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lUsually, an S-space is denoted by an ‘ $S$ ‘-space. However, in this note, we always
use $S$ as a (particular) coherent Suslin tree. So we adopt notation an $S$ ‘-space.

Sometime an S-space is defined as a hereditarily separable non-Lindel\"of regular
space. But our terminology allows us to consider e.g. compact S-space [1]. We note
that every compact space is of course Lindel\"of.

A regular space $(X, \tau)$ is called hereditarily separable if every sub-
space is separable, i.e.

$\forall Y\subseteq X\exists Z\in[Y]^{\leq N_{0}}\forall U\in\tau(U\cap Y\neq\emptysetarrow U\cap Z\neq\emptyset)$

and is called hereditarily Lindel\"of if every subspace is Lindel\"of, i.e.

vu $\subseteq\tau\exists \mathcal{V}\in[\mathcal{U}]^{\leq N_{0}}\forall x\in X(x\in\cup \mathcal{U}arrow x\in\cup \mathcal{V})$ .

Their properties look like dual notions in the sense that points are
switched with open sets in their definitions. It was one of famous open
problems in general topology whether they coincide. A regular space is
called an $S$-space () if it is hereditarily separable but not hereditarily
Lindel\"of, and is called an $L$-space if it is hereditarily Lindel\"of but not
hereditarily separable. Stevo Todor\v{c}evi\v{c} proved that PFA implies that
there are no $S$-spaces, e.g. [16], and Justin Tatch Moore proved that
there are $L-$-spaces [7, 8]. Zolt\’an Szentmik16ssy proved that $MA_{N_{1}}$ im-
plies that there are no compact $S$-spaces [14]. For the study of $S$ and
$L$ spaces, see [16], and [1, 10, 13].

The $P$-ideal dichotomy is defined by Todor\v{c}evi\v{c}. The origin of the P-
ideal dichotomy is an analysis of the problem whether every hereditarily
separable regular space is Lindel\"of (i.e. there are no $S$-spaces [18, \S 23],
and he proved that PFA implies the $P$-ideal dichotomy (e.g. [17]) and if
the $P$-ideal dichotomy holds and $\mathfrak{p}>\aleph_{1}$ , then there are no $S$-spaces [18,
\S 23]. According to [10, \S 7], Todor\v{c}evi\v{c} firstly proved that PFA implies
no $S$-spaces directly, that is, he proved that for each right-separated
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() hereditarily separable regular space of type $\omega_{1}$ , there is a proper
forcing which adds an uncountable discrete subspace. It follows that
PFA implies no $S$-spaces, because every $S$-space has a right-separated
subspace of type $\omega_{1}$ , and a right-separated regular space of type $\omega_{1}$ is
an $S$-space iff it has no uncountable discrete subspace (e.g. [10, \S 3]).

In [19], Stevo Todor\v{c}evi\v{c} introduced the forcing axiom PFA $(S)$ , which
says that there exists a coherent Suslin tree $S$ such that the forcing ax-
iom holds for every proper forcing which preserves $S$ to be Suslin, that
is, for every proper forcing $\mathbb{P}$ which preserves $S$ to be Suslin and $\aleph_{1^{-}}$

many dense subsets $D_{\alpha},$ $\alpha\in\omega_{1}$ , of $\mathbb{P}$ , there exists a filter on $\mathbb{P}$ which
intersects all $D_{\alpha}’ s$ . PFA$(S)[S]$ denotes the forcing extension with the
coherent Suslin tree $S$ which is a witness of PFA $(S)$ . Since the preser-
vation of a Suslin tree by the proper forcing is closed under countable
support iteration (due to Tadatoshi Miyamoto [6]), it is consistent rel-
ative to some large cardinal assumption that PFA $(S)$ holds.

