $v$). See [CS] for a
general discussion. We introduce first the corresponding extension
$v^{*}$ defined from $C_{0}^{\infty}(\mathbb{R}^{n})$ to $C_{0}^{\infty}(\mathbb{R}^{n}\cross \mathbb{R}^{+})$ by:

$-\nabla(f\nabla v^{*})=0$ in $R^{n}\cross(0,\infty)$

$v^{*}(x,0)=v(x)$ for $x\in R^{n}$

for $a=1-2\sigma$ . Then the following result holds true: for $v$ defined on
$R^{n}$ , we have:

$(- \Delta)^{\sigma}v(x)=\partial_{v}v^{*}(x,0)=-\lim_{yarrow 0}fv_{y}^{*}(x, y)$
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where we denote $\partial_{v}v^{*}$ the outward normal derivative of $v$
‘ on the

boundary $\{y=0\}$ .
1.3. Outline. In this paper, we are going to summarize the recent de-
velopement on Nonlocal Nonlinear equations and its apphcation to
the geometric properties of the first eigen function of fractional Lapla-
cian. In the section 2, we show the H\"older regularity and asymptotic
behavior of the dolutions for singular nonlocal equations. And in
the section 3, we show the the geometric properties of the first eigen
function of fractional Laplacian. Finally, at section 4, we summarize
the regularity theory on nonlocal fully nonlinear equations.

2. SINGULAR $N_{oN}$-LOCAL EQUATIONS

In this section, we consider initial value problem with fractional
fast diffusion, $[KsL1]$ :

(13) $\{\begin{array}{l}(-\triangle)^{\sigma}u^{m}+u_{t}=0 in\Omega u=0 on \mathbb{R}^{n}\backslash \Omega u(x,0)=u_{0}(x) non- negative and \dot{H}_{0}^{\sigma}- bounded\end{array}$

in the range of exponents $\frac{n-2\sigma}{n+2\sigma}<m<1$ , with $0<\sigma<1$ . In this work,
we will deal with a H\"older regularity of $v=u^{m}$, which is a solution
of

(M.P) $\{\begin{array}{ll}(-\triangle)^{\sigma}v+(v^{\frac{1}{m}})_{t}=0 in\Omega v=0 on \mathbb{R}^{n}\backslash \Omega v(x,0)=v_{0}(x)=u_{0}^{m}(x) in \Omega,\end{array}$

assuming that the imitial value $v_{0}$ is strictly positive in the interior of
$\Omega$ in $\mathbb{R}^{n}$ . Main two Theorems state as follows:
Theorem 2.1. (From $L^{\frac{n-2\sigma}{n+20}}$ to $L^{\infty}$)
Let $v(x,t)$ be afunction in $L^{\infty}(O,T,L^{\frac{2n}{n-2\sigma}(\Omega))}\cap L^{2}(0,T,\dot{H}_{0}^{\sigma}(\mathbb{R}^{n}))$, then

$\sup_{x\in\Omega}|v(x, T)|\leq C^{*}\frac{||v_{0}||_{L^{2n}\overline{n}-T\sigma(\Omega)}}{T^{\frac{mn}{2mn-(n-20)(1+m)}}}$

for some constant $C’>0$ .
For the second theorem, we need better control of $v$ .

Theorem 2.2 (H\"older regularity of fractional FDE).
For $x_{0}=(x_{0}^{1}, \cdots,x_{0}^{n})$ , we define $Q_{r}(x_{0},t_{0})=[x_{0}^{i}-r,x_{0}^{i}+r]^{n}\cross[t_{0}-r^{2\sigma},t_{0}]$,

for $t_{0}>r^{2\sigma}>0$ . Assume now that $[x_{0}^{i}-r,x_{0}^{i}+r]^{n}\subset\Omega$ and $v(x,t)$ is
bounded in $\mathbb{R}^{n}\cross[t_{0}-r^{2\sigma},t_{0}]$ , then there exist constants $\gamma$ and $\beta$ in $(0,1)$
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that can be detemined a priori only in terms of the data, such that $v$ is $C^{\beta}$

in $Q_{\gamma r}(x_{0\prime}t_{0})$ .

The details of the proofs canbe found at $[KsL1]$ . In order to develop
the H\"older regularity method, it is necessary to localize the energy in-
equality by space and time truncation. Due to the non-locality of the
diffusion, this appears complicated. On the other hand, $(-\Delta)^{\sigma}v$ canbe
thought as the normal derivative of some extension of $v$ (the Dirichlet
to Neumann operator of $v$ . See [CS] for a general discussion). This
allows us to realize the truncation as a standard local equation in one
more dimension: we introduce first the corresponding extension $v$

defined from $C_{0}^{\infty}(\mathbb{R}^{n})$ to $C_{0}^{\infty}(\mathbb{R}^{n}\cross \mathbb{R}^{+})$ by:

$-\nabla(f\nabla v^{*})=0$ in $\mathbb{R}^{n}\cross(0,\infty)$

$v^{*}(x,0)=v(x)$ for $x\in \mathbb{R}^{n}$

for $a=1-2\sigma$ . (This extension consists simply in convolving $v$ with
the Poisson kemel of the upper half space in one more variable.)
Then the following result holds true: for $v$ defined on $\mathbb{R}^{n}$ , we have:

$(-\Delta)^{\sigma}v(\chi)=\partial_{v}v^{*}(x, 0)=-1\dot{m}fv_{y}^{*}(x, y)yarrow 0$

where we denote $\partial_{v}v^{*}$ the outward normal derivative of $v^{*}$ on the
boundary $\{y=0\}$ . Hence, it is possible to consider the solution $v$ of
problem (M.P) as the boundary value of $v^{*}$ which is solution of

(14) $\{\begin{array}{l}\nabla(f\nabla v^{*})=0 in y>0\lim_{yarrow 0}fv_{y}^{*}(x,y,t)=(v^{\frac{1}{m}})_{t}(x,0,t) \chi\in\Omega v^{*}(x,0,t)=0 on \mathbb{R}^{n}\backslash \Omega.\end{array}$

Thus, we can obtain the H\"older estimate of $v$ immediatelyby showing
the H\"older regularity of $v^{*}$ .

