
Properties of a least-energy solution to a semilinear
elliptic equation with exponential nonlinearity

大阪府立大学工学研究科 小坂 篤志 (Atsushi Kosaka)
Department of Mathematical Sciences,

Osaka Prefecture University

1 Introduction
In this paper we shall study the following problem;

$\{\begin{array}{ll}\epsilon^{2}\Delta u-u+(e^{\alpha u}-\alpha u-1)=0 in \Omega,u>0 in \Omega,u=0 on \partial\Omega,\end{array}$ (1.1)

where $\epsilon>0,$ $\alpha>0$ , and $\Omega$ is a bounded domain in $R^{2}$ with the smooth boundary $\partial\Omega$ .
We are interested in some properties of least-energy solutions to (1.1) as $\epsilonarrow 0$ .

First we refer to preceding studies of problems similar to (1.1);

$\{\begin{array}{ll}\epsilon^{N}\triangle u-u+u^{p}=0 in \Omega,u>0 in \Omega,\frac{\partial u}{\partial n}=0 on \partial\Omega,\end{array}$ (1.2)

where $\Omega\subset R^{N}$ and $N\geq 2$ . Many people have studied the existence of positive solutions
and the behavior of a local maximum point of solutions to (1.2) as $\epsilonarrow 0$ . For example Lin,
Ni and Takagi [11] proved the existence of positive non-constant solutions for sufficiently
small $\epsilon>0$ , and moreover the solutions are sufficiently close to a zero except for the
local maximum value. Later Ni and Takagi [13], [14] showed that the solution found in
[11] is a least-energy solution, and the solution has at most one local maximum point $P_{\epsilon}$

on the boundary $\partial\Omega$ . In addition they proved that, as $\epsilonarrow 0$ , the maximum point $P_{\epsilon}$

must be located near the point where the mean curvature attains its maximum. On the
other hand, Ni and Wei [15] investigated the problem (1.2) whose boundary condition is
replaced by the Dirichlet boundary condition. They showed that the Dirichlet problem
also has a single-peak solution. Moreover, as $\epsilonarrow 0$ , the maximum point $P_{\epsilon}$ is situated
near the most distant point from the boundary.

In the cases of both the Neumann boundary condition and the Dirichlet boundary
condition, the proof of the behavior of $P_{\epsilon}$ is due to asymptotic formulas of a critical
value which corresponds to the least-energy solution. In [14] and [15], the uniqueness of
a solution to

$\{\begin{array}{ll}\triangle w-w+w^{p}=0 in R^{N},w>0 in R^{N},w(z)arrow 0 as |z|arrow\infty,w(0)=\max_{z\in R^{N}}w(z), \end{array}$ (1.3)

is used to obtain the asymptotic formulas. In contrast, without using the uniqueness of
the solution to (1.3), del Pino and Felmer [5] proved the same formulas on the behavior
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of the maximum point for both the Dirichlet problem and the Neumann problem. In
addition Byeon [3] also showed the more general result on the behavior of $P_{\epsilon}$ without the
uniqueness of the solution to (1.3) for the Neumann problem with $N\geq 3$ . However it is
difficult to know the precise profile of the solution without using the uniqueness of the
solution to (1.3). Thus del Pino and Felmer $s$ result or Byeon’s result does not completely
include the Ni and Takagi $s$ result.

In the above studies, a single-peak solution is only treated. For a multi-peak solution,
e.g., see Gui and Wei [8]. They constructed solutions which has many critical points in
the domain by the Lyapunov-Schmidt reduction method. Similarly Gui, Wei and Winter
[9] constructed solutions which have many critical points on the boundary.

Our purpose is to investigate the behavior of the local maximum point of a least-energy
solution and the profile of the least-energy solution to the problem (1.1). Concerning the
preceding studies of the exponential nonlinearity case, Ni and Kabeya [12] investigate
the problem having the exponential nonlinearity with the Neumann boundary condition.
They proved that, for the exponential nonlinearity case, the same result as the power
nonlinearity case holds, that is, least-energy solutions have only one local maximum point
$P_{\epsilon}\in\partial\Omega$ .

First, to define the terminology ”least-energy”, we define the “energy“ functional
corresponding to (1.1). The functional is as follows:

$J_{\epsilon}(u)= \frac{1}{2}\int_{\Omega}(|\nabla u|^{2}+u^{2})dx-\frac{1}{\alpha}\int_{\Omega}(e^{\alpha u}-\frac{1}{2}(\alpha u)^{2}-\alpha u-1)dx$ on $H_{0}^{1}(\Omega)$ . (1.4)

If there exists a critical point $u_{\epsilon}$ of $J_{\epsilon}$ , then $u_{\epsilon}$ is a weak solution to (1.1). In addition
if $J_{\epsilon}$ attains the smallest positive critical value at $u_{\epsilon}$ , then $u_{\epsilon}$ is said to be a least-energy
solution. In our investigation, we will find a critical value of $J_{\epsilon}$ by using the well-known
Mountain Pass Lemma. Namely we set

$\Gamma=\{h\in C([0,1];H_{0}^{1}(\Omega))|h(0)=0, h(1)=e_{0}\}$ ,

where $e_{0}\not\equiv 0$ is a non-negative function in $H_{0}^{1}(\Omega)$ and satisfies $J_{\epsilon}(e_{0})=0$ . Then a critical
value $c_{\epsilon}$ characterized as