The first appear of such a forcing axiom is in the paper [5] due to Paul
B. Larson and Todor\v{c}evi\v{c}. In this paper, they introduced the weak
version of PFA $(S)$ , called Souslin‘s Axiom (in which the properness is
replaced by the cccness), and under this axiom, the coherent Suslin tree
$S$ , which is a witness of the axiom, forces a weak fragment of Martin $s$

Axiom. In [19], it is also proved that under PFA $(S),$ $S$ forces the
open graph dichotomy () and the $P$-ideal dichotomy. Namely, many
consequences of PFA are satisfied in the extension with $S$ under PFA$(S)$ .
On the other hand, many people proved that some consequences from
$\phi$ are satisfied in the extension with a Suslin tree (e.g. [9, Theorem
6.15.] $)$ . In particular, the pseudo-intersection number $\mathfrak{p}$ is $\aleph_{1}$ in the
extension with a Suslin tree. In fact, the extension with $S$ under PFA$(S)$

is designed as a universe which satisfied some consequences of $\phi$ and
PFA simultaneously. By the use of this model, Larson and Todor\v{c}evi\v{c}
proved that the affirmative answer of Kat\v{e}tov problem is consistent [5].

It is not known whether under PFA $(S),$ $S$ (which is a witness of
PFA$(S))$ forces that there are no $S$-spaces. In [19], Todor\v{c}evi\v{c} proved
that there are no compact $S$-spaces in the extension with $S$ under
PFA $(S)$ . To do this, he develops the theory of compact countably
tight spaces in PFA$(S)[S]$ , and proved that under PFA $(S),$ $S$ forces
that every non-Lindel\"of subspace of a compact countably tight space
has an uncountable discrete subspace [19, 8.6 Theorem]. If fact, he

2A space is called right-separated if the set of points can be well-ordered such
that every initial segments is open. We note that an uncountable right-separated
space is not Lindel\"of, and a non-hereditarily Lindel\"of space has an uncountable
right-separated subspace [10, \S 3].

$3_{This}$ is so called the open coloring axiom [16, \S 8].
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proved that for every S-name for a non-Lindel\"of subspace of a compact
countably tight space, there is a proper forcing which adds an S-name
for an uncountable discrete subspace. In this note, we will show the
following.

Proposition 1.1. Let $\dot{\tau}$ be an S-name for a right-separated hereditar-
ily separable regular topology of type $\omega_{1}$ , and suppose that $\dot{\tau}$ has the
following property:

$\star$ For any point $\delta\in\omega_{1}$ , S-name $\dot{U}$ for an open neighborhood of
$\delta,$ $\alpha\in\omega_{1},$ $t\in S_{\alpha}$ and $F\in[S_{\alpha}]^{<\aleph_{0}}$ , there exists an S-name $U’$

for an open neighborhood of $\delta$ such that $t|\vdash s^{tt}\dot{U}‘\subseteq\dot{U}$ ” and
for every $s\in F$ ,

$s|\vdash s$
” $\psi_{t,s}(\dot{U}‘)$ is open in $\dot{\tau}$ ”.

Then $\mathbb{P}$ is proper and preserves $S$ to be Suslin.

It follows from this proposition that under PFA$(S),$ $S$ forces that
every topology on $\omega_{1}$ generated by a basis in the ground model is not an
S-topology. In [11, 12], Mary Ellen Rudin proved that the negation of
Suslin Hypothesis (i.e. there exists a Suslin tree) implies the existence
of S-spaces, so under PFA$(S)$ , there are S-spaces. By the proposition,
we notice that they cannot generate an S-topology in the extension
with $S$ .