Since the diffusion coefficients $D(v)=|v|^{1-\frac{1}{m}}$ goes to infinity as
$varrow 0$, we need to control the oscillation of $v$ from below. Hence, we
consider the new function $w^{*}$ derived from $v^{*}$ such that $w^{*}(x,y,t)=$

$M-v^{*}(x,y,t+t_{0})$ with $M=M(t_{0})= \sup_{t\geq t_{0}>0}v^{*}$ . By Theorem 2.1, we
know that the solution satisfies

$v^{*}(\cdot, t)\leq M(t_{0})<\infty$ $(t\geq t_{0})$ .
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From this, we get to a familiar situation:

$(15\{\begin{array}{l}\nabla(f\nabla w^{*})=0 in y>0-\lim_{yarrow 0^{+}}f\nabla_{y}w^{*}(x,y)=[(M-w^{*})^{\frac{1}{m}}]_{t}(x,0) x\in\Omega w^{*}(x,0,t)=M on \mathbb{R}^{n}\backslash \Omega.\end{array}$

The research is divided into four setps: at first step, we study
several properties of the Fast Diffusion Equation (shortly, FDE) with
fractional powers

(16) $(-\triangle)^{\sigma}u^{m}+u_{t}=0$ , $( \frac{n-2\sigma}{n+2\sigma}<m<1)$ .

More precisely, we explain Scale Invariance, $L^{1}$ -Contmction and Extinc-
tion on Finite Time. In second step, we show the existence of weak
solution of the problem (M.P). Also, we investigate the boundedness
of the solutions of problem (M.P) for positive times. Lastly in this
section, we compute local energy inequality of $(w^{*}-k)_{\pm}$ which will
be a key step in establishin$g$ local H\"older estimates. The proof of the
H\"older regularity of problems is given in third step. In this step, we
consider the extension $v^{*}$ of $v$ that solves (M.P). This allows us to
treat non-linear problems, involving fractional Laplacians, as a local
problems. In the last section, we study the existence of $non-l\dot{m}$ear
eigenvalue problem with fractional powers which is asymptotic pro-
file of the parabolic flow (M.P) on extinction time.

2.1. Properties of Fast Diffusion Equations with Fractional Powers.
Since the operator $(-\triangle)^{\sigma}$ converges to $(-\triangle)$ as the quantity $\sigma$ goes to
1, it is natural to expect that the solutions of the equation (16) has
a lot in common with those of the FDE (of course, not in complete
accord). Hence, before coming to main issue, we will discuss such
properties of FDE in this section.

2.1.1. Scale lnvariance. Let us examine the application of scaling trans-
formations to the fractional powers of the FDE in some detail. Let
$u=u(x,t)$ be a solution of the fractional powers of the FDE,

(17) $(-\triangle)^{\sigma}u^{m}+u_{t}=0$ $(0<m<1)$ .
Then

(18) $( \tau u)(x,t)=L^{\frac{2\sigma}{m-1}\tau^{-\frac{1}{m-1}}}u(\frac{x}{L},$ $\frac{t}{T})$ .

is again a solution of the fractional powers of the FDE in the same
class.
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2.1.2. $L^{1}$ -contraction. This is a very important estimate which has
played a key role in the fractional powers of the FDE theory. It will
allow us to develop existence, umiqueness and stabihty theory in the
space $L^{1}$ .
Lemma 2.3 ($L^{1}$ -contraction). Let $\Omega$ is a bounded domain of $\mathbb{R}^{n}$ with
smooth boundary, and let $u$ and $\tilde{u}$ be two smooth solutions of thefractional
powers of thefast dfffusion equation $(FDE)$;

$\{\begin{array}{l}(-\Delta)^{\sigma}u^{m}+u_{t}=0 in Q_{T}=\Omega\cross(0,T)u=0 on \mathbb{R}^{n}\backslash \Omega\end{array}$

with initial date $u_{0},\tilde{u}_{0}$ respectively. We havefor every $t>\tau\geq 0$

(19) $\int_{\Omega}[u(x,t)-\tilde{u}(x,t)]_{+}dx\leq\int_{\Omega}[u(x,\tau)-\tilde{u}(x,\tau)]_{+}dx$

As a consequence,
(20) $||u(t)-\tilde{u}(t)||_{1}\leq||u_{0}-\tilde{u}_{0}||_{1}$ .
2.1.3. Extinction in Finite Time. The main differencewithporousmedium
equation is the finite time convergence of the solutions to the zero
solution, which replaces the infinite time stabilization that holds for
$m\geq 1$ . This phenomenon is called extinction infinite time and read as
follows.

