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1 Introduction
The weighted Hardy-Littlewood-Sobolev inequality of Stein and Weiss [17] states that

$\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{f(x)g(y)}{|x|^{\alpha}|x-y|^{\lambda}|y|^{\beta}}dxdy\leq C\Vert f\Vert_{r}\Vert g\Vert_{s}$ (1.1)

holds for $f\in L^{r}(\mathbb{R}^{n}),$ $g\in L^{s}(\mathbb{R}^{n})$ with $1<r,$ $s<\infty,$ $0<\lambda<n,$ $0\leq\alpha+\beta\leq n-\lambda$ ,

$\frac{1}{r}+\frac{\alpha}{n}<1$ , $\frac{1}{s}+\frac{\beta}{n}<1$ , and $\frac{1}{r}+\frac{1}{s}+\frac{\alpha+\beta+\lambda}{n}=2$ .

Here, $\Vert\cdot\Vert_{r}$ denotes the $L^{r}(\mathbb{R}^{n})$ norm and the constant $C=C(r, s, \lambda, \alpha, \beta)$ does not
depend on the choice of $f$ and $g$ .

To obtain the best constant for the inequality (1.1), one desires to maximize the
functional

$J(f, g):= \int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{f(x)g(y)}{|x|^{\alpha}|x-y|^{\lambda}|y|^{\beta}}dxdy$

under the constraint $\Vert f\Vert_{r}=\Vert g\Vert_{s}=1$ . In the case where $\alpha,$ $\beta\geq 0$ and $\alpha+\beta+\lambda<n$ ,
Lieb [16] proved the existence of a pair of maximizing functions $f,$ $g$ for this variational
problem. By assuming that $f$ and $g$ are nonnegative functions, the corresponding
system of the Euler-Lagrange equations is derived as

$\{\begin{array}{l}\lambda_{1}f(x)^{r-1}=\frac{1}{|x|^{\alpha}}\int_{\mathbb{R}^{n}}\frac{g(y)}{|x-y|^{\lambda}|y|^{\beta}}dy,\lambda_{2}g(x)^{s-1}=\frac{1}{|x|^{\beta}}\int_{\mathbb{R}^{n}}\frac{f(y)}{|x-y|^{\lambda}|y|^{\alpha}}dy,\end{array}$ (1.2)

where $\lambda_{1}$ and $\lambda_{2}$ are the Lagrange multipliers which satisfy $\lambda_{1}=\lambda_{2}=J(f, g)$ . Note
that, if $(r-1)(s-1)\neq 1$ , then we may assume $\lambda_{1}=\lambda_{2}=1$ by taking $c_{1}f,$ $c_{2}g$ instead
of $f,$ $g$ with appropriate constants $c_{1}$ and $c_{2}$ . For convenience, we rewrite the system
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(1.2) by $u:=f^{r-1},$ $v$ $:=g^{s-1},$ $p:=1/(r-1)$ and $q:=1/(s-1)$ to obtain the following
system of integral equations:

$\{\begin{array}{l}u(x)=\frac{1}{|x|^{\alpha}}\int_{\mathbb{R}^{n}}\frac{v(y)^{q}}{|x-y|^{\lambda}|y|^{\beta}}dy,v(x)=\frac{1}{|x|^{\beta}}\int_{\mathbb{R}^{n}}\frac{u(y)^{p}}{|x-y|^{\lambda}|y|^{\alpha}}dy,\end{array}$ (1.3)

where $u\in L^{p+1}(\mathbb{R}^{n}),$ $v\in L^{q+1}(\mathbb{R}^{n}),$ $0<p,$ $q<\infty$ ,

$\frac{\alpha}{n}<\frac{1}{p+1}$ , $\frac{\beta}{n}<\frac{1}{q+1}$ , and $\frac{1}{p+1}+\frac{1}{q+1}=\frac{\alpha+\beta+\lambda}{n}$ . (1.4)

The determination of the functional forms of solutions to the integral system (1.3)
yields the best constant for the weighted Hardy-Littlewood-Sobolev inequality (1.1).
Lieb [16] classified all the maximizers of the functional $J=J(f,g)$ under the con-
straints $\Vert f\Vert_{r}=\Vert g\Vert_{s}=1$ in the special case where $\alpha=\beta=0$ and $r=s$ . It was shown
that any maximizer must be of the form

$f(x)=g(x)=c( \frac{t}{t^{2}+|x-x_{0}|^{2}})^{(2n-\lambda)/2}$ (1.5)

with some constants $c\in \mathbb{R},$ $t>0$ , and $x_{0}\in \mathbb{R}^{n}$ . In the paper [16], he posed the
problem of the classification of all the critical points (not only maximizers) of the
functional, i.e., that of all the solutions to the integral system (1.3), in the case where
$\alpha=\beta=0,$ $p=q$ and $u=v$ .

Letting $u=v$ reduces the system to the single equation

$u(x)= \int_{\mathbb{R}^{n}}\frac{u(y)^{\frac{n+\gamma}{n-\gamma}}}{|x-y|^{n-\gamma}}dy$, (1.6)

where $\gamma=n-\lambda$ . This integral equation corresponds to the well known differential
equation

$(-\triangle)^{\gamma/2}u=u^{(n+\gamma)/(n-\gamma)}$ , (1.7)

which has been investigated by many authors. In particular, when $\gamma=2$ , Gidas, Ni
and Nirenberg [7] proved the radial symmetry of positive solutions to (1.7) under the
additional condition that $u(x)=O(|x|^{2-n})$ as $|x|arrow\infty$ , and hence the solutions must
be of the form (1.5). Then, Caffarelli, Gidas and Spruck [1] obtained the same result
without imposing the decay condition at infinity. Their proof was simplified by Chen
and Li [3], and Li [13]. Moreover, Wei and Xu [18] studied more general equation
(1.7) with $\gamma$ being even numbers between $0$ and $n$ .

Later, Chen, Li and Ou [5, 6] introduced an integral form of the method of moving
planes to prove the symmetry of solutions to the equation (1.6) and to the system (1.3)
when $\alpha=\beta=0,$ $p,$ $q\geq 1$ and $pq\neq 1$ , and therefore they solved the open problem
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posed by Lieb (see [15] for a different argument by using the method of moving
spheres). They also discussed about the relation between the integral equation (1.6)
and the differential equation (1.7).

Now our attention tums to the integral system (1.3) for general $\alpha,$
$\beta$ and $p,$ $q>0$ .

The symmetry of solutions was studied by Jin and Li [10]. Chen, Jin, Li and Lim [2]
obtained the optimal integrability of solutions to the system when $\alpha,$ $\beta\geq 0$ , and Jin
and Li [11] extended the result to the case where $\alpha$ or $\beta$ is even negative. By using
the integrability of solutions, Li and Lim [14] studied the profiles of solutions around
the origin and the infinity. However, their results are restricted to the case where
$p,$ $q\geq 1$ and $pq\neq 1$ , since the methods use linear operators to make a regularity lifting
argument. This restriction was removed by Hang [8] when $\alpha=\beta=0$ by developing a
nonlinear technique. He proved the symmetry and regularity of solutions in this case
for all $0<p,$ $q<\infty$ . This technique was also applied to a different integral system
by Hang, Wang and Yan [9].

In this paper we develop the methods of obtaining integrability, regularity and
symmetry by adopting a nonlinear approach to show the profiles of solutions to the
integral system (1.3) for general $\alpha,$ $\beta$ and $0<p,$ $q<\infty$ . This paper unifies and
extends the previous results obtained by other authors and completes the study in
full generality.