At last in the introduction, we introduce a coherent Suslin tree. A
coherent Suslin tree $S$ consists of functions in $\omega^{<\omega 1}$ and closed under
finite modifications. That is,

$\bullet$ for any $s$ and $t$ in $S,$ $s\leq st$ iff $s\subseteq t$ ,
$\bullet$ $S$ is closed under taking initial segments,
$\bullet$ for any $s$ and $t$ in $S$ , the set

$\{\alpha\in\min\{lv(s), lv(t)\};s(\alpha)\neq t(\alpha)\}$

is finite (here, Iv $(s)$ is the length of $s$ , that is, the size of $s$), and
$\bullet$ for any $s\in S$ and $t\in\omega^{1<s)}$ , if the set $\{\alpha\in 1v(s);s(\alpha)\neq t(\alpha)\}$

is finite, then $t\in S$ also.
For a countable ordinal $\alpha$ , let $S_{\alpha}$ be the set of the $\alpha$-th level nodes, that
is, the set of all members of $S$ of domain $\alpha$ , and let $S\leq\alpha$ $:= \bigcup_{\beta\leq\alpha}S_{\beta}$ .
For $s\in S$ , we let

$srs:=\{u\in S;s\leq s^{u\}}$ .
We note that $\phi$ , or adding a Cohen real, builds a coherent Suslin

tree. A coherent Suslin tree has canonical commutative isomorphisms.
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Let $s$ and $t$ be nodes in $S$ with the same level. Then we define a
function $\psi_{s,t}$ from $srs$ into $srt$ such that for each $v\in srs$ ,

$\psi_{s,t}(v):=t\cup(vr[1v(s), 1v(v)))$

(here, $vr[1v(s),$ $1v(v)$ ) is the function $v$ restricted to the domain $[1v(s),$ $1v(v))$ ).
We note that $\psi_{s,t}$ is an isomorphism, and if $s,$ $t,$ $u$ are nodes in $S$ with
the same level, then $\psi_{s,t},$ $\psi_{t,u}$ and $\psi_{s,u}$ commutes. (On a coherent Suslin
tree, see e.g. [2, 4]. $)$

Theorem 1.2 (Miyamoto, [6, (1.1) Proposition.]). For a Suslin tree $S$

and a proper forcing $\mathbb{P},$
$\mathbb{P}$ preserves $S$ to be Suslin ifffor any sufficiently

large regular cardinal $\theta$ , any countable elementary substructure $N$ of
$H(\theta)$ which contains $\mathbb{P}$ and $S$ as members, any $(\mathbb{P}, N)$ -generic $p$ and
any $t\in S$ of level $\omega_{1}\cap N$ , the pair $\{p,$ $t\rangle$ is $(\mathbb{P}\cross S, N)$ -generic.

2. A PROOF OF PROPOSITION 1.1
Let $S$ be a coherent Suslin tree and $\dot{\tau}$ an S-name for a regular topol-

ogy on $\omega_{1}$ such that
$|\vdash s$

”
$(\omega_{1},\dot{\tau}, <)$ is right-separated and hereditarily separable “,

where $<$ denotes the usual order of ordinals. If there exists a proper
forcing which preserves $S$ to be Suslin and adds an S-name for an
uncountable discrete subset of $(\omega_{1},\dot{\tau})$ , then under PFA$(S),$ $S$ (which is
a witness of PFA $(S))$ forces that there are no S-spaces.

We consider a plain forcing notion which adds an S-name for an
uncountable discrete subset of $(\omega_{1},\dot{\tau})$ as in [16, 8.9. Theorem]. To do
this, for each $\alpha\in\omega_{1}$ , since $(\omega_{1},\dot{\tau})$ is an S-name for a right-separated
regular space, we take an S-name $U_{\alpha}$ such that

$|\vdash s$
” $\alpha\in\dot{U}_{\alpha}\in\dot{\tau}$ (, i.e. open) and cl$\dot{\mathcal{T}}(\dot{U}_{\alpha})\cap[\alpha+1, \omega_{1})=\emptyset$ ”.