Lemma 2.4. If $u(x,t)$ is the $C^{2,1}$ solution of thefast dfffusion equation with
fractional powers:

$\{\begin{array}{l}(-\Delta)^{\sigma}u^{m}+u_{t}=0 in Q_{\infty}=\Omega\cross(O,\infty)u=0 on \mathbb{R}^{n}\backslash \Omega u(x,0)=u_{0}(x)\in C^{0}(\Omega)\end{array}$

where $\Omega$ is a bounded domain of$\mathbb{R}^{n}$ with smooth boundary, then there exists
$T^{*}>0$ such that $u(\cdot,t)=0$for all $t\geq T^{*}$ , i.e.,

$\lim||u(, t)||_{\infty}=0$
$tarrow T$.

for some $T^{*}>0$ . The solution can be continued past the extinction time $\Gamma$

in a weak sense as $u\equiv 0$ .
2.1.4. No waiting time. The main di&rence between local and non-
local Porous Medium Equations is that there is no waiting time in
the nonlocal equation since $u_{t}(x_{0},t_{0})$ is equation to nonlocal integral
which is positive when the value of $u(x_{0}, t_{0})$ is zero.
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2.2. Weak solutions. First, we study the problem (M.P) in the class
of nonnegative weak solutions. For the remainder of this paper we
assume that

$\frac{n-2\sigma}{n+2\sigma}<m<1$

holds.

Definition 2.1. A non-negative weak solution ofequation $(M.P)$ is a locally
integrable function, $v\in L_{loc}^{1}(\mathbb{R}^{n}\cross[0,\infty))$ , such that $(-\triangle)^{\sigma}v\in L_{loc}^{1}(\mathbb{R}^{n}\cross$

$[0,\infty))$ and $v=0$ on $\mathbb{R}^{n}\backslash \Omega$, and the identity

(21) $\int_{0}^{\infty}\int_{\Omega}v^{\frac{1}{m}}\eta_{t}dxdt=f_{0}^{\infty}\int_{\Omega}v[-(-\Delta)^{\sigma}\eta]dxdt$

holdsfor any testfunction $\eta\in C_{c}^{2,1}(\Omega\cross[0,\infty))$ with $\eta=0$ on $\mathbb{R}^{n}\backslash \Omega$ .
We show the existence and comparison result for weak solutions.

the proof is similar to the proof of the Theorem (5.5) in [Va].

Lemma 2.5. There exists a non-negative weak solution of$(M.P)$ . Moreover,
the comparison princ\’iple holds for these solutions: $v,\hat{v}$ are weak solutions
with initial data such that $v_{0}\leq\hat{v}_{0}a.e$ . in $\Omega$, then $v\leq\hat{v}a.e$ . for all $t>0$ .

2.3. Local Energy Estimate of $w^{*}$ . The key ingredients for H\"older
regularity are the Sobolev and local energy inequalities for the exten-
sion $w^{*}(x,y,t)=M-v^{*}(x,y,t+t_{0})$ with $M= \sup_{t\geq t_{0}>0}v^{*}$ . The effect
of the non-local part of $(-\triangle)^{\sigma}$ becomes encoded locally in the extra
variable. The first result, Sobolev inequality, states as follows:

Lemma 2.6 (Sobolev Inequality). For a cut-offfunction $\eta$ compactly
supported in $B_{r}$,

(22) $||\eta v||_{L^{\frac{2n}{n-20}}(\mathbb{R}^{n})}\leq C||\eta v||_{\dot{H}^{\sigma}(\mathbb{R}^{n})}$

and
$||\eta v||_{L^{2}(t_{1_{l}}t_{2_{l}}\cdot L^{2}(\mathbb{R}^{n}))}^{2}\leq$

(23)
$C(\sup_{t_{1}\leq t\leq t_{2}}||\eta v||_{L^{2}(\mathbb{R}^{n})}^{2}+||\nabla(\eta v)^{*}||_{L^{2}(t_{1\prime}t_{2\prime}\cdot L^{2}(B_{r\prime}^{*\gamma))}}^{2})|\{\eta v>0\}|^{\frac{2\sigma}{n+2\sigma}}$

for some $C>0$ .
Lemma 2.7 (Local Energy Estimate).
Let $t_{1},$ $t_{2}$ be such that $t_{1}<t_{2}$ and let $v^{*}\in L^{\infty}(t_{1},t_{2};L^{2}(\mathbb{R}^{n}\cross \mathbb{R}^{+}))$ be solution
to (14) and let $w^{*}(x,y, t)=M-v^{*}(x,y,t+t_{0})$ with $M= \sup_{t\geq t_{0}>0}v^{*}$ . Then,
there exists a constant $\lambda$ such thatfor every $t_{1}\leq t\leq t_{2}$ and cut-offfunction
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$\eta$ such that the restriction of $\eta(w^{*}-k)_{\pm}on$ $B_{r}^{*}is$ compactly supported in
$B_{r}\cross(-r,r)$ :

$\frac{1}{m}\int_{B_{r}\cross\{t_{2}\}}\eta^{2}[\int_{0}^{w-k)_{\pm}}(M-k\mp\xi)^{\frac{1}{m}-1}\xi d\xi]dx$

$+ \int_{t_{1}}^{t_{2}}\int_{B_{\dot{r}}}|\nabla(\eta(w-k)_{\pm})|^{2}$ fdx dy dt

(24) $\leq f_{t_{1}}^{i_{2}}f_{B_{\dot{r}}}|(\nabla\eta)(w^{*}-k)_{\pm}|^{2}y^{a}dxdydt$

$+ \frac{2}{m}\int_{t_{1}}^{t_{2}}\int_{B_{r}}[\int_{0}^{(w-k)_{*}}(M-k\mp\xi)^{\frac{1}{m}-1}\xi d\xi]|\eta\eta_{t}|dxdt$

$+ \frac{1}{m}\int_{B_{r}\cross\{t_{1}\}}\eta^{2}[\int_{0}^{w-k)_{f}}(M-k\mp\xi)^{\frac{1}{m}-1}\xi d\xi]dx$

2.4. Key Lemmas.

Lemma 2.8. There exists positive numbers $\rho$ and $\lambda$ independent of $\mu^{\pm}and$

$\omega$ such that if
(25) $| \{(x,t)\in Q_{R}(\theta_{0}),w(x,t)>\mu^{+}-\frac{\omega}{2}\}|<\rho|Q_{R}(\theta_{0})|$

then
$w(x,t)< \mu^{+}-\frac{\lambda\omega}{4}$

for all $(x,t)\in Q_{\frac{R}{2}}(\Theta_{0})$ .