The following theorem shows a priori integrability of solutions in the case where
$\alpha,$ $\beta\geq 0$ .

Theorem 1.1. Suppose that a pair of nonnegative functions $u\in L^{p+1}(\mathbb{R}^{n})$ and $v\in$

$L^{q+1}(\mathbb{R}^{n})(0<p, q<\infty)$ is a solution to the integml system (1.3), where $0<\lambda<n$ ,
$0\leq\alpha,$ $\beta,$ $\alpha+\beta+\lambda<n$ , and the condition (1.4) are satisfied. Then, $u\in L^{r}(\mathbb{R}^{n})$ and
$v\in L^{s}(\mathbb{R}^{h})$ hold for $r,$ $s$ satisfying

$\max\{\frac{\alpha}{n},$ $\frac{q\beta+\alpha+\beta+\lambda}{n}-1\}<\frac{1}{r}<\min\{\frac{\alpha+\lambda}{n},$ $\frac{q(\beta+\lambda)+\alpha+\beta+\lambda}{n}-1\}$ ,

(1.8)

$\max\{\frac{\beta}{n},\frac{p\alpha+\alpha+\beta+\lambda}{n}-1\}<\frac{1}{s}<\min\{\frac{\beta+\lambda}{n},\frac{p(\alpha+\lambda)+\alpha+\beta+\lambda}{n}-1\}(1.\cdot 9)$

We show an analogous result in the case where $\alpha$ or $\beta$ is strictly less than $0$ . Here,
we may assume $\beta<0$ without loss of generality.

Theorem 1.2. Suppose that a pair of nonnegative functions $u\in L^{p+1}(\mathbb{R}^{n})$ and $v\in$

$L^{q+1}(\mathbb{R}^{n})(0<p, q<\infty)$ is a solution to the integml system (1.3), where $0<\lambda<n$ ,
$\beta<0,0\leq\alpha+\beta<n-\lambda$ , and the condition (1.4) are satisfied. Then, $u\in L^{r}(\mathbb{R}^{n})$
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and $v\in L^{s}(\mathbb{R}^{n})$ hold for $r,$ $s$ satisfying

$\frac{\alpha}{n}<\frac{1}{r}<\min\{\frac{\alpha+\beta+\lambda}{n},$ $\frac{q(\beta+\lambda)+\alpha+\beta+\lambda}{n}-1\}$ ,

(1.10)

$\max\{0,\frac{p\alpha+\alpha+\beta+\lambda}{n}-1\}<\frac{1}{s}<\min\{\frac{\beta+\lambda}{n},$ $\frac{(p+1)(\alpha+\beta+\lambda)}{n}-1\}$ .

(1.11)

Theorems 1.1 and 1.2 play an important role to determine the profiles of solutions
to the integral system (1.3). In fact, the analysis employed by Li and Lim [14], and
Lei, Li and Ma [12] can be applied to show the following result concerning the profiles
of solutions. In the theorem, we use the notation $u(x)\sim A/|x|^{\gamma}$ as $|x|arrow 0$ to mean
that $\lim_{|x|arrow 0}|x|^{\gamma}u(x)=A$ . Remark that the condition $\alpha+\beta+\lambda<n$ and (1.4) imply
that either $q\beta+\beta+\lambda<n$ or $p\alpha+\alpha+\lambda<n$ holds and also that either $q(\beta+\lambda)+\beta>n$

or $p(\alpha+\lambda)+\alpha>n$ holds. This fact can be easily confirmed by simple computations.

Theorem 1.3. Suppose that a pair of nonnegative functions $u\in L^{p+1}(\mathbb{R}^{n})$ and $v\in$

$L^{q+1}(\mathbb{R}^{n})(0<p, q<\infty)$ is a solution to the integml system (1.3), where $0<\lambda<n$ ,
$0\leq\alpha+\beta<n-\lambda$ , and the condition (1.4) are satisfied. Then, $u$ and $v$ have the
following profiles.
(i) Around the origin.
Assume moreover that $q\beta+\beta+\lambda<n$ . Then, it holds that

$u(x) \sim\frac{A_{0}}{|x|^{\alpha}}$ and $v(x)\sim\{$ $\frac{\frac{A}{-|x}\frac{A_{2}\log|x||^{\beta}1}{|x\lambda_{3}^{\beta}}}{|x|p\alpha+\alpha+\beta+\lambda-n}$

if $p\alpha+\alpha+\lambda>n$ ,

if $p\alpha+\alpha+\lambda<n$ ,

if $p\alpha+\alpha+\lambda=n$ ,

as $|x|arrow 0$ . Here the constants $A_{0},$ $A_{1},$ $A_{2},$ $A_{3}$ are given by

$A_{f};= \int_{\mathbb{R}^{n}}\frac{v(y)^{q}}{|y|^{\lambda+\beta}}dy$ , $A_{1};= \int_{\mathbb{R}^{n}}\frac{u(y)^{p}}{|y|^{\lambda+\alpha}}dy$ , $A_{2}:= \omega_{n-1}(\int_{\mathbb{R}^{n}}\frac{v(y)^{q}}{|y|^{\lambda+\beta}}dy)^{p}$ ,

and $A_{3}:=( \int_{\mathbb{R}^{n}}\frac{v(y)^{q}}{|y|^{\lambda+\beta}}dy)^{p}\int_{\mathbb{R}^{n}}\frac{1}{|e_{1}-z|^{\lambda}|z|^{\alpha(p+1)}}dz$ ,

where $\omega_{n-1}$ denotes the surface area of the unit sphere, and $e_{1}=(1,0, \ldots, 0)$ .
(ii) Around the infinity.
Assume moreover that $q(\beta+\lambda)+\beta>n$ . Then, it holds that

$u(x) \sim\frac{B_{0}}{|x|^{\alpha+\lambda}}$ and $v(x)\sim\{$ $\frac{\frac{\frac{B_{1}}{B_{2}\log|x|^{\beta+\lambda}}|x|}{|x|p(\alpha+|x|^{\beta+\lambda_{B}}}3}{\lambda)+\alpha+\beta+\lambda-n}$

if $p(\alpha+\lambda)+\alpha<n$ ,

if $p(\alpha+\lambda)+\alpha>n$ ,

if $p(\alpha+\lambda)+\alpha=n$ ,
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as $|x|arrow\infty$ . Here the constants $B_{0},$ $B_{1},$ $B_{2},$ $B_{3}$ are given by

$B_{0}:= \int_{\mathbb{R}^{n}}\frac{v(y)^{q}}{|y|^{\beta}}dy$, $B_{1}:= \int_{\mathbb{R}^{n}}\frac{u(y)^{p}}{|y|^{\alpha}}dy$ , $B_{2}:= \omega_{n-1}(\int_{\mathbb{R}^{n}}\frac{v(y)^{q}}{|y|^{\beta}}dy)^{p}$ ,

and $B_{3}:=( \int_{\mathbb{R}^{n}}\frac{v(y)^{q}}{|y|^{\beta}}dy)^{p}\int_{\mathbb{R}^{n}}\frac{1}{|e_{1}-z|^{\lambda}|z|^{2n-(\alpha+\lambda)(p+1)}}dz$ .