$c_{\epsilon}= \inf_{h\in\Gamma}\max_{0\leq t\leq 1}J_{\epsilon}(h(t))>0$

is found, and there exists $u_{\epsilon}\in H_{0}^{1}(\Omega)$ such that $J_{\epsilon}(u_{\epsilon})=c_{\epsilon}$ . In fact the following
proposition holds;

Proposition 1.1 Let $\epsilon_{0}>0$ be sufficiently small. Then, for any $\epsilon\in(0, \epsilon_{0})$ , the following
two statements hold:

(i) There exists a positive solution $u_{\epsilon}\in H_{0}^{1}(\Omega)$ . Moreover $u_{\epsilon}$ is a classical solution, and
it holds that

$J_{\epsilon}(u_{\epsilon})\leq C_{0}\epsilon^{2}$ (1.5)
with some constant $C_{0}>0$ which is independent of $\epsilon$ . Furthermore $u_{\epsilon}$ is a least-
energy solution.

(ii) The least-energy solution $u_{\epsilon}$ has exactly one local maximum point $P_{\epsilon}$ .
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Remark 1.1 The existence of the, least-energy solution $u_{\epsilon}$ to (1.1) is actually proved for
any $\epsilon\in(0, \infty)$ . However it is required that $\epsilon$ is restricted within a small value when we
show the inequality (1.5) and Proposition 1.1 (ii).

By Proposition 1.1, we see that there exists a least-energy solution, and the solution has
at most one maximum point.

Next we explain the result on the profile and the behavior of the least-energy solution
$u_{\epsilon}$ , that is, the number of maximum points and its behavior as $\epsilonarrow 0$ . Concerning the
method to investigate those, it seems that we can apply the method used in del Pino and
Felmer $s$ study [5] for our problem by some modification. However we will investigate the
more precise profile of $u_{\epsilon}$ by the method of Ni and Wei, and thus some preliminaries are
required to make use of the method. Hereafter we state those.

First we consider the following whole space problem;

$\{\begin{array}{ll}\Delta w-w+(e^{\alpha w}-\alpha w-1)=0 in R^{2},w>0 in R^{2},w(z)arrow 0 as |z|arrow\infty,w(0)=\max_{z\in R^{2}}w(z). \end{array}$ (1.6)

The solution $w$ to (1.6) seems to be approximate to $u_{\epsilon}$ . In fact $v_{\epsilon}(y)$ $:=u_{\epsilon}(\epsilon y+P_{\epsilon})$ satisfies

$\{\begin{array}{ll}\Delta v_{\epsilon}-v_{\epsilon}+(e^{\alpha v_{\epsilon}}-\alpha v_{\epsilon}-1)=0 in \Omega_{\epsilon}^{*},v_{\epsilon}>0 in \Omega_{\epsilon}^{*},v_{\epsilon}=0 on \partial\Omega_{\epsilon}^{*},\end{array}$

where
$\Omega_{\epsilon}^{*}:=\{y\in R^{2}|\epsilon y+P_{\epsilon}\in\Omega\}$ . (1.7)

As $\epsilonarrow 0$ , the domain $\Omega_{\epsilon}^{*}$ dilates in $R^{2}$ . In fact it is proved that $v_{\epsilon}$ uniformly converges
to $w$ for any compact subset of $R^{2}$ . The existence of a solution $w$ to (1.6) is guaranteed
by Berestycki, Gallouet alid Kavian [2], and the uniqueness of $w$ is proved by Pucci and
Serrin [16], [17]. Moreover, since we can apply the result of Gidas, Ni and Nirenberg [7]
for (1.6), it is seen that $w$ is radially symmetric and strictly decreasing in $r$ $:=|z|$ with
the order of $r^{-1/2}e^{-r}$ . We state these results as Lemma 2.6 again; see Section 2.

In addition, to show our result, we confirm that $w$ is nondegenemte. The definition of
nondegenemte is as follows: the solution $w$ is said to be nondegenerate if the linearized
operator

$\triangle-1+\alpha(e^{\alpha w}-1)$ : $H^{2}(R^{2})arrow L^{2}(R^{2})$

has a bounded inverse in the subspace $L_{rad}^{2}(R^{2})$ $:=\{v\in L^{2}(R^{2})|v(z)=v(|z|)\}$ . In fact
the solution $w$ to (1.6) is nondegenerate, and it is proved in the forthcoming paper [10].

Second we introduce some notations. For the solution $w$ to (1.6) and any bounded
smooth domain $U\subset R^{2}$ , let $w_{U}$ be a unique solution to the linear problem

$\{\begin{array}{ll}\triangle w_{U}-w_{U}+(e^{\alpha w}-\alpha w-1)=0 in U,w_{U}=0 on\partial U.\end{array}$
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In fact, since the operator $(\triangle-1)$ : $H^{2}(U)arrow L^{2}(U)$ is bounded and invertible, the
solution $w_{U}$ is unique. Moreover we apply the maximum principle for $w-w_{U}$ , and it
follows that

$w_{U}(y)<w(y)$ for any $y\in U$. (1.8)
Let $Q$ be the most distant point from the boundary, that is, $Q$ is the point with $d(Q, \partial\Omega)=$

$\max_{P\in\Omega}d(P, \partial\Omega)$ , where $d(P, \partial\Omega)$ denotes the distance between $P\in\Omega$ and the boundary
of $\Omega$ . Adding to (1.7), we define