Idea of the proofSet, for any non-negative integer $k$,

$R_{k}= \frac{R}{2}+\frac{R}{2^{k+1}}$ , and $l_{k}=p^{+}- \lambda(\frac{\omega}{4}+\frac{\omega}{2^{k+2}})$ .

We denote by $\tilde{B}_{R,\delta}^{*}$ the set $B_{R}\cross(0,\delta)$ and introduce the cylinders

$Q_{k}(\theta_{0})=B_{\overline{R}_{k}}\cross(-\theta_{0}^{-\alpha}R_{k}^{2\sigma},$ $0)$

and
$\tilde{Q}_{R_{k},\frac{\delta^{k}}{4}}^{*}(\theta_{0})=\tilde{B}_{R_{k},\frac{\delta^{k}}{4}}^{*}\cross(-\theta_{0}^{-\alpha}R_{k}^{2\sigma},0)$ .

Let $\overline{w}(x,\tau)=w(x, \theta_{0}^{-\alpha}\tau)$ and $\vec{w}(x,y, \tau)=w^{*}(x,y, \Theta_{0}^{-a}\tau)$ . We also define
the $quantity\overline{Z}_{k}$ to be

$\overline{Z}_{k}=|\{(x, t)\in Q_{R_{k}}(1):\overline{w}>l_{k}\}|$ .
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Then, $\overline{Z}_{k}$ will be equal to $Z_{k}$ . Through the local energy estimate, we
show that there are $0<\sigma,$ $\delta<1$ such that we have

$\overline{Z}_{k+1}\leq C4^{2k}(\frac{4^{3-a}}{(1+a)R^{2}}+\frac{4^{5}\theta_{0}^{\alpha}}{2mM^{\alpha}R^{2\sigma}})\overline{Z}_{k-1}^{1+\frac{[be]}{n+2\sigma}}=C’4^{2k}\overline{Z}_{k-1}^{1+\frac{2\sigma}{n+2\sigma}}$

If $\overline{Z}_{1}$ is smalL then $\overline{Z}_{k}$ converges to zero, which implies the conclusion.
$\square$

Lemma 2.9 (Oscillation Lemma). There exist constants $\lambda^{*}>0$ and
$\kappa\in(0,1)$ such that if

$osc_{Q_{2R}^{*}}w^{*}=\omega=\mu^{+}-\mu^{-}$ ,

then
$OSC_{Q_{R\tau}^{*}(\Theta_{0\prime}0,1-\frac{\rho}{2})^{w^{*}\leq\omega-\lambda^{*}=\kappa\omega}}$

.

2.5. Asymptotic behaviour for the FDE with fractional powers.
The asymptotic description is based on the existence of appropri-
ate solutions that serve as model for the behavior $n\backslash$ear extinction:
there is a $self-s\dot{m}\dot{u}lar$ solution of the form
(26) $U(x,t,T)=(T-t)^{1/(1-m)}f(x)$

for a certain profile $f>0$, where $\varphi=f^{m}$ is the solution of the super-
linear elliptic equation

$(- \triangle)^{\sigma}\varphi(x)=\frac{1}{1-m}\varphi(x)^{p}$ , $p= \frac{1}{m}$

such that $\varphi>0$ in $\Omega$ with zero on $\mathbb{R}^{n}\backslash \Omega$ . Hence, similarity means
in this case the separate-variables form. The existence and regularity
of this solution depends on the exponent $p$, indeed it exists for $p<$
$(n+2\sigma)/(n-2\sigma)$, the Sobolev exponent. Since $p=1/m$, this means
that smooth separate-variables solutions exist for

$\frac{n-2\sigma}{n+2\sigma}<m<1$

an assumption that will be kept in the sequel. Note that the family
of solutions (26) has a free parameter $T>0$ .

The above family of solutions allows to describe the behavior of
general solutions near their extinction time.

Theorem 2.10. Under the above assumptions on $u_{0}$ and $m$, we have the
following property near the extinction time of a solution $u(x,t)$ : for any
sequence $\{u(x,t_{n})\}$, we have a subsequence $t_{n_{k}}arrow\tau*and$ a $\varphi(x)$ such that

$\lim_{karrow\infty}(\Gamma-t_{n_{k}})^{-1/(1-m)}|u(x,t_{n_{k}})-U(x,t_{n_{k}}, \Gamma)|arrow 0$
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uniformly in compact subset of $\Omega$ for $U(x,t,T^{*})=(T^{*}-t)^{1/(1-m)}\varphi^{1/m}(x)$

where $\varphi$ is $a$ eigen-function offully nonlinear equation

$\{\begin{array}{ll}(-\Delta)^{\sigma}\varphi=\frac{1}{1-m}\varphi^{\frac{1}{m}} in \Omega\varphi=0 on \mathbb{R}^{n}\backslash \Omega\varphi>0 in \Omega.\end{array}$