The radial symmetry of solutions will be proved by means of an integral form of
the method of moving planes introduced by Chen, Li and Ou [5, 6]. Assuming that
$p,$ $q\geq 1$ , Jin and Li [10] studied the system (1.3) for general $\alpha,$ $\beta\geq 0$ . On the other
hand, Hang [8] developed the method to treat the case where either $p<1$ or $q<1$ ,
and proved the symmetry of solutions for $0<p,$ $q<\infty$ when $\alpha=\beta=0$ . We extend
their results for genera10 $<p,$ $q<\infty$ and $\alpha,$ $\beta\geq 0$ .

Theorem 1.4. Suppose the same assumption as in Theorem 1.1. Then, $u$ and $v$ are
smooth away from the origin, mdially symmetric, and strictly decreasing in the mdial
direction. Moreover, the center of the symmetry must be the origin unless $\alpha=\beta=0$ .

This paper is organized as follows. In section 2, we consider integrability of so-
lutions. By developing a nonlinear contraction mapping technique, it is shown that
solutions must belong to the Lebesgue spaces with exponents in certain ranges as
stated in Theorems 1.1 and 1.2. Then, Theorem 1.3 follows as a corollary. In section
3, an integral form of the method of moving planes is used to prove Theorem 1.4. In
the case where $\alpha>0$ or $\beta>0$ , the symmetric center is shown to be the origin, since
solutions have singularities at the origin.

In the following sections, $C$ denotes a generic constant and $B_{R}(x)$ is the ball of
radius $R>0$ with center at $x\in \mathbb{R}^{n}$ .

2 A priori integrability of solutions
The method we use here is based on a regularity lifting argument employed in the
work of Chen, Jin, Li and Lim [2] and Jin and Li [11]. They considered the operators
$T_{1}^{\rho},$ $T_{2}^{\rho}$ defined by

$T_{1}^{\rho}g(x);= \frac{1}{|x|^{\alpha}}\int_{\mathbb{R}^{n}}\frac{v(y)^{q-\rho}g(y)^{\rho}}{|x-y|^{\lambda}|y|^{\beta}}dy$ ,

$T_{2}^{\rho}f(x):= \frac{1}{|x|^{\beta}}\int_{\mathbb{R}^{n}}\frac{u(y)^{p-(1/\rho)}f(y)^{1/\rho}}{|x-y|^{\lambda}|y|^{\alpha}}dy$,

with $\rho=1$ . It is easy to see that any solution $u,$ $v$ to the system (1.3) satisfies
$T_{1}^{\rho}v=u$ and $T_{2}^{\rho}u=v$ . To explain the idea of their work concisely, we assume
that $\Vert u\Vert_{p+1},$ $\Vert v\Vert_{q+1}$ are sufficiently small. When $\rho=1$ , the mapping $T$ defined
by $T(f, g)$ $:=(T_{1}^{\rho}g, T_{2}^{\rho}f)$ is a linear operator from $L^{p+1}(\mathbb{R}^{n})\cross L^{q+1}(\mathbb{R}^{n})$ into itself
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and it can be shown that $T$ is a contraction mapping with the unique fixed point
$(u, v)$ . Here, $L^{p+1}(\mathbb{R}^{n})\cross L^{q+1}(\mathbb{R}^{n})$ is the product space equipped with the norm
$\Vert(f, g)\Vert_{p+1,q+1}$ $:=\Vert f\Vert_{p+1}+\Vert g\Vert_{q+1}$ . Moreover, $T$ also becomes a contraction mapping
from $L^{r}(\mathbb{R}^{n})\cross L^{s}(\mathbb{R}^{n})$ into itself with $r,$ $s$ satisfying some conditions. As shown in [2,
Theorem 1], it then turns out that a unique fixed point in the space $L^{r}(\mathbb{R}^{n})\cross L^{s}(\mathbb{R}^{n})$

must coincide with $(u, v)$ . This implies that $u\in L^{r}(\mathbb{R}^{n})$ and $v\in L^{s}(\mathbb{R}^{n})$ .
However, the above argument is available only when $p,$ $q>1$ , since the reason that

the mapping $T$ becomes a contraction mapping relies on the inequalities $\Vert T_{1}^{\rho}g\Vert_{r}\leq$

$C\Vert v\Vert_{q+1}^{q-\rho}\Vert g\Vert_{s}^{\rho}$ and $\Vert T_{2}^{\rho}f\Vert_{s}\leq C\Vert u\Vert_{p+1}^{p-(1/\rho)}\Vert f\Vert_{r}^{1/\rho}$ , i.e., $q-\rho>0$ and $p-(1/\rho)>0$ are
required for $T$ to be a contraction mapping. In addition, we need to take $\rho=1$ ;
otherwise $T$ is no longer a contraction mapping. This prevents us from extending the
above argument to the case where either $p$ or $q$ is smaller than 1.

In this section we consider the composite mapping $T_{1}^{\rho}T_{2}^{\rho}$ or $T_{2}^{\rho}T_{1}^{\rho}$ instead of $T$ with
general $\rho$ , and treat all the cases $0<p,$ $q<\infty$ . Then, as we will demonstrate later, it
can be proved that the nonlinear operator $T_{1}^{\rho}T_{2}^{\rho}$ is a contraction mapping from $L^{r}$ into
itself when $\rho\leq 1$ and so is $T_{2}^{\rho}T_{1}^{\rho}$ when $\rho\geq 1$ with $r$ being in a certain range. From
this fact we can obtain the integrability of either $u$ or $v$ , and subsequently that of the
other by the equations (1.3) combined with the weighted Hardy-Littlewood-Sobolev
inequality. Along this way, we prove Theorem 1.1 which is the key to obtaining the
profiles of solutions to the integral system (1.3) as we will see in the next section.

We should remark that this kind of nonlinear approach was employed by Hang
[8], and Hang, Wang and Yan [9] to prove the regularity and symmetry of solutions
to the system (1.3) and a different system of integral equations associated with a
sharp inequality for harmonic functions. Here we develop the idea to show a priori
integrability of solutions.

Proof of Theorem 1.1. First observe from the equality in (1.4) that the assumption
$\alpha+\beta+\lambda<n$ is equivalent to the inequality $pq>1$ , and hence there exists $\rho$ such
that $1/p<\rho<q$ . In what follows, we often use a variant of the weighted Hardy-
Littlewood-Sobolev inequality which states that a function $w$ defined by

$w(x):= \frac{1}{|x|^{\alpha}}\int_{\mathbb{R}^{n}}\frac{h(y)}{|x-y|^{\lambda}|y|^{\beta}}dy$

belongs to the space $L^{r}(\mathbb{R}^{n})$ and satisfies $\Vert w\Vert_{r}\leq C\Vert h\Vert_{\mu}$ , provided that $h\in L^{\mu}(\mathbb{R}^{n})$

with
$\frac{1}{\mu}+\frac{\beta}{n}<1$ , $0< \frac{1}{\mu}+\frac{\beta+\lambda}{n}-1$ , and $\frac{1}{r}=\frac{1}{\mu}+\frac{\alpha+\beta+\lambda}{n}-1$ .

