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1 Introduction
We consider the non-local diffusion equations in the presence of a drift term

$\partial_{t}\theta+A_{K}(t)\theta+v\cdot\nabla\theta=0$ , $t>0$ , $x\in \mathbb{R}^{d}$ , (1.1)

where $d\geq 2$ and $A_{K}(t)$ is a linear operator formally defined by

$(A_{K}(t)f)(x)=P.V \int_{R^{d}}(f(x)-f(y))K(t, x, y)dy$. (1.2)

Here $K(t, x, y)$ is a positive function satisfying $K(t, x, y)=K(t, y, x)$ and $v(t, x)=$
$(v_{1}(t, x), \cdots, v_{d}(t, x))$ is a vector field in $\mathbb{R}^{d}$ satisfying the divergence free condition,
$\nabla\cdot v(t)=0$ . In particular, $A_{K}(t)$ will be supposed to possess a diffusion effect like
$(-\triangle)^{\alpha/2}$ for some $\alpha\in(0,2)$ . Note that in the case $A_{K}(t)=(-\triangle)^{\alpha/2}$ with $\alpha\in(0,2)$ the
kernel $K$ is given by $K(t, x, y)=C_{d,\alpha}|x-y|^{-d-\alpha}$ for some positive constant $C_{d,\alpha}$ . The
aim of this note is to show the existence and the continuity of fundamental solutions for
(1.1) under less regularity assumptions on $K$ and $v$ .
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When there is no drift term $(i.e., v=0)$ this problem appears in the theory of Dirichlet
forms of jump type. For the diffusion operator $A_{K}(t)$ defined by (1.2) the associated
Dirichlet form is

$\mathcal{E}_{K}^{(t)}(f, g)=\frac{1}{2}ll_{]R^{2d}}[f][g](x, y)K(t, x, y)dxdy$ , $[f](x, y)=f(x)-f(y)$ , (1.3)

and it has been investigated mainly from the probabilistic approach [6, 16, 17, 3, 1, 13, 2].
On the other hand, in recent years the case with a drift term has also attracted much
attention, especially in the field of fluid mechanics, mathematical finance, biology, and so
on. For example, many works have been done for the two-dimensional dissipative quasi-
geostrophic equations (QG), where $A_{K}(t)=(-\triangle)^{\alpha/2}$ and the drift term is a nonlinear
term such that $v$ is given in terms of $\theta$ via the Riesz transform; [7]. For such nonlinear
problems it is crucial to obtain detailed informations of solutions under less regularity
conditions on $v$ .

In [4, 12] fundamental solutions were constructed when $A_{K}(t)=(-\triangle)^{\alpha/2}$ with $\alpha\in$

$(1,2)$ and $v$ belongs to a suitable Kato class without assuming the divergence free condi-
tion. In this case the diffusion term is the leading term and they showed two-sided heat
kernel estimates by using perturbation arguments. However, despite of the increasing
interest, there seems to be still few works on fundamental solutions for $\alpha\in(0,1]$ . In such
cases the drift term formally becomes the leading term and is no longer regarded as a
simple perturbation of $A_{K}(t)$ , which causes difficulties in the study of (1.1). For example,
so far little seem to be known about the uniqueness of weak solutions for such cases and
this makes even the semigroup property of fundamental solutions nontrivial.

To state our main results we give the precise assumptions on the kernel $K$ and the
velocity $v$ . We assume that there are $\alpha\in(0,2)$ and $C_{0}>0$ such that

$K(t, x, y)=K(t, y, x)$

$ess.\sup_{t>0,x\in R^{d}}\int_{|x-y|\leq M}|x-y|^{2}K(t, x, y)dy$

$ess.\inf_{t>0,x,y\in R^{d}}|x-y|^{d+\alpha}K(t, x, y)$

for $a.e$ . $(t, x, y)\in(O, \infty)\cross \mathbb{R}^{d}\cross \mathbb{R}^{d},$ $(1.4)$

$\leq C_{0}M^{2-\alpha}$ for each $M\in(O, \infty)$ , (1.5)