$\mathbb{P}$ consists of finite functions $p$ such that
$\bullet$ dom$(p)$ is a finite $\in$-chain of countable elementary submodels

of $H(\aleph_{2})$ with $S,\dot{\tau}$ and $\langle\dot{U}_{\alpha};\alpha\in\omega_{1}\}$ ,
$\bullet$ for any $M\in dom(p),$ $p(M)=\langle t_{M},$ $\alpha_{M})\in(S\backslash M)\cross(\omega_{1}\backslash M)$

(hence $p(M)\not\in M$),
$\bullet$ for any $M\in$ dom$(p)$ and $\beta\in\omega_{1}\cap M,$ $t_{M}$ decides whether

$\beta\in U_{\alpha}M$ or not,
$\bullet$ for any $M,$ $M’\in$ dom$(p)$ , if $M\in M’$ , then $t_{M},$ $\alpha_{M}\in M’$ , and
$\bullet$ for any $M,$ $M’\in$ dom$(p)$ , if $t_{M}<st_{M’}$ , then

$t_{M’}|\vdash s$ $\alpha_{M}\not\in\dot{U}_{\alpha_{M’}},,$ ,
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ordered by extensions. If $\mathbb{P}$ is proper and preserves $S$ to be Suslin, then
this $\mathbb{P}$ is as desired for a proof of no S-spaces in PFA$(S)[S]$ . However,
it is not known whether this is true in general. Now we assume the
following property of the S-name $\dot{\tau}$ :

$\star$ For any point $\delta\in\omega_{1}$ , S-name $\dot{U}$ for an open neighborhood of
$\delta,$ $\alpha\in\omega_{1},$ $t\in S_{\alpha}$ and $F\in[S_{\alpha}]^{<\aleph_{0}}$ , there exists an S-name $U’$

for an open neighborhood of $\delta$ such that $t|\vdash s$
” $\dot{U}‘\subseteq\dot{U}$ “ and

for every $s\in F$ ,

$s|\vdash s$
“ $\psi_{t,s}(\dot{U}’)$ is open in $\dot{\tau}$ “.

We note that in this property, for an $s\in F,$ $s=\psi_{t,s}(t)$ , and so it is
true that

$s|\vdash s$
“ $\psi_{t,s}(\dot{U}’)$ is open in $\psi_{t,s}(\dot{\tau})$ “,

but it may happen that

$s|\mu_{s}$
” $\psi_{t,s}(\dot{U}‘)$ is open in $\dot{\tau}$ “.

However, for example, if $\dot{\tau}$ is an S-name for a topology generated by
an open basis in the ground model, then this is true. So it follows from
this proposition that under PFA$(S),$ $S$ forces that every topology on $\omega_{1}$

generated by a basis in the ground model is not an S-topology.
In the rest of this section, we prove that $\mathbb{P}$ is proper and preserves $S$

to be Suslin under the assumption of $\dot{\tau}$ above.

Let $\theta$ be a large enough regular cardinal, $N$ a countable elementary

submodel of $H(\theta)$ such that $N$ contains $S,\dot{\tau},$ $\{\dot{U}_{\alpha};\alpha\in\omega_{1}\},$
$\mathbb{P}$ and

$H(\aleph_{2})$ , and $p_{0}(M)\in \mathbb{P}\cap N$ . For each $M\in$ dom$(p_{0})$ , we write $p_{0}=$

$\langle t_{M}^{p0},$ $\alpha_{M}^{p0}\}$ . Let $N’;=N\cap H(\aleph_{2})$ , which is a countable elementary
submodel of $H(\aleph_{2})$ . We take (arbitrary) $\alpha_{N}^{p_{1}},$ $\in\omega_{1}\backslash N$ , and take $t_{N}^{p_{1}},$ $\in$

$S\backslash N$ such that for every $M\in$ dom$(p_{0}),$ $t_{M}^{p0}$ and $t_{N}^{p_{1}},$ $r(\omega_{1}\cap N)$ are
incomparable in $S$ , and $t_{N}^{p_{1}}$ , decides whether $\beta\in\dot{U}_{\alpha_{N}^{p_{1}}}$, or not for every
$\beta\in\omega_{1}\cap N(=\omega_{1}\cap N’)$ . Then we define