This follows from the inequality (1.1) and a duality argument.
Step 1. Let us derive basic inequalities together with sufficient conditions for these

inequalities to hold. Applying the weighted Hardy-Littlewood-Sobolev inequality and
then $H\ddot{o}lder$ ’s inequality, we have

$\Vert T_{1}^{\rho}g\Vert_{r}\leq C\Vert v^{q-\rho}g^{\rho}\Vert_{\mu}\leq C\Vert v\Vert_{q+1}^{q-\rho}\Vert g\Vert_{s}^{\rho}$ (2.1)
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for $g\in L^{s}(\mathbb{R}^{n})$ , provided that $r,$ $s\geq 1$ satisfy

$\frac{1}{\mu}$

$:= \frac{q-\rho}{q+1}+\frac{\rho}{s},$ $\frac{1}{\mu}+\frac{\beta}{n}<1,0<\frac{1}{\mu}+\frac{\beta+\lambda}{n}-1$ , and $\frac{1}{r}=\frac{1}{\mu}+\frac{\alpha+\beta+\lambda}{n}-1$ . $(2.2)$

Similarly, we see that

$\Vert T_{2}^{\rho}f\Vert_{s}\leq C\Vert u^{p-(1/\rho)}f^{1/\rho}\Vert_{\nu}\leq C\Vert u\Vert_{p+1}^{p-(1/\rho)}\Vert f\Vert_{r}^{1/\rho}$ (2.3)

for $f\in L^{r}(\mathbb{R}^{n})$ , provided that $r,$ $s\geq 1$ satisfY

$\frac{1}{\nu};=\frac{p-(1/\rho)}{p+1}+\frac{1/\rho}{r},$ $\frac{1}{\iota \text{ノ}}+\frac{\alpha}{n}<1,0<\frac{1}{\nu}+\frac{\alpha+\lambda}{n}-1$ ,
(2.4)

and $\frac{1}{s}=\frac{1}{\nu}+\frac{\alpha+\beta+\lambda}{n}-1$ .

Note that, in view of (1.4), the last equalities in (2.2) and (2.4) are equivalent to each
other. Moreover, we see that $r,$ $s\geq 1$ satisfy the conditions (2.2) and (2.4) if and only
if

$\frac{\alpha}{n}<\frac{1}{r}<\frac{\alpha+\lambda}{n}$ , $\frac{\beta}{n}<\frac{1}{s}<\frac{\beta+\lambda}{n}$ and $\frac{1}{r}-\frac{1}{p+1}=\rho(\frac{1}{s}-\frac{1}{q+1})$ . (2.5)

Fkom (2.5) we derive the following single condition for $s$ :

$\max\{$ $\frac{1}{\rho}(\frac{\alpha}{n}-\frac{1}{p+1})+\frac{1}{q+1},$ $\frac{\beta}{n}\}$

(2.6)
$< \frac{1}{s}<\min\{\frac{1}{\rho}(\frac{\alpha+\lambda}{n}-\frac{1}{p+1})+\frac{1}{q+1},$ $\frac{\beta+\lambda}{n}\}$ .

This means that, for any given $s$ satisfying (2.6), we can take $r$ so that the condition
(2.5) holds. Similarly, we have the following single condition for $r$ :

$\max\{$ $\rho(\frac{\beta}{n}-\frac{1}{q+1}I+\frac{1}{p+1},$ $\frac{\alpha}{n}\}$

(2.7)
$< \frac{1}{r}<\min\{\rho(\frac{\beta+\lambda}{n}-\frac{1}{q+1})+\frac{1}{p+1},$ $\frac{\alpha+\lambda}{n}\}$ .

Step 2. Here we show that, depending on the value of $\rho,$ $u\in L^{r}(\mathbb{R}^{n})$ or $v\in L^{s}(\mathbb{R}^{n})$

holds for $r,$ $s$ satisfying (2.6) and (2.7). To handle even the case where $\Vert u\Vert_{p+1}$ or
$\Vert v\Vert_{q+1}$ is not small, we consider the following operators $T_{1}^{\rho,A},$ $T_{2}^{\rho,A}$ instead of $T_{1}^{\rho},$ $T_{2}^{\rho}$ :

$T_{1}^{\rho,A}g(x);= \frac{1}{|x|^{\alpha}}\int_{\mathbb{R}^{n}}\frac{v_{A}(y)^{q-\rho}g(y)^{\rho}}{|x-y|^{\lambda}|y|^{\beta}}dy+\frac{1}{|x|^{\alpha}}\int_{\mathbb{R}^{n}}\frac{(v(y)-v_{A}(y))^{q}}{|x-y|^{\lambda}|y|^{\beta}}dy$,

$T_{2}^{\rho,A}f(x);= \frac{1}{|x|^{\beta}}\int_{\mathbb{R}^{n}}\frac{u_{A}(y)^{p-(1/\rho)}f(y)^{1/\rho}}{|x-y|^{\lambda}|y|^{\alpha}}dy+\frac{1}{|x|^{\beta}}\int_{\mathbb{R}^{n}}\frac{(u(y)-u_{A}(y))^{p}}{|x-y|^{\lambda}|y|^{\alpha}}dy$ ,

117



where $u_{A}$ and $v_{A}$ are defined by

$u_{A}(x):=\{\begin{array}{ll}u(x) when |x|\geq A or |u(x)|\geq A,0 otherwise,\end{array}$

$v_{A}(x):=\{\begin{array}{ll}v(x) when |x|\geq A or |v(x)|\geq A,0 otherwise.\end{array}$

Then, it is easy to see that $T_{2}^{\rho,A}T_{1}^{\rho,A}v=v$ and $T_{1}^{\rho,A}T_{2}^{\rho,A}u=u$ .
Let us prove that, when $\rho\geq 1$ , the mapping $T_{2}^{\rho,A}T_{1}^{\rho,A}$ becomes a contraction by

taking $A$ to be sufficiently large. By the simple fact that $(a+c)^{1/\rho}-(b+c)^{1/\rho}\leq$

$a^{1/\rho}-b^{1/\rho}$ for $a\geq b\geq 0,$ $c\geq 0$ and the Minkowski inequality, we see that

$|(T_{1}^{\rho,A}g_{1}(x))^{1/\rho}-(T_{1}^{\rho,A}g_{2}(x))^{1/\rho}| \leq(\frac{1}{|x|^{\alpha}}\int_{\mathbb{R}^{n}}\frac{v_{A}(y)^{q-\rho}|g_{1}(y)-g_{2}(y)|^{\rho}}{|x-y|^{\lambda}|y|^{\beta}}dy)^{1/\rho}$

In view of the inequalities (2.1) and (2.3), it then follows that

$\Vert T_{2}^{\rho,A}T_{1}^{\rho,A}g_{1}-T_{2}^{\rho,A}T_{1}^{\rho,A}g_{2}\Vert_{s}\leq C\Vert u_{A}\Vert_{p+1}^{p-(1/\rho)}\Vert v_{A}\Vert_{q+1}^{(q/\rho)-1}\Vert g_{1}-g_{2}\Vert_{s}$

$\leq\frac{1}{2}\Vert g_{1}-g_{2}\Vert_{s}$

(2.8)

for $s$ satisfying the condition (2.6). Here the last inequality holds if $A$ is taken to
be sufficiently large. Therefore, for such a number $s,$

$T_{2}^{\rho,A}T_{1}^{\rho,A}$ becomes a contraction
mapping from $L^{s}(\mathbb{R}^{n})$ into itself. In particular, $s=q+1$ satisfies (2.6), and hence
we deduce that $v\in L^{s}(\mathbb{R}^{n})$ (see [2, Theorem 1]). Similarly, it can be shown that, if
$\rho\leq 1$ , then $T_{1}^{\rho,A}T_{2}^{\rho,A}$ becomes a contraction mapping from $L^{r}(\mathbb{R}^{n})$ into itself for large
$A$ , so that $u\in L^{r}(\mathbb{R}^{n})$ for $r$ satisfying (2.7).