$\geq C_{0}^{-1}$ . (1.6)

Following the conventions in (QG), we will call the case $\alpha\in(1,2)$ subcritical, the case
$\alpha=1$ critical, and the case $\alpha\in(0,1)$ supercritical. We note that if $K$ satisfies

$C^{-1}|x-y|^{-d-\alpha}\leq K(t, x, y)\leq C|x-y|^{-d-\alpha}$ , (1.7)

then (1.5) and (1.6) are satisfied. The condition (1.6) guarantees the diffusion effect like
$(-\triangle)^{\alpha/2}$ . Taking this in mind, we assume that $v$ belongs to a class of functions which is
invariant under the scaling

$v(t, x) r^{1-1/\alpha}v(rt, r^{1/\alpha}x)$ , $r>0$ . (1.8)

This scaling is natural in the following sense: if $\theta(t, x)$ is a solution to (1.1) with $A_{K}(t)=$

$(-\triangle)^{\alpha/2}$ and $v=v(t, x)$ then the rescaled function $\theta(rt, r^{1/\alpha}x)$ satisfies (1.1) with $A_{K}(t)=$
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$(-\triangle)^{\alpha/2}$ and $v=r^{1-1/\alpha}v(rt, r^{1/\alpha}x)$ , instead of $v(t, x)$ . Heuristically it is essential that $v$

belongs to a function space which is invariant with respect to (1.8), in order to ensure
a smoothing effect by $(-\triangle)^{\alpha/2}$ ; for example, see [19, 22, 20] and references there in for
second order parabolic equations and [5, 14, 21] for the fractional diffusion equations.

To describe the regularity assumption on $v$ let us introduce the Campanato spaces;
see [9].

$\mathcal{L}^{p,\lambda}(\mathbb{R}^{d})=\{f\in L_{loc}^{q}(\mathbb{R}^{d})|\Vert f\Vert_{\mathcal{L}^{p,\lambda}}=\sup_{B}(R^{-\lambda}\int_{B}|f(x)-f_{B}f|^{p}dx)^{\frac{1}{p}}<\infty\}$ . (1.9)

Here the supremum is taken over all balls $B=B_{R}(y)$ (the ball with radius $R>0$ centered
at $y\in \mathbb{R}^{d})$ , and $|B|$ is the volume of the ball $B$ . We will sometimes write $B_{R}$ for $B_{R}(0)$

for simplicity of notations. The value $\#_{B}f$ is defined by

$f_{B}f= \frac{1}{|B|}\int_{B}f(x)dx$ . (1.10)

Then we have

$L_{w}^{d-}p_{\frac{d}{\lambda}}(\mathbb{R}^{d})$

$arrow$ $\mathcal{L}^{p,\lambda}(\mathbb{R}^{d})$ if $0<\lambda<d$ , (1.11)
$\mathcal{L}^{p,\lambda}(\mathbb{R}^{d})$ $=$ $BMO(\mathbb{R}^{d})$ if $\lambda=d$ , (1.12)
$\mathcal{L}^{p,\lambda}(\mathbb{R}^{d})$ $=$

$\dot{c}\frac{\lambda-d}{p}(\mathbb{R}^{d})$ if $d<\lambda\leq d+p$ . (1.13)

Here $L_{w}^{p}(\mathbb{R}^{d})$ is the weak $L^{p}$ space and $\dot{C}^{\beta}(\mathbb{R}^{d}),$ $\beta\in(0,1]$ , is the homogeneous H\"older

space of the order $\beta$ .
Next we introduce the Morrey type spaces of $\mathcal{L}^{p,\lambda}$-valued functions.