$p_{1};=p_{0}\cup\{\{N^{l}, \langle t_{N}^{p_{1}},, \alpha_{N}^{p_{1}},\rangle)\}$ ,

which is a condition of $\mathbb{P}$ and moreover an extension of $p_{0}$ . Let $s_{1}\in$

$S_{\omega 1^{\cap N}}$ . We show that $\langle p_{1},$ $s_{1}\rangle$ is $(N, \mathbb{P}\cross S)$-generic, which finishes the
proof.

Let $\mathcal{D}\in N$ be a dense open subset of $\mathbb{P}\cross S$ . Let $r\leq pp_{1}$ and $u\geq ss_{1}$

be such that $\{r,$ $u\rangle\in \mathcal{D}$. By extending $u$ if necessary, we may assume
that for every $M\in$ dom$(r)$ , lv $(u)\geq$ lv $(t_{M}^{r})$ holds (where we denote
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$r(M)=\{t_{M}^{r},$ $\alpha_{M}^{r}\rangle)$ . By the coherency of $S$ , we can take $\gamma\in\omega_{1}\cap N$

such that for every $M\in$ dom$(r)$ ,

$\{\xi\in|v(t_{M}^{r})\cap|v(s_{1});t_{M}^{r}(\xi)\neq s_{1}(\xi)\}\subseteq\gamma$ .

We note that

$\{\xi\in|v(t_{M}^{r})\cap|v(s_{1});t_{M}^{r}(\xi)\neq s_{1}(\xi)\}$

$=\{\xi\in|v(t_{M}^{r})\cap\omega_{1}\cap N;t_{M}^{r}(\xi)\neq u(\xi)\}$ .

We enumerate dom$(r)$ by $\{M_{i}^{r};i\in n\}$ with respect to $\in$-increasing.
For each $v\in S$ , we define

$T_{v}:=\{\{\alpha_{M}^{q};M\in$ dom $(q)\backslash$ dom$(r\cap N)\rangle$ ;

$\bullet q\in \mathbb{P}\cap N$ ,
$\bullet$

$q$ is an end-extension of $r\cap N$ ,
$\bullet\langle q,$ $v\rangle\in \mathcal{D}$ ,
$\bullet$ $|q|=|r|=n$ , and say dom$(q)=\{M_{i}^{q};i\in n\}$ which is an

$\in$-increasing enumeration,
$\bullet$ for every $M\in$ dom$(q)$ , Iv $(t_{M}^{q})\leq$ lv(v),
$\bullet$ for every $i\in n,$ $t_{M_{i}}^{q}[\gamma=t_{M_{i}}^{r}[\gamma$ and

$t_{M_{i}^{q}}^{q}r[\gamma,$ $1v(t_{M_{i}^{q}}^{q}))=v[[\gamma,$ $1v(t_{M_{i}^{q}}^{q}))$

iff $t_{M_{i}^{r}}^{r}[[\gamma$ , lv $(t_{M_{i}^{r}}^{r}))=ur[\gamma,$ $1v(t_{M_{i}^{r}}^{r}))\}$

We note that $\{T_{v};v\in S\rangle$ belongs to the model $N$ , and for any $v,$ $v’\in S$ ,
if $v\leq sv^{l}$ , then $T_{v}\subseteq T_{v’}$ . We consider each $T_{v}$ as a tree which
consists of all initial segments of its members, here we consider that
$\{\alpha_{M}^{q}$ ; $M\in$ dom$(q)\backslash$ dom$(r\cap N)\rangle$ is ordered by the usual order on or-
dinals. For each $v\in S$ , we shrink the tree $T_{v}$ to the set

$T_{v}\backslash \{\sigma\in T_{v};\exists\sigma’\in T_{v}$ such that $|\sigma’|=n-|r\cap N|-1,$ $\sigma’\subseteq\sigma$ and

$v|\mu_{s}$
“

$\{\beta\in\omega_{1};\exists t\in\dot{G}(\sigma^{l\wedge}\{\beta\rangle\in T_{t}’)\}$ is uncountable” $\}$ .