$\Omega_{\epsilon}=\{y\in R^{2}|\epsilon y+Q\in\Omega\}$ ,

and we obtain $w_{\Omega_{\epsilon}}$ and $w_{\Omega_{\epsilon}^{*}}$ . Moreover we define

$\{\begin{array}{ll}\varphi_{\epsilon}(y):=w(y)-w_{\Omega_{\epsilon}}(y) y\in\Omega_{\epsilon},\psi_{\epsilon}(x):=-\epsilon\log\varphi_{\epsilon}((x-Q)/\epsilon) x\in\Omega,V_{\epsilon}(y):=e^{\beta\psi_{\epsilon}(Q)}\varphi_{\epsilon}(y) y\in\Omega_{\epsilon},\end{array}$ (1.9)

and

$\{\begin{array}{ll}\tilde{\varphi}_{\epsilon}(y):=w(y)-w_{\Omega_{\epsilon}^{*}}(y) y\in\Omega_{\epsilon}^{*},\tilde{\psi}_{\epsilon}(x):=-\epsilon\log\tilde{\varphi}_{\epsilon}((x-P_{\epsilon})/\epsilon) x\in\Omega,\tilde{V}_{\epsilon}(y):=e^{\beta\overline{\psi}_{\epsilon}(P_{\epsilon})}\tilde{\varphi}_{\epsilon}(y) y\in\Omega_{\epsilon}^{*},\end{array}$ (1.10)

where $\beta=1/\epsilon$ . Since (1.8), the functions $\psi_{\epsilon}$ and $\tilde{\psi}_{\epsilon}$ are well-defined. In addition $V_{\epsilon}$ and
$\tilde{V}_{\epsilon}$ defined above have the following properties: for any sequence $\{\epsilon_{k}\}$ with $\epsilon_{k}arrow 0$ as
$karrow\infty$ , there exists a subsequence $\{\epsilon_{k_{l}}\}$ such that $V_{\epsilon_{k_{l}}}arrow V_{0}$ uniformly on any compact
subset of $R^{2}$ as $larrow\infty$ . Here $u=V_{0}$ is a solution to

$\{\begin{array}{ll}\triangle u-u=0 in R^{2},u>0 in R^{2},u(0)=1. \end{array}$ (1.11)

Similarly, there exists a.subsequence $\{\epsilon_{k_{m}}\}$ such that $\tilde{V}_{\epsilon_{k_{m}}}arrow\tilde{V}_{0}$ uniformly on any compact
subset of $R^{2}$ as $marrow\infty$ , where $\tilde{V}_{0}$ is also a solution to (1.11).

We define the functional associated with (1.6) as

$I(w):= \frac{1}{2}\int_{R^{2}}(|\nabla w|^{2}+w^{2})dz-\frac{1}{\alpha}\int_{\Omega}(e^{\alpha w}-\frac{1}{2}(\alpha w)^{2}-\alpha w-1)dz$ on $H^{1}(R^{2}),$ $(1.12)$

and, from the above preliminaries, we state Theorem 1.1;

Theorem 1.1 Let $u_{\epsilon},$ $c_{\epsilon}$ and $P_{\epsilon}$ be the least-energy solution to (1.1), the critical value
corresponding to $u_{\epsilon}$ and the maximum point of $u_{\epsilon}$ , respectively. Moreover the unique
solution to (1.6) is denoted by $w$ . Then the following statements hold:

(i) The critical value $c_{\epsilon}$ is asymptotically expanded as

$c_{\epsilon}=\epsilon^{2}\{I(w)+\gamma e^{-\beta\tilde{\psi}_{\epsilon}(P_{\epsilon})}+o(e^{-\beta\tilde{\psi}_{\epsilon}(P_{\epsilon})})\}$ as $\epsilonarrow 0$ , (1.13)

where $\beta=1/\epsilon$ . Here $\gamma$ is a constant defined as

$\gamma:=\frac{1}{2}\int_{R^{2}}(e^{\alpha w}-\alpha w-1)V_{*}dz>0$,

where $V_{*}$ is a unique, positive and mdially symmetric solution to (1.11).
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(ii) It holds that
$d(P_{\epsilon}, \partial\Omega)arrow\max_{P\in\Omega}d(P, \partial\Omega)$ as $\epsilonarrow 0$ .

Furthermore $\tilde{\psi}_{\epsilon}(P_{\epsilon})arrow 2\max_{P\in\Omega}d(P, \partial\Omega)$ as $\epsilonarrow 0$ .

(iii) For any sequence $\{\epsilon_{k}\}$ with $\epsilon_{k}arrow 0$ as $karrow\infty$ , there exists a subsequence $\{\epsilon_{k_{l}}\}$ and
$\phi_{\epsilon_{k_{l}}}\in H_{0}^{1}(\Omega_{\epsilon_{k_{l}}}^{*})$ such that

$u_{\epsilon_{k_{l}}}(x)=w_{\Omega_{\epsilon}^{r_{k_{l}}}}(y)+\exp(-\beta_{k_{l}}\tilde{\psi}_{\epsilon_{k_{l}}}(P_{\epsilon_{k_{\downarrow}}}))\phi_{\epsilon_{k_{\downarrow}}}(y)$ as $larrow\infty$ ,

where $x=\epsilon_{k_{l}}y+P_{\epsilon_{k_{l}}}$ and $\beta_{k_{l}}=1/\epsilon_{k_{l}}$ . Here

$\Vert e^{-\mu|y|}(\phi_{\epsilon_{k_{l}}}-\phi_{0})\Vert_{L}\infty(\Omega_{\epsilon_{k_{l}}}^{t})arrow 0$ as $larrow\infty$ , (1.14)

where $0<\mu<1$ . Here $\phi_{0}$ is a solution to

$\Delta\phi_{0}-\phi_{0}+\alpha(e^{\alpha w}-1)(\phi_{0}-\tilde{V}_{0})=0$ in $R^{2}$ .