Step 3. We are now in a position to complete the proof by taking an appropriate
number $\rho$ . We may assume that $q\geq p$ and hence $q>1$ without loss of generality.
Although the case where $p>1$ was already treated in the paper [2], we also give the
proof of this case for the sake of completeness.

Let us first consider the case where $p\leq 1$ . Since $1\leq 1/p<\rho<q$ , we use the
contraction mapping $T_{2}^{\rho,A}T_{1}^{\rho,A}$ . In view of (2.6), $\rho$ should be taken as small as possible
to obtain the maximal integrability of $v$ , i.e., $\rhoarrow 1/p$ . Then, we see that $v\in L^{s}(\mathbb{R}^{n})$

for

$\max\{$ $p( \frac{\alpha}{n}-\frac{1}{p+1})+\frac{1}{q+1},$ $\frac{\beta}{n}\}$

(2.9)
$< \frac{1}{s}<\min\{p(\frac{\alpha+\lambda}{n}-\frac{1}{p+1})+\frac{1}{q+1},$ $\frac{\beta+\lambda}{n}\}$ .

This is equivalent to the condition (1.9). Moreover, with this integrability of $v$ , it
follows from the first equation in (1.3) and the weighted Hardy-Littlewood-Sobolev
inequality that $u\in L^{r}(\mathbb{R}^{n})$ for

$\frac{1}{r}=\frac{q}{s}+\frac{\alpha+\beta+\lambda}{n}-1$ , (2.10)
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where $s$ satisfies (2.9),

$\frac{q}{s}+\frac{\beta}{n}<1$ and $0< \frac{q}{s}+\frac{\beta+\lambda}{n}-1$ .

Here, these three conditions for $s$ can be represented by

$\max\{\frac{1}{q}(1-\frac{\beta+\lambda}{n}),$ $\frac{\beta}{n}\}<\frac{1}{s}<\min\{$ (2.11)$\frac{1}{q}(1-\frac{\beta}{n}),$ $\frac{\beta+\lambda}{n}\}$ ,

since we see from $pq>1$ that

$p( \frac{\alpha}{n}-\frac{1}{p+1})+\frac{1}{q+1}<\frac{1}{q}(1-\frac{\beta+\lambda}{n})$

and $\frac{1}{q}(1-\frac{\beta}{n})<p(\frac{\alpha+\lambda}{n}-\frac{1}{p+1})+\frac{1}{q+1}$ .

Therefore, by (2.10) and (2.11), we deduce that $u\in L^{r}(\mathbb{R}^{n})$ for

$\max\{\frac{\alpha}{n},$ $\frac{q\beta+\alpha+\beta+\lambda}{n}-1\}<\frac{1}{r}<\min\{\frac{\alpha+\lambda}{n},$ $\frac{q(\beta+\lambda)+\alpha+\beta+\lambda}{n}-1\}$ .

This completes the proof for the case where $p\leq 1$ .
Next we turn to the case where $p>1$ . Then, we have two possible choices of

$\rho$ . Let us take $\rho$ such that $1/p<1\leq\rho<q$ , and consider the contraction mapping
$T_{2}^{\rho,A}T_{1}^{\rho,A}$ . As in the previous case, taking $\rho$ as small as possible, i.e., $\rho=1$ , we see
that $v\in L^{s}(\mathbb{R}^{n})$ for

$\max\{\frac{\alpha}{n}-\frac{1}{p+1}+\frac{1}{q+1},$ $\frac{\beta}{n}\}<\frac{1}{s}<\min\{\frac{\alpha+\lambda}{n}-\frac{1}{p+1}+\frac{1}{q+1},$ $\frac{\beta+\lambda}{n}\}$ .

(2.12)
Consequently, it follows from the first equation in (1.3) that $u\in L^{r}(\mathbb{R}^{n})$ for

$\frac{1}{r}=\frac{q}{s}+\frac{\alpha+\beta+\lambda}{n}-1$ ,

where $s$ satisfies the condition (2.12),

$\frac{q}{s}+\frac{\beta}{n}<1$ and $0< \frac{q}{s}+\frac{\beta+\lambda}{n}-1$ .

This again implies the desired integrability interval (1.8) of $u$ . Hence, what is left
to do is to prove the integrability of $v$ as (1.9). To this end, we take $\rho$ such that
$1/p<\rho\leq 1<q$ , and consider the contraction mapping $T_{1}^{\rho,A}T_{2}^{\rho,A}$ . In view of (2.7),
we take $\rho$ as large as possible to obtain the maximal integrability of $u$ , i.e., $\rho=1$ .
Then, we see that $u\in L^{r}(\mathbb{R}^{n})$ for

$\max\{\frac{\beta}{n}-\frac{1}{q+1}+\frac{1}{p+1},$ $\frac{\alpha}{n}\}<\frac{1}{r}<\min\{\frac{\beta+\lambda}{n}-\frac{1}{q+1}+\frac{1}{p+1},$ $\frac{\alpha+\lambda}{n}\}$ .

(2.13)
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Consequently, it follows from the second equation in (1.3) that $v\in L^{s}(\mathbb{R}^{n})$ for

$\frac{1}{s}=\frac{p}{r}+\frac{\alpha+\beta+\lambda}{n}-1$ ,

where $r$ satisfies the condition (2.13),

$\frac{p}{r}+\frac{\alpha}{n}<1$ and $0< \frac{p}{r}+\frac{\alpha+\lambda}{n}-1$ .

This implies that $v\in L^{s}(\mathbb{R}^{n})$ holds for

$\max\{\frac{\beta}{n},\frac{p\alpha+\alpha+\beta+\lambda}{n}-1\}<\frac{1}{s}<\min\{\frac{\beta+\lambda}{n},\frac{p(\alpha+\lambda)+\alpha+\beta+\lambda}{n}-1\}$ ,

as required. $\square$

Remark 2.1. In the remaining case $\alpha+\beta+\lambda=n$ , i.e., $pq=1$ , since the last
inequality in (2.8) fails to hold, the regularity lifting argument does not work. As
pointed out by Lieb [16, p. 369], we cannot expect the existence of maximizers for the
variational problem in this case.

Theorem 1.2 can be proved by an analogous way. However, we need to be careful
with each calculation since the condition $\beta<0$ requires slight modifications.

Proof of Theorem 1.2. Let us take $\rho$ such that $1/p<\rho<q$ as in the proof of Theorem
1.1. Since $\beta<0$ , we need an additional condition $\mu>1$ as well as (2.2) and (2.4)
so that the inequalities (2.1) and (2.3) hold. We put the conditions $\mu>1,$ $(2.2)$ and
(2.4) together to obtain

$\frac{\alpha}{n}<\frac{1}{r}<\frac{\alpha+\beta+\lambda}{n}$ , $0< \frac{1}{s}<\frac{\beta+\lambda}{n}$ and $\frac{1}{r}-\frac{1}{p+1}=\rho(\frac{1}{s}-\frac{1}{q+1})$ . (2.14)

The condition (2.14) yields the following single condition for $s$ :

$\max\{$ $\frac{1}{\rho}(\frac{\alpha}{n}-\frac{1}{p+1})+\frac{1}{q+1},$ $o\}$

$< \frac{1}{s}<\min\{\frac{1}{\rho}(\frac{\alpha+\beta+\lambda}{n}-\frac{1}{p+1})+\frac{1}{q+1},$ $\frac{\beta+\lambda}{n}\}$ .
(2.15)

Similarly, we have the following single condition for $r$ :

$\max\{-\frac{\rho}{q+1}+\frac{1}{p+1},$ $\frac{\alpha}{n}\}<\frac{1}{r}<\min\{\rho(\frac{\beta+\lambda}{n}-\frac{1}{q+1})+\frac{1}{p+1},$ $\frac{\alpha+\beta+\lambda}{n}\}$ .