3. GOEMETRIC PROPERTIES OF FlRST ElGENFUNCT10N

In this section we study convexity and concavity properties of non-
local parabolic flows and derive related geometric properties for the
asymptotic limmits of such evolutions. More precisely, we consider the
nonnegative solution $u(x,t)$ of the Dirichlet problem for the fractional
power of Heat operator

(27) $\{\begin{array}{l}u_{t}+(-\triangle)^{\frac{1}{2}}u=0 in\Omega u(x,t)=u_{0}(x)>0 in \Omega u> Oin \Omega u=0 on \mathbb{R}^{n}\backslash \Omega\end{array}$

posed on a strictly convex and bounded domain $\Omega\in R^{n}$ . In the
renormalized hmit these flows converge to solutions of the nonlinear
eigen-value problems (28) below, especially $p=1$ . The method we
presentproduces power convexity results for these positive nonlinear
eigen-functions. As a second type of result, the evolution approach
also proves eventual power convexity in space for the solutions of
the parabolic problems. Eventual power convexity means that it will
hold for large enough times even for data that are not initially power
convex.
3.1. Elliptic Problems and History. Let us present the problems and
concepts to motivate our work. Let the function $\varphi(x)$ satisfy the
following nonlinear eigenvalue problem:

(28) $\{\begin{array}{ll}(-\Delta)^{\frac{1}{2}}\varphi=\lambda\varphi^{p} in\Omega\varphi>0 in \Omega\varphi=0 on R^{n}\backslash \Omega.\end{array}$

The main question we address is motivated by the following conjec-
ture:

Conjecture 3.1 (cf. Conjecture 1.1 in [1]). Let $\varphi_{1}^{\sigma}$ be the ground state
eigenfunction for the symmetric stable processes of index $0<\sigma<1$ killed
upon leaving the interval $I=(-1,1)$ . Then $\varphi_{1}^{\sigma}$ is concave on $I$.
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The function $\varphi_{1}^{\sigma}$ is the first eigen function of (28) with $\frac{1}{2}$ being
replaced by $\sigma,$ $(0<\sigma<1)$ . The only known case is when $\Omega=(-1,1)$

and $\sigma=\frac{1}{2}$ , where the question is answered in the afflrmative in
[BK]. More precisely, in [BK], Bafiuelos and Kulczycki consider the
Cauchy process in $R^{n},$ $n\geq 1$ , killed on leaving a bounded domain
S2, and investigate the eigenvalues $\lambda_{n}$ and eigenfunctions $\varphi_{n}$ of the
corresponding generator in $L^{2}(\Omega)$ . The method is quite different from
the ones used for the Brownian motion which are not applicable in
this case due to the non-locality of the generator. The most detailed
information about the eigenvalues and eigenfunctions is found for
the case where $n=1$ and $\Omega=(-1,1)$ . In particular, it is proved that
$\varphi_{1}$ is symmetric and concave on $(-1,1),$ $\varphi_{2}$ is antisymmetric, concave
on $(0,1)$ and convex on $(-1,0)$ , each $\varphi_{n}$ has at most $2n-2$ zeros on
$(-1,1)$ .

In the particular case $\sigma=\frac{1}{2}$ it is easy to see that the operator $(-\triangle)^{\frac{1}{2}}$

coincides with the Dirichlet to Neumann operator in the upper half
space of $\mathbb{R}^{n+1}$ . More precisely, given $u(x)$ defined in $\mathbb{R}^{n}$ , extend it to
$u^{*}(x,y)$ in $\mathbb{R}^{n+1}$ by convolving with the classical Poisson kemel.
3.2. Power-Convexity: Bounded Domain.

Lemma 3.2. There exist a weak solution $\psi\in\dot{H}^{\frac{1}{2}}(R^{n})$ of the eigen-value
problem

(29) $\{\begin{array}{ll}(-\triangle)^{\frac{1}{2}}\psi=\lambda\psi^{p} in\Omega\psi>0 in \Omega\psi=0 in R^{n}\backslash \Omega.\end{array}$

for $0<p< \frac{n+1}{n-1}$ .
We address now the long-time geometrical properties of solutions

of the initial-value problem for the fractional power of the HeatEqua-
tion
(30) $(-\triangle)^{\frac{1}{2}}u+u_{t}=0$ ,

posed in a bounded domain $\Omega$ with
(31) $u=0$ on $\mathbb{R}^{n}\backslash \Omega$, $u>0$ in $\Omega$

and initial data
(32) $u(x,0)=u_{0}(x)\in\dot{H}^{\frac{1}{0^{2}}}(\Omega)$

Our geometrical results will be derived under the extra assumption
that $\Omega$ is strictly convex. It is easy to show that the fractional power of
the Laplace operator has a countable discrete set of eigenvalues $\Sigma=$
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$\{\lambda_{i}|\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\cdots\}$, whose eigen-functions $\{\phi_{n}\}$ span $\dot{H}^{\frac{1}{0^{2}}}(\Omega)$ ,
where $\phi_{n}$ is a normalized eigen-function corresponding to $\lambda_{n}$ . Then,
$u_{n}(x,t)=e^{\lambda_{n}}{}^{t}\phi_{n}(x)$ is the solution of the fractional powers of the Heat

operator with imitial data $\phi_{n}(x)$ . On the other hand, for $u_{0}(x)\in\dot{H}^{\frac{1}{0^{2}}}(\Omega)$ ,
there are coefficients $\{a_{n}\}$ such that $u_{0}(x)= \sum_{n=1}^{\infty}a_{n}\phi_{n}(x)$ . Hence,

$u(x,t)= \sum_{n=1}^{\infty}a_{n}e^{-\lambda_{n}}{}^{t}\phi_{n}=a_{1}e^{-\lambda_{1}}{}^{t}\varphi+e^{-\lambda_{2}}{}^{t}\eta(x,t)$

where $||\eta(x,t)||_{L_{x}^{2}(R^{n})}<C<\infty$ . Then $\varphi(x)$ will be a solution of

(33) $\{\begin{array}{ll}(-\triangle)^{\frac{1}{2}}\varphi(x)=\lambda_{1}\varphi(x) in \Omega\varphi(x)=0 on \mathbb{R}^{n}\backslash \Omega.\end{array}$

We have the following results in the bounded domain, $[KsL2]$ .