Remark 1.2 Although the uniqueness of a solution to (1.11) is not guaranteed, the fol-
lowing fact is known: for any solution $V$ and the mdially symmetric solution $V_{*}$ (it is
explicitly solved by using the modified Bessel function) to (1.11), it holds that

$\frac{1}{2}\int_{R^{2}}(e^{\alpha w}-\alpha w-1)Vdz=\frac{1}{2}\int_{R^{2}}(e^{\alpha w}-\alpha w-1)V_{*}dz$ ,

where $w$ is the solution to (1.6). This fact is used in Theorem 1.1, and, conceming the
proof of this fact, see Caffarelli and Littman [4].

To prove Theorem 1.1 (iii), we require the uniqueness and nondegeneracy of the solution
$w$ to (1.6). The asymptotic equality implies that $u_{\epsilon}$ is approximate to the solution

$w_{\Omega_{e_{k_{l}}}^{*}}$

to (1.11) with $U=\Omega_{\epsilon_{k_{l}}}^{*}$ , and the remainder term is exponentially small.

2 Proof of Proposition 1.1
In this section we show Proposition 1.1. Before beginning the proof, we state the next

two lemmas.

Lemma 2.1 Let $\Omega$ satisfy the cone condition. For $u\in H_{0}^{1}(\Omega)$ and $p>1$ , the following
inequality holds:

$\Vert u\Vert_{Lp(\Omega)}\leq K_{0}p^{\frac{1}{2}}\Vert u\Vert_{H_{0}^{1}(\Omega)}$,

where the constant $K_{0}$ is dependent on the cone property of $\Omega$ but is independent of $p$

and $|\Omega|$ . Moreover, for $\xi\in[1, \infty)$ , let $\Omega_{\xi}^{d};=\{y|\xi y\in\Omega\}$ . Then there also holds
$\Vert u\Vert_{L^{p}(\Omega_{\xi}^{d})}\leq K_{0}p^{\frac{1}{2}}\Vert u\Vert_{H_{0}^{1}(\Omega_{\xi}^{d})}$ .
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Concerning the cone condition, e.g. see Adams [1]. Lemma 2.1 implies that the imbedding
constant $K_{1}$ is not required to be replaced when the domain $\Omega$ is dilated. This lemma is
shown by the inequality

$\Vert u\Vert_{Lp(\Omega)}\leq K_{1}p^{\frac{1}{2}}|\Omega|^{\frac{1}{p}}\Vert u\Vert_{H_{0}^{1}(\Omega)}$

with some constant $K_{1}>0$ (see Lemma 2.1 in [18]) and the strategy in which we use
a family of subsets of $R^{2}$ which have finite intersection property (see Lemma 5.14 and
Corollary 5.16 in [1] $)$ .

Lemma 2.2 (Proposition 4.3 in [19]) Let $M$ be a bounded smooth domain, and set
$\{u_{j}\}\subset H^{1}(M)$ . If $u_{j}arrow u$ weakly in $H^{1}(M)$ as $jarrow\infty$ , then $e^{lu_{j}}arrow e^{lu}$ strongly in
$L^{1}(M)$ as $jarrow\infty$ with any $l\in \mathbb{R}$ .
By using the above lemmas, we state the proof of Proposition 1.1 (i).

Proof of Proposition 1.1 (i). If the solution $u_{\epsilon}\in H_{0}^{1}(\Omega)$ is found, then, from Lemma 2.2
and the Schauder regularity theorem, it is proved that $u_{\epsilon}$ is a classical solution. Moreover,
by the maximum principle, it follows that $u_{\epsilon}>0$ in $\Omega$ . Hence it suffices that we show the
existence of $u_{\epsilon}\in H_{0}^{1}(\Omega)$ .

In order to apply the Mountain Pass Lemma for (1.4), it suffices that the following
three conditions are satisfied:
(a) The functional $J_{\epsilon}$ satisfies the Palais-Smale condition.

(b) There exists some $t_{*}>0$ such that $J_{\epsilon}(u)\geq c>0$ for $u\in H_{0}^{1}(\Omega)$ with $\Vert u\Vert_{H_{0}^{1}(\Omega)}=t_{*}$ ,
where some constant $c>0$ .

(c) For sufficiently small $\epsilon>0$ , there exists a nonnegative function $e_{0}\in H_{0}^{1}(\Omega)$ such that
$J_{\epsilon}(e_{0})=0$ and $J_{\epsilon}(tv)\leq C_{0}\epsilon^{2}$ for $t\in[0,1]$ , where a constant $C_{0}>0$ .

The condition (a) is shown by using Lemma 2.2 which implies that the mapping
$H_{0}^{1}(\Omega)\ni u\mapsto e^{lu}\in L^{1}(\Omega)$ is compact for any $l>0$ . Thus the compactness of $J_{\epsilon}$ is
guaranteed, and therefore $J_{\epsilon}$ satisfies the Palais-Smale condition.