(2.16)
Then, as in the step 2 of the proof of Theorem 1.1, we see that $v\in L^{s}(\mathbb{R}^{n})$ holds for $s$

satisfying (2.15) when $\rho\geq 1$ , and that $u\in L^{r}(\mathbb{R}^{n})$ holds for $r$ satisfying (2.16) when
$\rho\leq 1$ .
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The next step is to choose an appropriate number $\rho$ to obtain the desired integra-
bility of $u$ and $v$ . We divide the proof into three cases. First let us consider the case
where $1\leq 1/p<q$ . Then, in view of the condition (2.15), by taking $\rhoarrow 1/p$ , we see
that $v\in L^{s}(\mathbb{R}^{n})$ for

$\max\{$ $p( \frac{\alpha}{n}-\frac{1}{p+1})+\frac{1}{q+1},0\}$

(2.17)
$< \frac{1}{s}<\min\{p(\frac{\alpha+\beta+\lambda}{n}-\frac{1}{p+1})+\frac{1}{q+1},$ $\frac{\beta+\lambda}{n}\}$ .

This is equivalent to the condition (1.11). Moreover, with this integrability of $v$ , it
follows from the first equation in (1.3) and the weighted Hardy-Littlewood-Sobolev
inequality that $u\in L^{r}(\mathbb{R}^{n})$ for

$\frac{1}{r}=\frac{q}{s}+\frac{\alpha+\beta+\lambda}{n}-1$ , (2.18)

where $s$ satisfies (2.17),

$\frac{q}{s}<1$ and $0< \frac{q}{s}+\frac{\beta+\lambda}{n}-1$ .

Here, these three conditions for $s$ can be represented by

$\frac{1}{q}(1-\frac{\beta+\lambda}{n})<\frac{1}{s}<\min\{\frac{1}{q},$ $\frac{\beta+\lambda}{n}\}$ . (2.19)

Therefore, by (2.18) and (2.19), we deduce that $u\in L^{r}(\mathbb{R}^{n})$ for

$\frac{\alpha}{n}<\frac{1}{r}<\min\{\frac{\alpha+\beta+\lambda}{n},$ $\frac{q(\beta+\lambda)+\alpha+\beta+\lambda}{n}-1\}$ .

This completes the proof for the case where $1\leq 1/p<q$ .
Next we consider the case where $1/p<1<q$ . Let us take $\rho$ such that $1/p<1\leq$

$\rho<q$ . Then, by taking $\rho=1$ in (2.15), we see that $v\in L^{s}(\mathbb{R}^{n})$ for

$\max\{\frac{\alpha}{n}-\frac{1}{p+1}+\frac{1}{q+1},0\}<\frac{1}{s}<\min\{\frac{\alpha+\beta+\lambda}{n}-\frac{1}{p+1}+\frac{1}{q+1},$ $\frac{\beta+\lambda}{n}\}$ .
(2.20)

Consequently, from the first equation in (1.3) and the weighted Hardy-Littlewood-
Sobolev inequality it follows that $u\in L^{r}(\mathbb{R}^{n})$ for

$\frac{1}{r}=\frac{q}{s}+\frac{\alpha+\beta+\lambda}{n}-1$ ,

where $s$ satisfies the condition (2.20),

$\frac{q}{s}<1$ and $0< \frac{q}{s}+\frac{\beta+\lambda}{n}-1$ .
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(2.21)

This implies the desired integrability interval (1.10) of $u$ . To prove the integrability
of $v$ as (1.11), we use this integrability of $u$ . It follows from the second equation in
(1.3) that $v\in L^{s}(\mathbb{R}^{n})$ for

$0< \frac{1}{s}=\frac{p}{r}+\frac{\alpha+\beta+\lambda}{n}-1$ ,

where $r$ satisfies the condition (1.10),

$\frac{p}{r}+\frac{\alpha}{n}<1$ and $0< \frac{p}{r}+\frac{\alpha+\lambda}{n}-1$ .

This implies that

$\max\{0,\frac{p\alpha+\alpha+\beta+\lambda}{n}-1\}<\frac{1}{s}<\min\{\frac{\beta+\lambda}{n},$ $\frac{(p+1)(\alpha+\beta+\lambda)}{n}-1\}$ ,

as required.
We now deal with the last case $1/p<q\leq 1$ . In view of the condition (2.16), by

taking $\rhoarrow q$ , we see that $u\in L^{r}(\mathbb{R}^{n})$ for

$\frac{\alpha}{n}<\frac{1}{r}<\min\{q(\frac{\beta+\lambda}{n}-\frac{1}{q+1})+\frac{1}{p+1},$ $\frac{\alpha+\beta+\lambda}{n}\}$ .

This is equivalent to the condition (1.10). Moreover, with this integrability of $u$ , it
follows from the second equation in (1.3) that $v\in L^{s}(\mathbb{R}^{n})$ for

$0< \frac{1}{s}=\frac{p}{r}+\frac{\alpha+\beta+\lambda}{n}-1$ ,

where $r$ satisfies the condition (2.21),

$\frac{p}{r}+\frac{\alpha}{n}<1$ and $0< \frac{p}{r}+\frac{\alpha+\lambda}{n}-1$ .

This implies that $v\in L^{s}(\mathbb{R}^{n})$ for

$\max\{0,$ $\frac{p\alpha+\alpha+\beta+\lambda}{n}-1\}<\frac{1}{s}<\min\{\frac{\beta+\lambda}{n},$ $\frac{(p+1)(\alpha+\beta+\lambda)}{n}-1\}$ .

This completes the proof. $\square$

Employing the a priori integrability of solutions obtained in Theorems 1.1 and
1.2, the profiles of solutions to the system (1.3) around the origin and the infinity as
stated in Theorem 1.3 can be proved. In fact, an analysis similar to the one by Li
and Lim [14], in which the case where $p,$ $q\geq 1,$ $pq\neq 1$ was treated, works also for our
cases. We should remark that, if either $\alpha$ or $\beta$ is negative, one needs more elaborate
technique to obtain the result. Recently, Lei, Li and Ma [12] investigated this matter,
and their argument directly applies to our case with the aid of Theorem 1.2. For this
reason, we omit the proof of Theorem 1.3.
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3 Radial symmetry of solutions
Here we discuss the radial symmetry of solutions to the system (1.3). Before we
proceed to the proof of Theorem 1.4, we remark that the solutions are smooth away
from the origin. This can be proved by the standard bootstrap argument (see Chen
and Li [4], and Hang [8] $)$ . In particular, the continuity of solutions will be needed
when we employ an integral form of the method of moving planes.

In the following proof, we assume $\alpha>0$ or $\beta>0$ , since the case where $\alpha=\beta=0$

was already studied by Hang [8].

