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Abstract

This note is a survey on Whitney preservmg maps. In particular
we introduce next results.

(1) Let X be a continuum such that X contains a dense arc com-
ponent and let D be a dendrite with a closed set of branch points. If
f: X = D is a Whitney preserving map, then f is a homeomorphism.

(2) For each dendrite D' with a dense set of branch points there
exist a continuum X’ containing a dense arc component and a Whitney
preseiving map f’: X’ — D’ such that f’ is not a homeomorphism.

1 Introduction

In this note, all spaces are separable metrizable spaces and maps are
continuous. We denote the interval [0, 1] by I. A compact metric space is
called a compactum and continuum means a connected compactum. If X
is a continuum C(X) denotes the space of all subcontinua of X with the
topology generated by the Hausdorff metric.

In this note we study maps called Whitney preserving maps. If f :
X — Y is a map between continua, then define a map f : C(X) — C (Y) by
f(A) = f(A) for each 4 € C(X). Amap f: X = Y is called a Whitney
preserving map if there exist Whitney maps (see p105 of [12]) p:C(X)—1
and v : C(Y) — I such that for each s € [0, x(X)], f(u~1(s)) = v1(2) for
some ¢ € [0, v(Y)]. In this case, we say that f is u, v-Whitney preserving.
Let f: X — Y be a p,v-Whitney preserving map. Then it is easy to see
that if s, s’ € [0, 4(X)] and ¢, € [0, v(Y)] satisfy s < &, f(u~1(s)) = v~1(¢)
and f(/fl(s’)) = v71(t'), then t < t'.

The notion of a Whitney preserving map is introduced by Espinoza (see
[1] and [2]). In this article we study these maps.
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2 Whitney preserving maps onto dendrites

At first we give an example of a Whitney preserving map.

Example 2.1 (Example 2 of [1]) let f : [0,7] — S* be a map defined by
f(t) = e*. Then f is Whitney preserving. But f is not a homeomorphism.

In [1] Espinoza proved the following result.

Theorem 2.2 (Theorem 16 of [1]) Let X be a continuum such that X con-
tains a dense arc component. If f : X — I is a Whitney preserving map,
then f is a homeomorphism.

A Peano continuum is called a dendrite if it contains no simple closed curve.
Let D be a dendrite. A point e € D is called an end point of D if D\ {e}
is connected. A point b € D is called a branch point of D if there exists a
neighbourhood U of b such that for each neighbourhood V of b with V C U,
|IBd(V)| > 3. We denote the set of all end points in D by E(D). Also we
denote the set of all branch points of D by B(D).

Recently the author proved the next theorem ([9], see also [8]).

Theorem 2.3 Let X be a continuum such that X contains a dense arc com-
ponent and let D be a dendrite with the closed set of branch points. Then a
map f : X = D is a Whitney preserving map if and only if f is a homeo-
morphism.

Corollary 2.4 Let X be a continuum such that X contains a dense arc com-
ponent and let T be a tree. Then a map f: X — T is a Whitney preserving
map if and only if f is a homeomorphism.

Generally, Theorem 2.3 does not hold when D is a graph by Example 2.1.

Remark. For every 1-dimensional continuum M there exists a 1-dimensional
continuum M (other than M) such that there is a Whitney preserving map
f:+ M — M by Theorem 2.9 of [2].

It is natural to ask that whether Theorem 2.3 holds when D is any den-
drite. In fact, this does not hold.

If X and Y be compacta, then C(X,Y’) denotes the set of all continuous
maps from X to Y endowed with sup metric. Also S(X,Y) denotes the
set of all surjective maps in C(X,Y). If v,w € X, then we denote the set
{f € C(X,Y)|f(v) = f(w)} by Cuw)(X,Y). Also we denote the set {f €



S(X,Y)|f(v) = f(w)} by Sww)(X,Y). It is easy to see that Cy ) (X,Y) and
Sww)(X,Y) are closed subsets of C(X,Y). Let N C X. Then we denote the
set {f € C(X,Y)|f~1(f(z)) = {z} for each z € N} by An(X,Y). If Nis a
one point set {a}, then we denote the set Ax(X,Y) by 4,(X,Y). Let z € X
and r > 0. Then we denote the set {f € C(X,Y)|diam f~1(f(z)) < r} by
A (X)Y).

Finally, we denote the identity map on a space S by ids.

A surjective map e from I onto a graph G is called an Eulerian path
if e satisfies; (i) e(0) = e(1), (i) |[{y € Gle '(y) is nondegenerate }| < oo
and (iii) each fiber of e is finite. In [3] Espinoza and Illanes proved the next
result.

Theorem 2.5 ([3]) For each graph G which admits an Eulerian path, there
exist a continuum Xg containing o dense arc component and a Whitney
preseiving map f: Xg — G such that f is not a homeomorphism.

In [9] the author showed that this result holds when G is a superdendrite.
A dendrite D is called a superdendrite if E(D) is dense in D. It is known
that a dendrite D is a superdendrite if and only if B(D) is dense in D

Lemma 2.6 ([9]) Let X be a compactum and let D be a superdendrite. If
v,w and a are points in X such that a ¢ {v,w}, then C(y ) (X, D)NA,(X, D)
is a dense Gs-subset in Cyu)(X, D).