Next we confirm the condition (b). By using Lemma 2.1, we obtain

$J_{\epsilon}(u) \geq\{\frac{\epsilon^{2}}{2}-\sum_{k=3}^{\infty}\frac{(\alpha k^{\frac{1}{2}}K_{0})^{k}}{k!}\Vert u\Vert_{H_{0}^{1}(\Omega)}^{k-2}\}\Vert u\Vert_{H_{0}^{1}(\Omega)}^{2}$ .

Hence it suffices that we take $t_{*}$ sufficiently small.
Finally the condition (c) is confirmed. We take $\epsilon>0$ sufficiently small, and define

$v(x)=\{\begin{array}{ll}\epsilon^{2}(1-\frac{|x|}{\epsilon}) (|x|<\epsilon),0 (|x|\geq\epsilon).\end{array}$

If $t$ is sufficiently large, then $J_{\epsilon}(tv)<0$ . In contrast, since condition (b), $J_{\epsilon}(tv)>0$ when
$t$ is sufficiently small, and hence there exists $t_{0}$ such that $J_{\epsilon}(t_{0}v)=0$ . It suffices that we
take $e_{0}:=t_{0}v$ . In addition, for the function $v$ , we obtain

$\{\begin{array}{ll}\int_{\Omega}|\nabla v|^{2}dx=D_{0}\epsilon^{-2} with D_{0}=\pi,\int_{\Omega}v^{s}dx=D_{s}\epsilon^{1-s} with D_{s}=2\pi\int_{0}^{1}(1-r)^{s}rdr and s>0.\end{array}$ (2.1)
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The functional $J_{\epsilon}$ is estimated by using (2.1), and hence it follows that $J_{\epsilon}(tv)\leq C_{0}\epsilon^{2}$ for
$t\in[0, t_{0}]$ .

Since the conditions $(a)-(c)$ are satisfied, we can apply the Mountain Pass Lemma and
find a solution $u_{\epsilon}$ to (1.1). Furthermore, from

$c_{\epsilon}= \inf_{h\in\Gamma}\max_{0\leq t\leq 1}J_{\epsilon}(h(t))>0$,

$\Gamma=\{h\in C([0,1];H_{0}^{1}(\Omega))|h(0)=0, h(1)=e_{0}\}$ ,

and $e_{0}\in\Gamma$ , we see that $J_{\epsilon}(u_{\epsilon})=c_{\epsilon} \leq\max_{0\leq t\leq 1}J_{\epsilon}(e_{0})\leq C_{0}\epsilon^{2}$. Therefore the inequality
(1.5) is obtained.

Finally we define

$M[v]$
$:= \sup_{t\geq 0}J_{\epsilon}(tv)$

for $v\in H_{0}^{1}(\Omega)$ ,

and let $c_{*}$ be
$c_{*}:= \inf\{M[v]|v\in H_{0}^{1}(\Omega),$ $v\not\equiv O$ and $v\geq 0$ in $\Omega\}$ .

Then we can show that $c_{\epsilon}=c_{*}$ , and therefore $u_{\epsilon}$ is a least-energy solution (see Lemma
3.1 in [13] $)$ . The proof is finished. $\blacksquare$

From Proposition 1.1 (i) and Lemma 2.1, the following results is obtained:

Lemma 2.3 Let $u_{\epsilon}$ be the least-energy solution to (1.1). Then, for $p\in[1, \infty)$ and suffi-
ciently small $\epsilon>0$ , the following inequalities hold:

$\int_{\Omega}(\epsilon^{2}|\nabla u_{\epsilon}|^{2}+|u_{\epsilon}|^{2})dx=\int_{\Omega}u_{\epsilon}f(u_{\epsilon})dx\leq C_{1}\epsilon^{2}$ ,

$su_{\frac{p}{\Omega}}u_{\epsilon}\leq C_{1}x\in$
,

$\int_{\Omega}u_{\epsilon}^{p}dx\leq M_{p}\epsilon^{2}$, (2.2)

where $C$ and $M_{p}$ are independent of $\epsilon$ .

By using the above lemma, Proposition 1.1 (ii) is proved. Hereafter $u_{\epsilon}$ and $c_{\epsilon}$ are the
least-energy solution and the corresponding critical value of (1.4), respectively.

Next we show Proposition 1.1 (ii), and we refer to the following two lemmas before
beginning the proof. Hereafter let $P_{\epsilon}$ be a local maximum point of the least-energy solution
$u_{\epsilon}$ found in Proposition 1.1 (i), $w$ is the unique solution to (1.6), and $I$ is the functional
defined in (1.12).

Lemma 2.4 It holds that

$c_{\epsilon}\leq\epsilon^{2}(I(w)+o(1))$ as $\epsilonarrow 0$ . (2.3)

Lemma 2.5 Let $\epsilon_{1}>0$ be sufficiently small and $R_{0}>0$ satisfy $B_{2\epsilon_{1}R_{0}}(P_{\epsilon})\subset\Omega$ . Then
there exists a positive constant $\eta>0$ , independent of $\epsilon$ , such that

$u_{\epsilon}(x)\geq\eta$ for $x\in B_{\epsilon R_{0}}(P_{\epsilon})$

with any $\epsilon\in(0, \epsilon_{1})$ .
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The inequality (2.3) is a rougher estimate than (1.13), and it is obtained from the result
on the behavior of $w(r)$ for sufficiently large $r$ and the fact that $u_{\epsilon}$ is the least-energy
solution. Lemma 2.5 follows from the Harnack inequality.