$L^{p,\lambda_{1}}(0, \infty;\mathcal{L}^{q,\lambda_{2}}(\mathbb{R}^{d}))=\{f\in L_{loc}^{p}(0, \infty;\mathcal{L}^{q,\lambda_{2}}(\mathbb{R}^{d}))|$

$\Vert f\Vert_{L^{p,\lambda_{1}}(0,\infty;\mathcal{L}^{q,\lambda_{2}}(R^{d}))}=\sup_{t>00}\sup_{<s<t}$

$((t-s)^{-\lambda_{1}} \int_{s}^{t}$ llf $(\tau)\Vert_{\mathcal{L}^{q,\lambda_{2}}}^{p}d\tau)^{\frac{1}{p}}<\infty\}.(1.14)$

For $1\leq p,$ $q\leq\infty$ let $L_{loc}^{q}(0, \infty;L_{loc}^{p}(\mathbb{R}^{d}))$ be the class of functions defined by

$L_{loc}^{q}(0, \infty;L_{loc}^{p}(\mathbb{R}^{d}))=\{f\in L_{loc}^{1}((0$ , oo) $\cross \mathbb{R}^{d})|\Vert f\Vert_{L^{q}(0,R;Lp(B_{R}))}<\infty$ for all $R>0\}$ .
(1.15)

When $K(t, x, y)$ satisfies (1.5) and (1.6) for some $\alpha\in(0,2)$ the velocity $v$ is assumed to
satisfy the following two conditions:

(Cl) there are $\lambda\in[2d/\alpha-d, 2d/\alpha+d]$ and $1<q\leq\infty$ such that

$v\in L^{1,\frac{1}{2}+\frac{1}{a}-\frac{\lambda}{2d}}(0, \infty, (\mathcal{L}^{\frac{2d}{\alpha},\lambda}(\mathbb{R}^{d}))^{d})\cap L_{loc}^{q}(0, \infty;(L_{loc}^{p_{\lambda}}(\mathbb{R}^{d}))^{d})$ , (1.16)

where $p_{\lambda}=1$ if $\lambda\in[2d/\alpha-d, d]$ and $p_{\lambda}=\infty$ if $\lambda\in(d, 2d/\alpha+d]$ .

(C2) $\nabla\cdot v(t)=0$ for a.e. $t>0$ in the sense of distributions.
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Remark 1.1 The space $L^{1,\frac{1}{2}+\frac{1}{\alpha}-\frac{\lambda}{2d}}(0, \infty;\mathcal{L}^{\frac{2d}{\alpha},\lambda}(\mathbb{R}^{d}))$ is invariant under the scaling (1.8).
One of the advantages to use the Campanato spaces (1.9) is that for some exponents $(p, \lambda)$

they contain functions growing at spatial infinity. In particular, the case $\lambda=2d/\alpha+d$

in (Cl) allows $v$ to grow at most linearly as $|x|arrow\infty$ . We also note that the condition
$v\in L^{1,\frac{1}{2}+\frac{1}{\alpha}-\frac{\lambda}{2d}}(0, \infty;(\mathcal{L}^{\frac{2d}{a},\lambda}(\mathbb{R}^{d}))^{d})$ includes the case

$|t-t_{0}|^{\frac{\lambda}{2d}+\frac{1}{2}-\frac{1}{\alpha}}v(t)\in L^{\infty}(0, \infty;(\mathcal{L}^{\frac{2d}{\alpha},\lambda}(\mathbb{R}^{d}))^{d})$ for some $t_{0}\in[0, \infty)$ . (1.17)

Under the divergence free condition (C2) the drift term becomes skew-symmetric
with respect to the usual $L^{2}(\mathbb{R}^{d})$ inner product, and hence, the adjoint equation for (1.1)
takes the same form as (1.1). This additional structure is essentially used in constructing
fundamental solutions under weak regularity condition (Cl). The divergence free condi-
tion sometimes plays important roles also in the second order parabolic equations with
singular drifts; [19, 22, 20].

For simplicity of notations we will introduce the seminorm

$\Vert v\Vert_{X_{\lambda}}=\Vert v\Vert_{L^{1^{1\lambda}}},z^{+\frac{1}{\alpha}-}\varpi(0,\infty;\mathcal{L}^{\frac{2d}{\alpha},\lambda}(R^{d}))$. (1.18)

For $T>0$ and $x\in \mathbb{R}^{d}$ we also set

$\Vert v\Vert_{Y_{T,x}^{q,\lambda}}=\Vert v\Vert_{Lq(0,T;L^{p_{\lambda}}(B_{1}(x)))}$ , (1.19)

where $p_{\lambda}$ is as in (Cl).