Proof of Theorem 1.4. We may assume $q>p$ without loss of generality. Then, let us
choose $\rho>1$ so that $1/p<\rho<q$ . For $\tau\in \mathbb{R}$ , we define a half space $H_{\tau}$ $:=\{x=$
$(x_{1}, x^{l})\in \mathbb{R}^{n}|x_{1}<\tau\}$ and the reflection point $x_{\tau}$ $:=(2\tau-x_{1}, x’)$ of $x$ . We also define
$u_{\tau}(x):=u(x_{\tau}),$ $v_{\tau}(x):=v(x_{\tau})$ ,

$\Omega_{\tau}^{u}$ $:=\{x\in H_{\tau}|u_{\tau}(x)>u(x)\}$ ,
$\Omega_{\tau}^{v}$ $:=\{x\in H_{\tau}|v_{\tau}(x)>v(x)\}$ .

Step 1. Let us take arbitrary $\tau\geq 0$ and $x\in\Omega_{\tau}^{v}$ . By changing of variables, we see
that

$v(x)= \frac{1}{|x|^{\beta}}\int_{H_{\tau}}\frac{u(y)^{p}}{|x-y|^{\lambda}|y|^{\alpha}}dy+\frac{1}{|x|^{\beta}}\int_{H_{\tau}}\frac{u(y_{\tau})^{p}}{|x_{\tau}-y|^{\lambda}|y_{\tau}|^{\alpha}}dy$

$\geq\frac{1}{|x|^{\beta}}\int_{H_{\tau}}\frac{u(y)^{p}}{|x-y|^{\lambda}|y|^{\alpha}}dy+\frac{1}{|x_{\tau}|^{\beta}}\int_{H_{\tau}}\frac{u(y_{\tau})^{p}}{|x_{\tau}-y|^{\lambda}|y_{\tau}|^{\alpha}}dy$ ,

$v_{\tau}(x)= \frac{1}{|x_{\tau}|^{\beta}}\int_{H_{\tau}}\frac{u(y_{\tau})^{p}}{|x-y|^{\lambda}|y_{\tau}|^{\alpha}}dy+\frac{1}{|x_{\tau}|^{\beta}}\int_{H_{\tau}}\frac{u(y)^{p}}{|x_{\tau}-y|^{\lambda}|y|^{\alpha}}dy$

$\leq\frac{1}{|x_{\tau}|^{\beta}}\int_{H_{\tau}}\frac{u(y_{\tau})^{p}}{|x-y|^{\lambda}|y_{\tau}|^{\alpha}}dy+\frac{1}{|x|^{\beta}}\int_{H_{\tau}}\frac{u(y)^{p}}{|x_{\tau}-y|^{\lambda}|y|^{\alpha}}dy$ .

Hence,

$0\leq v_{\tau}(x)-v(x)$

$\leq\int_{H_{\tau}}(\frac{1}{|x-y|^{\lambda}}-\frac{1}{|x_{\tau}-y|^{\lambda}})(\frac{u(y_{\tau})^{p}}{|x_{\tau}|^{\beta}|y_{\tau}|^{\alpha}}-\frac{u(y)^{p}}{|x|^{\beta}|y|^{\alpha}})dy$

$\leq\int_{\Omega_{\tau}^{u}}(\frac{1}{|x-y|^{\lambda}}-\frac{1}{|x_{\tau}-y|^{\lambda}})(\frac{u(y_{\tau})^{p}}{|x|^{\beta}|y|^{\alpha}}-\frac{u(y)^{p}}{|x|^{\beta}|y|^{\alpha}})dy$

$\leq\int_{\Omega_{\tau}^{u}}\frac{1}{|x|^{\beta}|x-y|^{\lambda}|y|^{\alpha}}((u(y_{\tau})^{1/\rho})^{p\rho}-(u(y)^{1/\rho})^{p\rho})dy$

$\leq p\rho\int_{\Omega_{\tau}^{u}}\frac{u_{\tau}(y)^{p-(1/\rho)}}{|x|^{\beta}|x-y|^{\lambda}|y|^{\alpha}}(u_{\tau}(y)^{1/\rho}-u(y)^{1/\rho})dy$.
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Consequently, by applying the weighted Hardy-Littlewood-Sobolev inequality and
then H\"older $s$ inequality, we see that

$\Vert v_{\tau}-v\Vert_{q+1,\Omega_{\tau}^{v}}\leq C\Vert u_{\tau}^{p-(1/\rho)}(u_{\tau}^{1/\rho}-u^{1/\rho})\Vert_{g_{\frac{+1}{p},\Omega_{\tau}^{u}}}$

(3.1)
$\leq C\Vert u_{\tau}\Vert_{p+1,\Omega_{\tau}^{u}}^{p-(1/\rho)}\Vert u_{\tau}^{1/\rho}-u^{1/\rho}\Vert_{\rho(p+1),\Omega_{\tau}^{u}}$ .

Now let us estimate the right hand side of (3.1). For $\tau\geq 0$ and $x\in\Omega_{\tau}^{u}$ , we have

$u(x) \geq\frac{1}{|x|^{\alpha}}\int_{H_{\tau}}\frac{v(y)^{q}}{|x-y|^{\lambda}|y|^{\beta}}dy+\frac{1}{|x_{\tau}|^{\alpha}}\int_{H_{\mathcal{T}}}\frac{v(y_{\tau})^{q}}{|x_{\tau}-y|^{\lambda}|y_{\tau}|^{\beta}}dy$

$\geq\frac{1}{|x|^{\alpha}}\int_{\Omega_{\tau}^{v}}\frac{v(y)^{q}}{|x-y|^{\lambda}|y|^{\beta}}dy+\frac{1}{|x_{\tau}|^{\alpha}}\int_{\Omega_{\tau}^{v}}\frac{v(y_{\tau})^{q}}{|x_{\tau}-y|^{\lambda}|y_{\tau}|^{\beta}}dy$

$+ \frac{1}{|x|^{\alpha}}\int_{H_{\mathcal{T}}\backslash \Omega_{\tau}^{v}}\frac{v(y)^{q}}{|x_{\tau}-y|^{\lambda}|y|^{\beta}}dy+\frac{1}{|x_{\tau}|^{\alpha}}\int_{H_{\tau}\backslash \Omega_{\tau}^{v}}\frac{v(y_{\tau})^{q}}{|x-y|^{\lambda}|y_{\tau}|^{\beta}}dy$,

$u_{\tau}(x) \leq\frac{1}{|x_{\tau}|^{\alpha}}\int_{H_{\tau}}\frac{v(y_{\tau})^{q}}{|x-y|^{\lambda}|y_{\tau}|^{\beta}}dy+\frac{1}{|x|^{\alpha}}\int_{H_{\tau}}\frac{v(y)^{q}}{|x_{\tau}-y|^{\lambda}|y|^{\beta}}dy$

$\leq\frac{1}{|x|^{\alpha}}\int_{\Omega_{\tau}^{v}}\frac{v(y_{\tau})^{q}}{|x-y|^{\lambda}|y|^{\beta}}dy+\frac{1}{|x_{\tau}|^{\alpha}}\int_{\Omega_{\tau}^{v}}\frac{v(y)^{q}}{|x_{\tau}-y|^{\lambda}|y_{\tau}|^{\beta}}dy$

$+ \frac{1}{|x_{\tau}|^{\alpha}}\int_{H_{\tau}\backslash \Omega_{\tau}^{v}}\frac{v(y_{\tau})^{q}}{|x-y|^{\lambda}|y_{\tau}|^{\beta}}dy+\frac{1}{|x|^{\alpha}}\int_{H_{\tau}\backslash \Omega_{\tau}^{v}}\frac{v(y)^{q}}{|x_{\tau}-y|^{\lambda}|y|^{\beta}}dy$,

and therefore from the inequality $(a+c)^{1/\rho}-(b+c)^{1/\rho}\leq a^{1/\rho}-b^{1/\rho}$ for $a\geq b\geq 0$ ,
$c\geq 0$ and the Minkowski inequality it follows that