By repeating such a procedure finitely many times for each $v\in S$ , we
get $T_{v}’\subseteq T_{v}$ such that for every $\sigma\in T_{v}’$ which is not a terminal,

$v|\vdash s$
”

$\{\beta\in\omega_{1};\exists t\in\dot{G}(\sigmaarrow\langle\beta)\in T_{t}’)\}$ is uncountable “.
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We note again that $\{T_{v}’;v\in S\}$ also belongs to the model $N$ .

Claim 2.1. $\{\alpha_{M}^{r};M\in$ dom$(r\backslash N)\}$ is a cofinal path through $T_{u}^{l}$ .

Proof of Claim 2.1. Suppose that $\sigma^{\wedge}\{\alpha\rangle$ is an initial segment of
$\langle\alpha_{M}^{r};M\in$ dom$(r\backslash N)\rangle$ and $\sigma^{\wedge}\{\alpha\rangle\in T_{u}^{l}$ . Show that $\sigma\in T_{u}’$ , that
is,

$u|\vdash s$
“

$\{\beta\in\omega_{1};\exists t\in\dot{G}(\sigma^{\wedge}\{\beta\rangle\in T_{t}^{l})\}$ is uncountable ”.

Let $M\in$ dom$(r\backslash N)$ be such that $\sigma\in M$ and $\alpha\not\in M$ . Since lv $(u)\geq$

lv $(t_{M}^{r})\geq\omega_{1}\cap M,$ $u$ is $(S, M)$-generic.
Suppose that

$u|\mu_{S}$
” $\{\beta\in\omega_{1};\exists t\in\dot{G}(\sigma^{\wedge}\{\beta\}\in T_{t}’)\}$ is uncountable ”.

Then some extension of $u$ forces that $\{\beta\in\omega_{1};\exists t\in\dot{G}(\sigma^{-}\langle\beta\rangle\in T_{t}^{l})\}$

is countable. Since such an extension is also $(M, S)$-generic and the
phrase “the set $\{$ $\beta\in\omega_{1};\exists t\in\dot{G}(\sigma^{-}\{\beta\}\in T_{t}’)\}$ is countable” can be
described in $M$ , there exists $w\in S\cap M$ such that $w\leq su$ and

$w|\vdash s$
”

$\{\beta\in\omega_{1};\exists t\in\dot{G}(\sigma^{\wedge}\langle\beta\rangle\in T_{t}^{l})\}$ is countable ”

(). Since $S$ is $\aleph_{0}$-distributive, there are a countable set $Z$ in $N$ and
$w^{l}\in S\cap M$ such that $w\leq sw^{l}\leq su$ and

$w’|\vdash$ $Z=\{\beta\in\omega_{1};\exists t\in\dot{G}(\sigma^{\wedge}\langle\beta\}\in T_{t}’)\}$ ”.

This is a contradiction because $u\geq sw’$ and
$u|\vdash s$ $\alpha\in\{\beta\in\omega_{1};\exists t\in\dot{G}(\sigma^{-}\{\beta\rangle\in T_{t}^{l})\}\backslash Z$ ”.

$\dashv$ (Claim 2.1)

Therefore, letting $m:=|r\backslash N|$ , the set

{$v\in S;ur\gamma\leq sv$ and $T_{v}’$ is of height $m$}
is not empty, in particular, contains $u$ as a member. We note that this
set is in $N$ , so since $u$ is $(S, N)$-generic, there exists $s_{2}\in S\cap N$ such
that $s_{2}\leq su$ and $T_{s2}’$ has a cofinal branch of height $m$ . Let

$a:=\{i\in n\backslash m;t_{M_{i}^{r}}^{r}r[\gamma,$ $1v(t_{M_{i}^{r}}^{r}))=ur[\gamma,$ $1v(t_{M_{i}^{r}}^{r}))\}$ .