Let $T>s\geq 0$ . A function $\theta\in L^{\infty}(s, T;L^{2}(\mathbb{R}^{d}))$ is said to be a weak solution to (1.1)
for $t\in[s, T)$ with initial data $\theta_{s}$ at $t=s$ if $\theta$ satisfies

$\int_{s}^{T}\epsilon_{K}^{(t)}(\theta(t), \theta(t))dt<\infty$, (1.20)

and

$l_{s}^{T}(-<\theta(t),$ $\partial_{t}\varphi(t)>+\mathcal{E}_{K}^{(t)}(\theta(t), \varphi(t))-<\theta(t),$ $v(t)\cdot\nabla\varphi(t)>)dt=<\theta_{s},$ $\varphi(s)>$

(1.21)
for all $\varphi\in C_{0}^{\infty}([s, T)\cross \mathbb{R}^{d})$ , where $<\cdot,$ $\cdot>$ is the usual $L^{2}-L^{2}$ pairing in $\mathbb{R}^{d}$ . Then a
measurable function $P_{K,v}(t, x;s, y)$ on $\{(t, s, x, y)|t>s\geq 0, x, y\in \mathbb{R}^{d}\}$ is said to be a
fundamental solution to (1.1) if for each $T>s\geq 0$ and $f\in L^{2}(\mathbb{R}^{d})$ the function

$(P_{K,v}f)(t, s, x)$ $:= \int_{R^{d}}P_{K,v}(t, x;s, y)f(y)dy$ , (1.22)

is a weak solution to (1.1) for $t\in[s, T)$ with initial data $f$ at $t=s$ .
The main result of this note is the existence of fundamental solutions for (1.1).
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Theorem 1.2 Suppose that $(1.4)-(1.6)$ and (Cl) $-(C2)$ hold. Then there exists a
fundamental solution $P_{K,v}(t, x;s, y)$ for (1.1) satisfying the following properties.

$\int_{R^{d}}P_{K,v}(t, x;s, y)dx=\int_{R^{d}}P_{K,v}(t, x;s, y)dy=1$ , (1.23)

$0\leq P_{K,v}(t, x;s, y)\leq C(t-s)^{-\frac{d}{a}}$ , (1.24)

$P_{K,v}(t, x;s, y)= \int_{R^{d}}P_{K,v}(t, x;\tau, z)P_{K,v}(\tau, z;s, y)dz$, $t>\tau>s\geq 0,$ $(1.25)$

$|P_{K,v}(t, x_{1};s, y_{1})-P_{K,v}(t, x_{2};s, y_{2})| \leq\frac{C’(|x_{1}-x_{2}|^{\beta}+|y_{1}-y_{2}|^{\beta})}{(t-s)^{c}}$ , (1.26)

and for $T\geq t_{i}>s_{i}\geq 0,$ $i=1,2$ ,

$|P_{K,v}(t_{1}, x;s_{1}, y)-P_{K,v}(t_{2}, x;s_{2}, y)| \leq\frac{C_{T,x}|t_{1}-t_{2}|^{\beta’}+C_{T,y}|s_{1}-s_{2}|^{\beta’}}{(\min\{t_{1}-s_{1},t_{2}-s_{2}\})^{c}}$. (1.27)

Here the positive constant $C$ depends only on $d,$ $\alpha$ , and $C_{0}$ , the positive constants $C’,$ $c,$ $\beta$

depend only on $d,$ $\alpha,$ $C_{0},$ $\lambda$ , and $\Vert v\Vert_{X_{\lambda}}$ , the positive constant $C_{T,x}$ (or $C_{T,y}$) depends only
on $T,$ $d,$ $\alpha,$ $C_{0},$ $\lambda,$ $q,$ $\Vert v\Vert_{X_{\lambda}}$ , and $\Vert v\Vert_{Y_{T,x}^{q,\lambda}}$ $(or \Vert v\Vert_{Y_{T,y}^{q,\lambda}})_{f}$ and the positive constants $c’,$ $\beta’$

depend only on $d,$ $\alpha,$ $C_{0},$ $\lambda,$ $q,$ $\Vert v\Vert_{X_{\lambda}}$ .