Lemma 2.7 ([9]) Let X be a nondegenerate continuum and let D be a su-
perdendrite. If v,w and a are points in X such that a ¢ {v,w}, then
S(ww)(X, D) N A(X, D) is a dense Gs-subset in Sy ) (X, D).

By Lemma 2.7 and Baire Category Theorem, we get the next corollary.

Corollary 2.8 ([9]) Let X be a nondegenerate continuum, N a countable
subset of X and D a superdendrite. If v,w are points in X such that N N
{v,w} =0, then Swu)(X, D)NAN(X, D) is a dense Gs-subset in Sy (X, D).

By using Corollary 2.8 and arguments in [3], we can prove the following
result.

Theorem 2.9 ([9]) For each superdendrite D, there exist a continuum Xp
containing a dense arc component and a Whitney preseiving map f : Xp —
D such that f is not a homeomorphism.

Recently the author generalized this result.
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Theorem 2.10 ([10]) For each 1-dimensional locally connected continuum
without free arcs P, there exist a continuum Xp containing a dense arc com-
ponent and a Whitney preseiving map f : Xp — P such that f is not a
homeomorphism.

Theorem 2.11 ([10]) For each n > 2 and an n-dimensional manifold M,
there exist a continuum X, containing a dense arc component and a Whitney
preseiving map f : Xy = M such that f is not a homeomorphism.

3 Other topics related to Whitney preserving
maps

A subcontinuum 7 of a continuum X is terminal, if every subcontinuum of
X which intersects both T" and its complement must contain 7.

Now we give a notation. If f : X — Y is a map, let A; = {f~}(y)|ly € Y}
and A’; = {C|C is a component of a fiber of f}.

Let f: X — Y be a Whitney preserving map. Then .A; need not be a
continuous decomposition of X. For example let f : [0,7] — S! be a map
defined by f(t) = e*. Then f is Whitney preserving (cf. Example 2 of [1]).
But f is not an open map.

In [7] the author proved next results.

Proposition 3.1 ([7]) Let f : X — Y be a u,v-Whitney preserving map.
Then A} is a continuous decomposition of X and each element of A} is
terminal in X.

A map f: X — Y between continua is called an atomic map if f~1(f(A)) =
A for each A € C(X) such that f(A) is nondegenerate. It is known that a
map [ of a continuum X onto a continuum Y is atomic if and only if every
fiber of f is a terminal continuum of X.

A map f: X — Y between compacta is called a Krasinkiewicz map if
any continuum in X either contains a component of a fiber of f or is contained
in a fiber of f (cf. [6]). These maps are related to Whitney preserving maps.

Proposition 3.2 ([7]) Let f : X — Y be a map such that A} does not
contain a one point set. Then the following conditions are equivalent.
(1) A is a continuous decomposition of X and each element of A} is

terminal in X.
(2) A} is a continuous decomposition of X and f is a Krasinkiewicz map.

By using Proposition 3.2 the author proved next results.



Theorem 3.3 ([8]) Let X be a continuum such that X contains a dense arc
component. If f : X — f(X) is a Whitney preserving map such that f is
not a constant map, then f is a light map.

Theorem 3.4 ([7]) Let X,Y be continua and let f : X — Y be a monotone
map such that f~1(y) is a nondegenerate continuum in X. Then the following
conditions are equivalent.

(1) f is an open map and each fiber of f is terminal in X.

(2) f is an open Krasinkiewicz map.

(3) fis a Whitney preserving map.

As an application of Theorem 3.4 we obtain next results.

Theorem 3.5 ([8]) There ezists a 1-dimensional continuum T C I?, a Whit-
ney map p: C(T) — I and sy, s; € I such that

(1) 0< 89 < 81 < u(T),

(2) dimp~'(s) =1 for each s € [0, so),

(3) dimp~1(sp) = 2, and

(4) dimp~'(s) = oo for each s € (sg, 51].

Theorem 3.6 ([8]) There exists a 1-dimensional continuum T C I? such
that

(1) dimC(T) = oo, and

(2) for each Whitney map w : C(T) — I there ezists ag € (0,w(T)) such
that dimw~'(s) = 1 for each s € [0, ag].

At last we give some results related to Whitney preserving maps.

Proposition 3.7 ([8]) Let f: X =Y be a monotone p, v-Whitney preserv-
ing map and let so = max {s € I|f(u"(s)) = v™1(0)}. Then f|,-1(js0,ux)) :
1~ ([s0, (X)) = C(Y) is a homeomorphism. Hence p=(s) is homeomor-
phic to f(u~1(s)) for each s € [sy, u(X)].

A topological property P is said to be a Whitney property provided that
if a continuum X has property P, so does p~(t) for each Whitney map U
for C(X) and for each ¢ € [0, u(X)]. As a corollary of Proposition 3.7 we get
the next result.

Corollary 3.8 ([8]) Let f : X — Y be a monotone Whitney preserving map.
If X has a topological property P which is a Whitney property, then so does
Y.
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