$4Ifu$ iiss $(M, S)$-generic and $A\in M\cap P(S)$ contains $u$ as a member, then there
exists $w\in A\cap M$ with $w\leq su$ . Because the set $\{t\in S;(S|t)\cap A=\emptyset or t\in A\}$ is
in $M$ and dense in $S$ . So there exists $w<su$ which belongs to this set (we should
remember that the set $\{w\in S;w<su\}$ is an $(S,M)$-generic filter). Since $u\in A$ ,
it have to be true that $w\in A$ .
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If $a$ is empty, then for any cofinal path of $T_{s2}^{l}$ in $N$ and its witness
$p_{2}\in \mathbb{P}\cap N,$ $\{p_{2}, s_{2}\}\in \mathcal{D}\cap N$ and by the choice of $\gamma,$ $\{r\cup p_{2},$ $u)$ is
a common extension of { $r,$ $u\rangle$ and $\{p_{2},$ $s_{2}\rangle(^{5})$ , so the proof is finished.
Therefore the interesting case is that $a$ is not empty.

Suppose that $a$ is not empty. Let $\dot{X}_{0}$ be an S-name such that

$|\vdash s$ $\dot{X}_{0};=\{\beta\in\omega_{1};\exists t\in\dot{G}(\{\beta\}\in T_{t}^{l})\}$ ”.

We note that $\dot{X}_{0}\in N$ and
$s_{2}|\vdash s$

“ $\dot{X}_{0}$ is uncountable”.

Since $s_{1}$ is $(S, N)$-generic above $s_{2},$ $S$ is $\aleph_{0}$-distributive and $(\omega_{1},\dot{\tau})$ is
an S-name for a hereditarily separable space, there are $s_{2}^{0}\in S\cap N$ and
a countable set $Y_{0}$ in $N$ such that $s_{2}\leq ss_{2}^{0}\leq ss_{1}(\leq s^{u)}$ and

$s_{2}^{0}|\vdash s$
“ $Y_{0}\subseteq\dot{X}_{0}$ and $c1_{\dot{\tau}}(\dot{X}_{0})=c1_{\dot{\tau}}(Y_{0})$ “.

For each $i\in n\backslash m$ , let

$b_{i}:=\{j\in a\backslash m;t_{M_{j}^{r}}^{t}[\gamma=t_{M_{i}^{r}}^{t}[\gamma\}$ .

We note that for each $j\in b_{i}$ , by the choice of $\gamma,$ $t_{M_{j}^{r}}^{t}r(\omega_{1}\cap N)=$

$t_{M_{i}^{r}}^{t}r(\omega_{1}\cap N)$ .

Claim 2.2. There exists $\beta_{0}\in Y_{0}$ such that for every $j\in b_{m}$ ,

$t_{M_{j}^{r}}^{t}|\vdash s^{tt}\beta_{0}\not\in\dot{U}_{\alpha_{M_{j}^{r}}},,$ .

Proof of Claim 2.2. Let $b_{i}=\{j_{\zeta};(\in k\}$ and take any $w_{\zeta}\in S$ such
that $t_{M_{j_{\zeta}}^{r}}^{r}\leq sw_{\zeta}$ , all $w_{\zeta}$ has the same level, and for some $\delta\in\omega_{1}$ which is
larger than $\max\alpha_{M_{j}^{r}}^{r},$$w_{0}j\in b_{i}|\vdash s$