Remark 1.3 In the proof of Theorem 1.2 we will also show that

$(P_{K,v}f)(\cdot, s, \cdot)\in C([s, \infty);L^{p}(\mathbb{R}^{d}))$ if $f\in L^{p}(\mathbb{R}^{d})$ , $1\leq p<\infty$ , (1.28)

and the energy inequality

$\Vert\theta(t)\Vert_{L^{2}}^{2}+2\int_{s}^{t}\mathcal{E}_{K}^{(\tau)}(\theta(\tau), \theta(\tau))d\tau\leq\Vert f\Vert_{L^{2}}^{2}$ , (1.29)

for $t>s\geq$ Oif $f\in L^{2}(\mathbb{R}^{d})$ .

The estimates (1.26) and (1.27) show the H\"older continuity of the fundamental solu-
tion, where the H\"older exponents and the constant C’ are estimated uniformly in time and
space, while the constants $C_{T,x}$ and $C_{T,y}$ can be larger as $|x|$ and $|y|$ increase, if $v$ grows
at $|x|arrow\infty$ . We note that for some class of $(K, v)$ and solutions the H\"older continuity
is obtained in [5, 14] for the critical case and also in [8, 21] for the supercritical case. In
[5, 14, 8] the case $A_{K}(t)=(-\triangle)^{\alpha/2}$ and $v\in L^{\infty}(0, \infty;(\mathcal{L}^{2d/\alpha,2d/\alpha-d})^{d})$ was treated under
the condition (C2), and [21] dealt with the case (1.7) and $v\in(C^{1-\alpha}((0, \infty)\cross \mathbb{R}^{d}))^{d}$ but
without (C2).

In order to prove Theorem 1.2 it is important to obtain the a priori estimates for
fundamental solutions of the approximate equations which are, roughly speaking, of the
form $\partial_{t}\theta+\delta(-\triangle)^{\tilde{\alpha}/2}\theta+A_{K^{-}}(t)\theta+\tilde{v}\cdot\nabla\theta=0$ with $\delta>0$ . Here $\tilde{\alpha}\in(1,2)$ , and $\tilde{K}$ and
$\tilde{v}$ are suitable mollifications of $K$ and $v$ . It is more or less well known that the unique
existence of fundamental solutions holds for such mollified equations due to the fact that
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the leading term is the extra diffusion term. So our main step is to prove the a priori
(equi-)continuity estimates of the fundamental solutions. For the purpose we will use
the Nash-type arguments by Komatsu [16, 17] where he studied the non-local diffusion
equations without the drift term. As in [18, 16, 17], the arguments consist of four steps;
the moment bound, the relative entropy bound, the overlap estimate, and the iteration
estimate. However, due to the presence of the nonsmooth drift term, it seems to be
difficult to obtain these estimates. In order to overcome the difficulty, we will derive
these estimates in time-dependent coordinates along the trajectory determined by a local
average of $v$ , instead of the usual coordinates $\mathbb{R}^{d}$ . Although similar coordinates were used
in [5, 8, 14], we have to choose the appropriate trajectory in each step carefully. We note
that, in fact, the arguments in [18, 16, 17] highly rely on the scaling property of (1.1), while
the above approximation does not preserve such property. As a result, for example, it is
difficult to get the equi-continuity estimates for solutions to the approximate equations,
which causes another technicality in taking the limit and showing the desired estimate
rigorously.

Theorem 1.2 has an application for the global regularity of solutions to (QG) in the
critical case, as in [15, 5, 14]. Indeed, our result gives the alternative approach to this
problem, based on the Nash-type arguments for fundamental solutions. In particular,
it should be noted that different from [5] we need not study extension problems to use
special property of the fractional Laplacian.
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