Proof of Proposition 1.1 (ii). Define

$\rho_{\epsilon}:=\frac{d(P_{\epsilon},\partial\Omega)}{\epsilon}$,

and we show that $\rho_{\epsilon}arrow\infty$ as $\epsilonarrow 0$ .
First suppose that there exist some constant $C>0$ and some sequence $\{\epsilon_{j}\}$ such that

$\rho_{\epsilon_{j}}\leq C$ as $jarrow\infty$ . Then, since $d(P_{\epsilon}j’\partial\Omega)\leq C\epsilon_{j}$ , there exists some $P_{0}\in\partial\Omega$ such that
$P_{\epsilon_{j}}arrow P_{0}$ as $jarrow\infty$ by passing a subsequence if necessary (the subsequence is still denoted
by $\{\epsilon_{j}\})$ . We introduce a diffeomorphism straightening the boundary. By translation and
rotation, we can set the coordinates such that $P_{0}$ is at the origin, $x_{1}$ -axis is tangent to
$\partial\Omega$ at $P_{0}$ , and $x_{2}$-axis points to the interior of $\Omega$ . Then there exists a smooth function
$\zeta_{P_{0}}(x_{1})$ , which is defined for sufficiently small $|x_{1}|$ , such that

(i) $\zeta_{P_{0}}(0)=0$ , and $\zeta_{P_{0}}’(0)=0$ .

(ii) $\partial\Omega\cap \mathcal{N}=\{(x_{1}, x_{2})|x_{2}=\zeta_{P_{0}}(x_{1})\}$ and $\Omega\cap \mathcal{N}=\{(x_{1}, x_{2})|x_{2}>\zeta_{P_{0}}(x_{1})\}$ , where $\mathcal{N}$ is
a neighborhood of $P_{0}$ .

For $y\in \mathbb{R}^{2}$ near $0$ , we define the map $x=\Phi_{P_{0}}(y)=(\Phi_{P_{0},1}(y), \Phi_{P_{0},2}(y))$ as

$\{\begin{array}{l}\Phi_{P_{0},1}(y)=y_{1}-y_{2}\zeta_{P_{0}}’(y_{1}),\Phi_{P_{0},2}(y)=y_{2}+\zeta_{P_{0}}(y_{1}).\end{array}$

Since $\zeta_{P_{0}}^{l}(0)=0$ , the differential map $D\Phi_{P_{0}}$ satisfies $D\Phi_{P_{0}}=I$ (the identity map). Hence,
by the inverse function theorem, $\Phi_{P_{0}}$ has the inverse map $y=\Psi_{P_{0}}(x)(=(\Phi_{P_{0}})^{-1}(x))$ in
the small neighborhood of $x=P_{0}$ . We assume that $\Psi_{P_{0}}$ is defined in the closed ball
$\overline{B_{\kappa}(0)}\in \mathbb{R}^{2}$ (in the rest of this paper, $B_{R}(P)$ denotes $\{x\in R^{2}||x-P_{\epsilon}|<R\}$ ), where
$\kappa>0$ is a sufficiently small constant.

Set
$v_{\epsilon}(y):=u_{\epsilon}(\Phi_{P_{O}}(y))$ ,

and hence, from (2.2), it follows that

$\int_{B_{\kappa/\epsilon}(0)}v_{\epsilon}^{p}dx\leq M_{p}$ for $p\geq 1$ .

Thus, by the Sobolev imbedding theorem and the regularity theorem for elliptic equations,
there exists some function $v_{0}\in C^{2}(R^{2})$ such that

$v_{\epsilon}arrow v_{0}$ in $C_{loc}^{2}(R^{2})$ as $\epsilonarrow 0$ .
Here the function $v_{0}$ satisfies

$\{\begin{array}{ll}\triangle v_{0}-v_{0}+(e^{\alpha vo}-\alpha v_{0}-1)=0 in R_{+}^{2},v_{0}>0 in R_{+}^{2},v_{0}=0 on \partial R_{+}^{2},\end{array}$ (2.4)
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where $R_{+}^{2}$ is the upper half-plane. IFhrom Theorem 1.1 in [6], the problem (2.4) only has
the solution $v_{0}\equiv 0$ . It is inconsistent with $u_{\epsilon}>0$ in $\Omega$ , and hence $\rho_{\epsilon}arrow\infty$ as $\epsilonarrow 0$ .

Next we prove that $u_{\epsilon}$ has only one local maximum point. Suppose that $u_{\epsilon}$ has two
local maximum points $P_{\epsilon}$ and $P_{\epsilon}’$ . Set

$w_{\epsilon}(y):=u_{\epsilon}(\epsilon y+P_{\epsilon})$ ,

and hence, from (2.2) $)$ it follows that

$\int_{B_{\rho_{e}}(0)}w_{\epsilon}^{p}dx\leq M_{p}$ for $p\geq 1$

Hence, by the Sobolev imbedding theorem and the regularity theorem for elliptic equa-
tions, there exists some function $w_{0}\in C^{2}(R^{2})$ such that

$w_{\epsilon}arrow w_{0}$ in $C_{loc}^{2}(R^{2})$ as $\epsilonarrow 0$ .