“
$\delta\in c1_{\dot{\tau}}(Y_{0})$

“ (we notice that this closure
operator is an S-name). By induction on $\zeta\in k$ , we take an S-name $\dot{V}_{\zeta}$

such that
$\bullet$ $w_{\zeta^{1\vdash s}}$

“
$c1_{\dot{\tau}}(\dot{U}_{\alpha_{M_{コ_{}\zeta}}^{r}})\cap\dot{V}_{\zeta}=\emptyset$ and $\delta\in\dot{V}_{\zeta}$ “,

$\bullet$ for every $(’\in k,$ $w_{\zeta’}|\vdash s$
“

$\psi_{w_{\zeta},w_{\zeta}},(\dot{V}_{\zeta})$ is open in $\dot{\tau}$ “, and
$\bullet w_{\zeta+1^{1\vdash s}}\subseteq\psi_{w_{\zeta},w_{\zeta+1}}(\dot{V}_{\zeta})$ ”.

This can be done by our special property of $\dot{\tau}$ in the proposition ().

5Because then for any $M\in$ dom$(p_{2})\backslash$ dom$(r\cap N)$ and $M’\in$ dom$(r\backslash N)$ , it
is true that $1v(t_{M}^{p_{2}})\leq 1v(s_{2})<\omega_{1}\cap N\leq 1v(t_{M}^{r},),$ $t_{M}^{p_{2}}r[\gamma$ , lv $(t_{M}^{p_{2}}))\neq s_{2}r[\gamma$ , lv $(t_{M}^{p_{2}}))$ ,
$t_{M}^{r},$ $r[\gamma, \omega_{1}\cap N)=u|[\gamma, \omega_{1}\cap N)$ and $s_{2}\leq su$ , hence it holds that $t_{M}^{p_{2}}\not\leq st_{M}^{r},$ .

6This is the only point in which the property of $\dot{\tau}$ is used in the proof.
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We take $\beta_{0}\in Y_{0}$ such that some extension of $w_{0}$ forces that $\beta_{0}\in$

$\psi_{w_{k-1},w0}(\dot{V}_{k-1})$ “. Then for every $\zeta\in k$ ,

$w_{\zeta}|\vdash s$
” $\beta_{0}\in\psi_{ww}k-1,\zeta(\dot{V}_{k-1})\subseteq\dot{V}_{\zeta}$ , hence $\beta_{0}\not\in\dot{U}_{\alpha_{M_{j_{\zeta}}^{r}}^{r}}$ “.

Since $\beta_{0}\in Y_{0}\subseteq\omega_{1}\cap N\subseteq M_{j_{\zeta}}^{r}$ and $t_{M_{j_{\zeta}}^{r}}^{r}\leq sw_{\zeta}$
, by the definition of

conditions of $\mathbb{P}$ , for every $j\in b_{i}$ ,

$t_{M_{j}^{r}}^{r}|\vdash_{S}$ $\beta_{0}\not\in\dot{U}_{\alpha_{M_{j}^{r}}^{r}},,$ ,

which is what we want. $\dashv$ (Claim 2.2)

By repeating this procedure, we can take $s_{3}\in S\cap N$ and a cofinal
branch $\{\beta_{i};i\in n-m\rangle$ through $T_{s3}’$ such that $s_{2}\leq ss_{3}\leq ss_{1}(\leq su)$

and for every $i\in n-m$ and $j\in b_{m+i}$ ,

$t_{M_{j}^{r}}^{r}|\vdash_{S}$ $\beta_{i}\not\in\dot{U}_{\alpha_{M_{j}^{r}}^{r}},,$ .

Since $\{\beta_{i};i\in n-m\rangle\in T_{s_{3}}^{l}\cap N\subseteq T_{s}3\cap N$ , there exists $p_{3}\in \mathbb{P}\cap N$

which is its witness. Then $\langle p_{3},$ $s_{3}\}\in \mathcal{D}\cap N$ and $\langle r\cup p_{3},$ $u\rangle$ is a common
extension of $\langle r,$ $u\rangle$ and $\langle p_{3},$ $s_{3}\rangle$ , which finishes the proof.
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