$0\leq u_{\tau}(x)^{1/\rho}-u(x)^{1/\rho}$

$\leq(\frac{1}{|x|^{\alpha}}\int_{\Omega_{\tau}^{v}}\frac{v(y_{\tau})^{q}}{|x-y|^{\lambda}|y|^{\beta}}dy+\frac{1}{|x_{\tau}|^{\alpha}}\int_{\Omega_{\tau}^{v}}\frac{v(y)^{q}}{|x_{\tau}-y|^{\lambda}|y_{\tau}|^{\beta}}dy)^{1/\rho}$

$-( \frac{1}{|x|^{\alpha}}\int_{\Omega_{\tau}^{v}}\frac{v(y)^{q}}{|x-y|^{\lambda}|y|^{\beta}}dy+\frac{1}{|x_{\tau}|^{\alpha}}\int_{\Omega_{\tau}^{v}}\frac{v(y_{\tau})^{q}}{|x_{\tau}-y|^{\lambda}|y_{\tau}|^{\beta}}dy)^{1/\rho}$

$\leq(\int_{\Omega_{\tau}^{v}}(\frac{v(y_{\tau})^{q/\rho}-v(y)^{q/\rho}}{|x|^{\alpha/\rho}|x-y|^{\lambda/\rho}|y|^{\beta/\rho}})^{\rho}dy$

$+ \int_{\Omega_{\tau}^{v}}(\frac{v(y_{\tau})^{q/\rho}-v(y)^{q/\rho}}{|x_{\tau}|^{\alpha/\rho}|x_{\tau}-y|^{\lambda/\rho}|y_{\tau}|^{\beta/\tau}})^{\rho}dy)^{1/\rho}$

$\leq 2^{1/\rho}(\int_{\Omega_{\tau}^{v}}\frac{(v(y_{\tau})^{q/\rho}-v(y)^{q/\rho})^{\rho}}{|x|^{\alpha}|x-y|^{\lambda}|y|^{\beta}}dy)^{1/\rho}$

$\leq\frac{2^{1/\rho}q}{\rho}(\int_{\Omega_{\tau}^{v}}\frac{v(y_{\tau})^{q-\rho}(v(y_{\tau})-v(y))^{\rho}}{|x|^{\alpha}|x-y|^{\lambda}|y|^{\beta}}dy)^{1/\rho}$
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Consequently, by the weighted Hardy-Littlewood-Sobolev inequality and $H\ddot{o}lder$ ’s in-
equality, we see that

$\Vert u_{\tau}^{1/\rho}-u^{1/\rho}\Vert_{\rho(p+1),\Omega_{\tau}^{u}}\leq C\Vert v_{\tau}\Vert_{q+1,\Omega_{\tau}^{v}}^{(q/\rho)-1}\Vert v_{\tau}-v\Vert_{q+1,\Omega_{\tau}^{v}}$ . (3.2)

Combining the inequalities (3.1) and (3.2) yields

$\Vert v_{\tau}-v\Vert_{q+1,\Omega_{\tau}^{v}}\leq C\Vert u_{\tau}\Vert_{p+1,\Omega_{\tau}^{u}}^{p-(1/\rho)}\Vert v_{\tau}\Vert_{q+1,\Omega_{\tau}^{v}}^{(q/\rho)-1}\Vert v_{\tau}-v\Vert_{q+1,\Omega_{\tau}^{v}}$ . (3.3)

Step 2. We are now in a position to move a moving plane from $x_{1}=+\infty$ to the
left. By the inequality (3.3), let us show that $\Omega_{\tau}^{v}=\emptyset$ for large $\tau\geq 0$ . Indeed, by
observing

$\Vert u_{\tau}\Vert_{p+1,\Omega_{\tau}^{u}}\leq\Vert u\Vert_{p+1,\mathbb{R}^{n}\backslash H_{\tau}}arrow 0$ as $\tauarrow+\infty$ ,

$\Vert v_{\tau}\Vert_{q+1,\Omega_{\tau}^{v}}\leq\Vert v\Vert_{q+1,\mathbb{R}^{n}\backslash H_{\tau}}arrow 0$ as $\tauarrow+\infty$ ,

we can deduce that
$\Vert v_{\tau}-v\Vert_{q+1,\Omega_{\tau}^{v}}\leq\frac{1}{2}\Vert v_{\tau}-v\Vert_{q+1,\Omega_{\tau}^{v}}$

for sufficiently large $\tau\geq 0$ . This implies that $\Omega_{\tau}^{v}=\emptyset$ .
Now by defining $\tau_{0}$ $:= \inf\{\tau\geq 0|\Omega_{\sigma}^{v}=\emptyset$ for $\sigma\geq\tau\}$ , we will show that $\tau_{0}=0$ .

Let us suppose that $\tau_{0}>0$ . Then, by definition, we have $v_{\tau 0}(x)\leq v(x)$ for $x\in H_{\tau 0}$ .
we can say moreover that $v_{\tau_{0}}=v$ . This can be confirmed by assuming $v_{\tau_{0}}\neq v$ and
deriving a contradiction. Indeed, for $x\in H_{\tau 0}$ , it follows from the inequalities

$u(x)-u_{\tau 0}(x) \geq\int_{H_{\tau}}0(\frac{1}{|x-y|^{\lambda}}-\frac{1}{|x_{\tau 0}-y|^{\lambda}})\frac{v(y)^{q}-v_{\tau_{0}}(y)^{q}}{|x|^{\alpha}|y|^{\beta}}dy>0$ ,

$v(x)-v_{\tau 0}(x) \geq\int_{H_{\tau_{0}}}(\frac{1}{|x-y|^{\lambda}}-\frac{1}{|x_{\tau 0}-y|^{\lambda}})\frac{u(y)^{p}-u_{\tau 0}(y)^{p}}{|x|^{\beta}|y|^{\alpha}}dy>0$

that $v_{\tau 0}(x)<v(x)$ . This and the continuity of $v$ imply that

1 $v_{\tau} \Vert_{q}^{q}\ddagger_{1,\Omega_{\tau}^{v}}^{1}=\int_{\mathbb{R}^{n}}|v(x)|^{q+1}\chi_{\Omega_{\tau}^{v}}(x_{\tau})dxarrow 0$ as $\tauarrow\tau_{0}$ ,

since $\chi_{\Omega_{\tau}^{v}}(x_{\tau})arrow 0$ as $\tauarrow\tau_{0}$ for each $x\in \mathbb{R}^{n}\backslash \{x_{1}=\tau_{0}\}$ . Therefore, in view of
(3.3), there exists a small number $\epsilon>0$ such that $\Omega_{\sigma}^{v}=\emptyset$ for $\sigma\geq\tau_{0}-\epsilon$ . This is
a contradiction. Consequently, $v_{\tau_{0}}=v$ , and hence $u_{\tau 0}=u$ . However, this symmetry
implies that $u$ and $v$ do not have singularities at the origin. By Theorem 1.3, this
is impossible unless $\alpha=\beta=0$ . Therefore, we deduce that $\tau_{0}=0$ as required.
We can repeat the above procedure in all directions, so that $u$ and $v$ must be radially
symmetric with respect to the origin and strictly decreasing in the radial direction. $\square$
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