The function $w_{0}$ is a solution to (1.6). Moreover it holds that $w_{0}\equiv w$ in $R^{2}hom$ the
following lemma;

Lemma 2.6 The problem (1.6) has a unique solution $w$ . Furthermore $w$ is mdially sym-
metric, strictly decreasing and $w(r)=O(r^{-1/2}e^{-r})$ as $rarrow\infty$ .

First we assume that there exists some constant $C$ such that $|P_{\epsilon}-P_{\epsilon}’|/\epsilon\leq C$. Then,
from the above argument, $u_{\epsilon}$ has two maximum points in $B_{R}(P_{\epsilon})$ (we can take $R$ such
that $R>C$). The function $u_{\epsilon}$ is approximate to $w$ , this function has only one maximum
point at the origin and strictly decreases for $r>0$ . It is a contradiction to the assumption
that $u_{\epsilon}$ has two local maximum point.

Second suppose that $|P_{\epsilon}-P_{\epsilon}’|/\epsilonarrow\infty$ as $\epsilonarrow 0$ . Here we obtain the lower estimate

$c_{\epsilon}\geq\epsilon^{2}(I(w)+c+o(1))$ as $\epsilonarrow 0$ (2.5)

with some constant $c>0$ .
In fact we divide $c_{\epsilon}=J_{\epsilon}(u_{\epsilon})$ into two part;

$I_{1}= \int_{B_{eR}(P_{e})}\{\frac{1}{2}(|\nabla u|^{2}+u^{2})-(e^{\alpha u}-\frac{1}{2}(\alpha u)^{2}-\alpha u-1)\}dx$ ,

$I_{2}=J_{\epsilon}(u_{\epsilon})-I_{1}$ ,

where $R_{0}>0$ satisfies $B_{\epsilon Ro}(P_{\epsilon})\subset\Omega$ . By direct calculation it follows that

$I_{1}\geq\epsilon^{2}(I(w)-c_{1}R_{0}^{2}+o(1))$ a$s$ $\epsilonarrow 0$ (2.6)

where $c_{1}>0$ is independent of $\epsilon$ and $R_{4}$ . In addition, from Lemma 2.5, we can obtain

$I_{2}\geq c_{2}\epsilon^{2}$ , (2.7)

where $c_{2}>0$ is independent of $\epsilon$ and $R_{0}$ . In Lemma 2.5, we can take $R_{O}$ arbitrarily large
if $\epsilon_{1}$ is taken sufficiently small. Therefore, from (2.6) and (2.7), the inequality (2.5) holds
if $R_{C}$ satisfies $c_{2}-c_{1}R_{0}^{2}>0$ . Since (2.5) is inconsistent with Lemma 2.4, the number of
maximum points is exactly one. Thus Proposition 1.1 is proved. $\blacksquare$
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3 Proof of Theorem 1.1
In this section Theorem 1.1 is shown. Hereafter the least-energy solution to (1.1)

is denoted by $u_{\epsilon}$ , and the corresponding critical value to $u_{\epsilon}$ is written by $c_{\epsilon}$ . Point $P_{\epsilon}$

denotes the maximum point of $u_{\epsilon}$ . In addition let $w$ be the unique solution to (1.6). The
functions $\psi_{\epsilon}$ and $\tilde{\psi}_{\epsilon}$ are defined in (1.9) and (1.10), respectively.

Before beginning the proof, two lemmas are stated. Recall that $Q$ is the most distant
point from the boundary $\partial\Omega$ , that is, $d(Q, \partial\Omega)=\max_{P\in\Omega}d(P, \partial\Omega)$ . Next define

$\phi_{\epsilon}(y)=e^{\beta\tilde{\psi}_{\epsilon}(P_{\epsilon})}(w_{\epsilon}(y)-w_{\Omega_{\epsilon}^{*}}(y)))$

where $w_{\epsilon}(y)=u_{\epsilon}(\epsilon y+P_{\epsilon})$ , and two lemmas are as follows:

Lemma 3.1 (i) For the critical value $c_{\epsilon}$ corresponding to the least-energy solution $u_{\epsilon}$ ,
the next equality and inequality hold:

$c_{\epsilon}=\epsilon^{2}\{I(w)+\gamma e^{-\beta\tilde{\psi}_{\epsilon}(P_{\epsilon})}+o(e^{-\beta\overline{\psi}_{\epsilon}(P_{\epsilon})})\}$ , (3.1)

$c_{\epsilon}\leq\epsilon^{2}\{I(w)+\gamma e^{-\beta\psi_{\epsilon}(Q)}+o(e^{-\beta\psi_{\epsilon}(Q)})\}$ ,

as $\epsilonarrow 0$ . Here the constant $\gamma$ is the same as that defined in Theorem 1.1 (i).

(ii) As $\epsilonarrow 0,$ $\psi_{\epsilon}(Q)arrow 2d(Q, \partial\Omega)$ . Moreover, for any $\sigma_{0}>0$ , there exists a sufficiently
small $\epsilon_{1}>0$ such that, for any $\epsilon<\epsilon_{1z}$

$\tilde{\psi}_{\epsilon}(P_{\epsilon})\leq(2+\sigma_{0})d(P_{\epsilon}, \partial\Omega)$ .

Lemma 3.2 For sufficiently small $\epsilon>0$ , the following two statements hold:

(i) For $s>2$ , there exists a constant $C_{s}$ such that $\Vert e^{-\mu|y|}\phi_{\epsilon}\Vert_{W^{2,s}(\Omega_{\epsilon}^{*})}\leq C_{s}$ .