Lemma 3.3 (Approximation Lemma). For every $u_{0}\in\dot{H}^{\frac{1}{0^{2}}}(\Omega)$, we have

(34) $|e^{\lambda_{1}}{}^{t}u(x,t)-a_{1}\varphi(x)|\leq Ce^{-(\lambda_{2}-\lambda_{1})t}$

and
(35) $||e^{\lambda_{1}}{}^{t}u(x,t)-a_{1}\varphi(x)||_{C_{\chi}^{k}(\Omega)}\leq CKe^{-(\lambda_{2}-\lambda_{1})t}$

for $k=1,2,$ $\cdots$ .
Corollary 3.4. If $\Omega$ is convex, then the solution $u(x,t)$ of (30)-(32) is
power-convex, i.e., $D_{x}^{2}(u(x,t))^{-\frac{2}{n+1}}\geq 0$ .
Corollary 3.5. If $\Omega$ is convex, then the stationary profile $\varphi(x)$ of $u(x,t)$ is
power-convex, i.e., $D_{x}^{2}(\varphi(x))^{-\frac{2}{n+1}}\geq 0$.
3.3. Power-Convexity: Unbounded Domain. We now examin$e$ the
same geometrical questions for the Gauchyproblem for the Fractional
Heat Equation

(36) $\{\begin{array}{l}u_{t}+(-\Delta)^{\frac{1}{2}}u=0 in R^{n}\cross(0,\infty)u(x,0)=u_{0}(x) on R^{n}\end{array}$

with imitial data $u_{0}$ nonnegative, bounded, integrable and compactly
supported. Then, the solution $u$ of (36) is given by

$u(x,t)= \int_{\mathbb{R}^{n}}p(x,\xi,t)u_{0}(\xi)d\xi$

where

$p(x, \xi,t)=\frac{c_{n}t}{(|x-\xi|^{2}+t^{2})^{\frac{n+1}{2}}}$ , $t>0,$ $x,\xi\in R^{n},$
$c_{n}= \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}}$ .
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The extension argument is also applied to Cauchy problem. Let
$u^{*}(x,z, t)$ be the solution of the following extension problem:

(37) $\{\begin{array}{l}\triangle_{x}u^{*}+u_{zz}^{*}=0 in R^{n}\cross R^{+}\cross(0,\infty)u_{z}^{*}(x,0,t)-u_{t}^{*}(x,0,t)=0 x\in \mathbb{R}^{n}u^{*}(x,0,0)=u_{0}(x) x\in R^{n}.\end{array}$

The details of proof of the following lemmas can be found at $[KsL2]$ .
Lemma 3.6. Let $u_{0}\geq 0$ be a continuous and bounded initialfunction with
a compact support. If $(u_{0})^{-\frac{2}{n+1}}$ is strictly convex, then the solution $u^{*}$ is
power-convex in the space variable $x$ for all $t>0$, i.e., $D_{\chi}^{2}[(u^{*})^{-\frac{2}{n+1}}]\geq 0$ .

The fact that solution $u$ of (36) is the trace of $u^{*}$ gives the following
Corollary.
Lemma 3.7. Let $u_{0}\geq 0$ be a continuous and bounded initialfunction with
a compact support. If $(u_{0})^{-\frac{2}{n+1}}$ is strictly convex, then the solution $u(x,t)$ of
(36) is power-convex, i.e., $D_{x}^{2}(u(x,t))^{-\frac{2}{n+1}}\geq 0$ .

4. REGULARITY THEORY OF NONLOCAL FULLY NONLlNEAR EQUATIONS

In this section, we are going to discuss the recent development in
the regularity theory of nonlocal fully nonlinear equations.
4.1. Nonlocal Equations with nonsymmetric kemels. The concept
of viscosity solutions, its comparison principle and stability prop-
erties can be found in [CS] for symmetric kemels and in [KLl] for
possibly nonsymmetric kemels. Kim and Lee [KLl] considered much
larger class of operators butprove the regularity ofviscosity solutions
only for $1<\sigma<2$ .

Now we are going to consider a subclass $S_{\eta}^{\mathfrak{L}}$ of $S^{\mathfrak{L}}$ where the drift
effect created by the nonsymmetric kemel is controllable. For $x\in B_{R}$

and $\varphi\in C_{B_{R}}^{2}(u,x)^{\pm}$ , we set
$p_{R}(u,x,y,\cdot\nabla\varphi)=u(x+y)-u(x)-(\nabla\varphi(x)\cdot y)\chi_{B_{R}}(y)$.