(ii) For any sequence $\{\epsilon_{k}\}$ with $\epsilon_{k}arrow 0$ as $karrow\infty$ , there exists a subsequence $\{\epsilon_{k_{l}}\}$ such
that $\Vert e^{-\mu|y|}(\phi_{\epsilon_{k_{l}}}-\phi_{0})\Vert_{L^{\infty}(B_{(1-\delta_{2})\rho_{\epsilon_{k_{l}}}}(0))}arrow 0$ as $larrow\infty$ , where $\delta_{2}$ is sufficiently small,

$\rho_{\epsilon}=d(P_{\epsilon}, \partial\Omega)/\epsilon$ and $\phi_{0}$ is a classical solution to

$\triangle\phi_{0}-\phi_{0}-\alpha(e^{\alpha w}-1)\tilde{V}_{0}=0$ in $R^{2}$ .

Here $\tilde{V}_{0}$ is a solution to (1.11). Furthermore $e^{-\mu|y|}\phi_{0}\in W^{2,s}(\mathbb{R}^{2})$ for $s>1$ .

Lemma 3.1 is proved by a very similar argument in Sections 5 and 6 in [15], and the proof
of Lemma 3.2 is almost identical to Proposition 6.1 in [15]. From the above lemmas,
Theorem 1.1 is shown.

Proof of Theorem 1.1. First Theorem 1.1 (i) and (ii) follow from Lemma 3.1. In fact
(1.13) is the same as (3.1). Moreover, by comparing the equality and the inequality in
Lemma 3.1, we obtain

$\tilde{\psi}_{\epsilon}(P_{\epsilon})\geq\psi_{\epsilon}(Q)+o(1)$ as $\epsilonarrow 0$ .

From Lemma 3.1 (ii) it holds that, for any $\sigma_{0}>0$ ,

$(2+\sigma_{0})d(P_{\epsilon}, \partial\Omega)\geq\tilde{\psi}_{\epsilon}(P_{\epsilon})\geq 2d(Q, \partial\Omega)+o(1)$ as $\epsilonarrow 0$ . (3.2)
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On the contrary, by the definition of $Q$ , it holds that

$d(P_{\epsilon}, \partial\Omega)\leq d(Q, \partial\Omega)$ for any $\epsilon>0$ . (3.3)

Thus, from (3.2), (3.3) and the arbitrariness of $\sigma_{0}$ , Theorem 1.1 (ii) is shown.
Thus it suffices that Theorem 1.1 (iii) is proved. From Lemma 3.2, (1.14) holds in

$B_{(1-\delta_{2})\rho_{\epsilon_{k_{\downarrow}}}}(0)$ . In addition, by using the Green function $of-\triangle+1$ in $R^{2}$ ;

$(\phi_{\epsilon}-\phi_{0})(y)=$

$\int_{R^{2}}G(|z-y|)\{f’(w(z))(\phi_{\epsilon}-\phi_{0})(z)+H_{\epsilon}(\phi_{\epsilon})(z)+f’(w(z))\tilde{V}_{0}(z)\}dz$ .

Here $G$ is the Green function $of-\triangle+1$ in $R^{2}$ , and

$f(t):=e^{\alpha t}-$ at–l,

$H_{\epsilon}(\phi_{\epsilon}):=e^{\beta\overline{\psi}_{\epsilon}(P_{\epsilon})}\{f(\tilde{v}_{\epsilon})-f(w)-e^{-\beta\overline{\psi}_{\epsilon}(P_{\epsilon})}f’(w)\phi_{\epsilon}\}$ .

For $G$ , it holds that

$G(r)\leq C\frac{e^{-r}}{(1+r)^{\frac{1}{2}}}$ as $rarrow\infty$ , (3.4)

$G(r)=C(|\log r|+1)$ as $rarrow 0$ , (3.5)

where $C$ is a positive constant. In addition, for $w_{\epsilon}$ and $\tilde{V}_{0}$ , the following two inequalities
are obtained:

$w_{\epsilon_{k_{l}}}(z)\leq C_{\delta}e^{-(1-\delta)|z|}$ , (3.6)
$\tilde{V}_{0}(z)\leq Ce^{(1+^{\sigma_{2}})|z|}\lrcorner$ , (3.7)

where $z\in R^{2},$ $\delta>0$ is taken arbitrary, and $C_{\delta}$ (which depends on $\delta$ ) and $C$ are posi-
tive constants. IFhrom Lemma 3.2 (i) and $(3.4)-(3.7)$ , the estimate of $e^{-\mu|y|}(\phi_{\epsilon_{k_{l}}}-\phi_{0})$ in
$\Omega_{\epsilon_{k_{l}}}^{*}\backslash B_{(1-\delta_{2})\rho_{\epsilon}k_{l}}(0)$ is directly calculated, and therefore

$\Vert e^{-\mu|y|}(\phi_{\epsilon_{k_{l}}}-\phi_{0})\Vert_{L}\infty(\Omega_{\epsilon_{k_{l}}}^{r}\backslash B_{(1-\delta_{2})\rho_{\epsilon}k_{l}}(0))arrow 0$ as $larrow\infty$ .

Therefore Theorem 1.1 (iii) follows $hom$ Lemma 3.2. The proof of Theorem 1.1 is com-
pletely finished. $\blacksquare$
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