For $u\in C^{1,1}[x]$ , we write $\mu_{R}(u,x,y)=\mu_{R}(u,x,y,\nabla u)$ . Then we de-
fine $\mu_{R}^{\pm}$ and $\mathcal{M}_{\mathfrak{L}_{0},R}^{\pm}u(x,\nabla\varphi)$ by replacing $\mu$ by $\mu_{R}$ in the definition
$\mathcal{M}_{\mathfrak{L}_{0}}^{\pm}u(x,\nabla\varphi)$ . We note if $u\in C^{1,1}[x]$ , then $\mathcal{M}_{\mathfrak{L}_{0},R}^{\pm}u(x,\nabla\varphi)=\mathcal{M}_{\mathfrak{L}_{0},R}^{\pm}u(x)=$.
p.v. $A_{n}\mu_{R}(u,x,y)K(y)dy$ . Key observations are the following:

$\bullet$ For the nonsymmetric case, $K(y)$ and $K(-y)$ can be chosen any of
$\lambda/|y|^{n+\sigma}$ or $\Lambda/|y|^{n+\sigma}$ . Therefore there could be an extra term

$\int_{\mathbb{R}^{n}}\frac{|(\nabla u(x)\cdot y)\chi_{B_{1}}(y)|}{|y|^{n+\sigma}}dy$ .
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$\bullet$ The equation is not scalmg invariant due to $|\chi_{B_{1}}(y)|$ .
$\bullet$ Somehow the equation has a drift term, not only the diffision

term. The case $1<\sigma<2$ and the case $0<\sigma\leq 1$ require different
technique due to the difference of the blow rate as $|y|$ approaches to
zero and the decay rate as $|y|$ approaches to ifflinity. When $1<\sigma<2$,
a controllable decay rate of kemel allows H\"older regularities in a
larger class, which is invariant under an one-sided scalin$g$ i.e. if $u$ is
a solution of the homogeneous equation, then so is $u_{\epsilon}(x)=e^{-\sigma}u(ex)$

for $0<e\leq 1$ . Critical case $(\sigma=1)$ and supercritical case $(0<\sigma<1)$

have been studied in [BBC] with different techniques due to the slow
decay rate of the kemel as $|x|arrow\infty$ .

Definition 4.1. Let $0<\eta\leq 1$ and $t\in S^{\mathfrak{L}}$, where $\mathfrak{L}$ is a class of linear
integro-dffferential opemtors. Then we say that $t\in S_{\eta}^{\mathfrak{L}}$ if, for $R\in(O,1]$,

there are $B_{R}^{\pm}:$ $R^{n}arrow R$ such that
(I) $B_{R}^{\pm}(\cdot)$ is homogeneous of degree one, i.e. $B_{R}^{\pm}(0)=0$ and $B_{R}^{\pm}(\nabla u)=$

$B_{R}^{+}( \frac{\nabla u}{|\nabla u|})|\nabla u|for|\nabla u|\neq 0$ ,
(2) $|\{v\in S^{n-1} : B_{R}^{\pm}(v)<0\}|\geq\eta|S^{n-1}|>0$,
(3) $\mathcal{M}_{\mathfrak{L},R\eta}^{-}u(x)\leq tu(x)-t0(x)\leq \mathcal{M}_{\mathfrak{L},R,\eta}^{+}u(x)$ whenever $u\in C^{1,1}[x]\cap$

$B(\mathbb{R}^{n})$

’

for $x\in B_{R\prime}$

where $\mathcal{M}_{\mathfrak{L},R,\eta}^{\pm}u(x):=\mathcal{M}_{\mathfrak{L},R}^{\pm}u(x)\pm B_{R}^{\pm}(\nabla u(x))\pm(2-\sigma)CR^{1-\sigma}|\nabla u(x)|$ .

Definition 4.2. Let $\mathcal{L}\in \mathfrak{L}$ be a linear integro-differmtial opemtor with a
kernel K. For $0<R<1$ , the drift vector $b_{\mathcal{L},R}$ of $\mathcal{L}$ at $R$ is $d\phi ned$ by

$b_{l,R}=(2-\sigma)\int_{B_{1}\backslash B_{R}}yK(y)dy$ .

The details of proof of the following lemmas and theorems can be
found at [KL2].

Lemma 4.1. Let $0<\sigma<2$ and $0<R<1$ . Let $\mathfrak{L}$ be a class of linear
integro-dffferential operators. Then we have thefollowing results:

(I) If $l$ is a linear integro-dffferential opemtor which is in $\mathfrak{L}$, then
$\mathcal{L}\in S_{\eta}^{\mathfrak{L}}$ for $0< \eta\leq\frac{1}{2}$ .

(2) Let $\mathcal{L}_{i}$ be a linear integro-dffferential operator with a kemel $K_{i}$ for
$i=1,\cdots$ , N. Let $b_{L,R}$ be the drift vectors of $\mathcal{L}_{i}$ . Assume that there
is a unit vector $a$ such thatfor any nonzero drift vector $b_{\angle_{i},R}$ ,

$\{a,$ $\frac{b_{\mathcal{L}_{i\prime}R}}{|b_{L,R}|}\}>0$.
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If $I\in S^{\mathfrak{L}}$ satisfies that

$\min_{i=1,\cdots,N}\mathcal{L}_{i}u(x)\leq \mathcal{I}u(x)-\mathcal{I}0(x)\leq i,\cdots,N\max_{=1}\mathcal{L}_{i}u(x)$

whenever $u\in C^{1,1}[x]\cap B(\mathbb{R}^{n})$ for $\chi\in B_{R}$ , then $t\in S_{\eta}^{\mathfrak{L}}$ for some
$\eta>0$ .

(3) Let $\mathcal{L}_{\alpha}$ be a linear integro-dffferential operator with a kernel $K_{\alpha}$,
$\alpha\in I$. Let $b_{L,R}$ be the drift vectors of $\mathcal{L}_{\alpha}$ . Assume that there is a
vector $\mathfrak{a}\in S^{n-1}$ and $\eta>0$ such that for any nonzero drift vectors
$b_{\angle_{a\prime}R\prime}$

$\{\mathfrak{a},$ $\frac{b_{L,R}}{|b_{X_{\alpha},R}|}\}\geq\eta^{\frac{1}{n-1}}$ for any $\alpha\in I$ .

If $t\in S^{\mathfrak{L}}$ satisfies that

$\min_{\alpha\in I}\mathcal{L}_{\alpha}u(x)\leq tu(x)-$ IO$(x) \leq\max \mathcal{L}_{\alpha}u(x)$

$\alpha\in I$

whenever $u\in C^{1,1}[x]\cap B(R^{n})$ for $\chi\in B_{R}$ , then we have $\mathcal{I}\in S_{\eta}^{\mathfrak{L}}$ .
Lemma 4.2.

(I) Let $0<\sigma<2$ and let $\mathfrak{L}$ be a class of linear integro-differential
opemtors. If $l\in S^{\mathfrak{L}}$ with a symmetric kemel $K$, then $\mathcal{L}\in S_{\eta}^{\mathfrak{L}}$ for
some $\eta\in(0,1]$ . In addition, if $\mathcal{L}_{a}$ has symmetric kernel for all $\alpha$,
then $\sup_{\alpha}\mathcal{L}_{a},\inf_{\alpha}.\mathcal{L}_{a}\in S_{\eta}^{\mathfrak{L}}$for $1\geq\eta>0$ .

(2) If $1<\sigma<2$, then $S^{\mathfrak{L}_{0}}=S_{\eta}^{\mathfrak{L}_{0}}$ for some $\eta\in(0,1]$ .
At [KL2]. we have the following Hamack inequality and H\"older

regularity.

Theorem 4.3. Let $\sigma_{0}\in(1,2)$ and assume that $\sigma\in(0,1]$ or $\sigma\in(\sigma_{0},2]$ an
that $R\in(0,R_{0}]$ . If $u\in B(R^{n})$ is a positivefunction such that

$\mathcal{M}_{\mathfrak{L}_{0}}^{-}u\leq\frac{C_{0}}{R^{\sigma}}$ and $\mathcal{M}_{\mathfrak{L}_{0}}^{+}u\geq-\frac{C_{0}}{R^{\sigma}}$ with $\sigma_{0}<\sigma<2$ on $B_{2R}$

$or$

$\mathcal{M}_{\mathfrak{L}_{0},R,\eta}^{-}u\leq\frac{C_{0}}{R^{\sigma}}$ and $\mathcal{M}_{\mathfrak{L}_{0},R,\eta}^{+}u\geq-\frac{C_{0}}{R^{\sigma}}$ with $0<\sigma\leq 1$ on $B_{2R}$

in the viscosity sense, then there is uniform constant $C>0$ such that

$\sup_{B_{R/2}}u\leq C(\inf_{B_{R/2}}u+C_{0})$ .

For $\sigma\in(\sigma_{0},2),$ $C$ depends only on $\lambda,\Lambda$ , the dimension $n$, and $\sigma_{0}$ . Andfor
$\sigma\in(0,1],$ $C$ depends only on $\lambda,\Lambda,$ $n,$ $\sigma$, and $\eta$ .
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Theorem 4.4. Let $\sigma_{0}\in(1,2)$ and assume that $\sigma\in(0,1]$ or $\sigma\in(\sigma_{0},2]$ and
that $R\in(0,R_{0}]$ . If $u$ is a boundedfunction on $R^{n}$ such that

$\mathcal{M}_{\mathfrak{L}_{0}}^{-}u\leq\frac{C_{0}}{R^{\sigma}}$ and $\mathcal{M}_{\mathfrak{L}_{0}}^{+}u\geq-\frac{C_{0}}{R^{\sigma}}$ with $\sigma_{0}<\sigma<2$ on $B_{2R}$

$or$

$\mathcal{M}_{\mathfrak{L}_{0},R,\eta}^{-}u\leq\frac{C_{0}}{R^{\sigma}}$ and $\mathcal{M}_{\mathfrak{L}_{0},R,\eta}^{+}u\geq-\frac{C_{0}}{R^{\sigma}}$ with $0<\sigma\leq 1$ on $B_{2R}$

in the viscosity smse, then there is some constant $\alpha>0$ such that

$||u||_{C^{a}(B_{R/2})} \leq\frac{C}{R^{\alpha}}(||u||_{L^{\infty}(\mathbb{R}^{n})}+C_{0})$

where $C>0$ is some universal constant. For $\sigma\in(\sigma_{0},2),$ $\alpha$ and $C$ depend
only on $\lambda,\Lambda$ , the dimension $n$, and $\sigma_{0}$ . Andfor $\sigma\in(0,1],$ $\alpha$ and $C$ depend
only on $\lambda,\Lambda,$ $n,$ $\sigma$, and $\eta$ .
4.2. Nonlocal Nonlinear Parabolic Equations with symmetric ker-
nels. Sinuilar regularity theory have been discussed on parabolic
nonlocal nonlinear equation at [KL3]. Key observations are the fol-
lowing:

$\bullet$ The equation is local in time while it is nonlocal in the space
variable. Caffarelli and Silvestre considered a sequence of dyadic
rings in space at A-B-P estimate to find the balance of quantities in
the integral. But a simple generalization of the ring in space to one in
space-time fails since the equation is local in the time variable. Such
unbalance between local and nonlocal terms in the equation requires
more fine analysis to find a parabolic version of $A-Brightarrow P$ estimate.

$\bullet$ There is a time delay to control the lower bound in a small
neighborhood of a point by the current value at the point, which is a
main difference between elliptic and parabolic equations. The details
of results can be found at [KL3]
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