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1 Introduction
In this note we consider the Cauchy problems for the wave equations with time-dependent
damping

$(P)$ $\{\begin{array}{l}u_{tt}-\triangle u+b(t)u_{t}=f(u), (t, x)\in R_{+}\cross R^{N}(u, u_{t})(0, x)=(u_{0}, u_{1})(x), x\in R^{N},\end{array}$

where
$b(t)=b_{0}(t+1)^{-\beta}$ , $b_{0}>0$ ( $b_{0}=:1$ WLOG),

$|f(u)|\sim|u|^{\rho}$ , $1< \rho<\frac{N+2}{[N-2]_{+}}=\{\begin{array}{ll}\infty (N=1,2)\frac{N+2}{N-2} (N\geq 3),\end{array}$

and the data $(u_{0}, u_{1})\in H^{1}xL^{2}$ are compactly supported. Then there exists a unique
weak solution $u\in C([0, T];H^{1})\cap C^{1}([0, T];L^{2})$ for some $T>0$ with compact support by
the finite propagation property of the wave equation. Our concern is with an asymptotic
behavior of the solution as $tarrow\infty$ . In particular, our aim is to determine the critical
exponent for the semilinear problem.

When $\beta=0,$ $(P)$ is reduced to

(1.1) $u_{tt}-\triangle u+u_{t}=f(u)$ , $(t, x)\in R_{+}\cross R^{N}$

$(u, u_{t})(0, x)=(u_{0}, u_{1})(x)$ , $x\in R^{N}$ .

If the semilinear term in $(P)$ is

(1.2) $f(u)=-|u|^{\rho-1}u$ ,

then it works as absorbing, and for any large data there uniquely exists the solution
$u\in C([0, \infty);H^{1})\cap C$‘ $([0, \infty);L^{2})$ , whose behaviors will be classified to three cases:

(i) In the case $\rho>\rho_{F}(N)$ $:=1+ \frac{2}{N}$ , the solution $u$ behaves like $\theta_{0}G(t, x)$ as $tarrow\infty$ for
a suitable constant $\theta_{0}$ and the Gauss kernel $G(t, x)=(4\pi t)^{-\frac{N}{2}}e^{-\frac{|x|^{2}}{4t}}$ , which is the
fundamental solution of the corresponding linear parabolic equation

$\phi_{t}-\triangle\phi=0$ .
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(ii) In the case $\rho=\rho_{F}(N)$ , the solution behaves like the approximate Gauss kernel
$G(t, x)(\log t)^{-}$ .

(iii) In the case $\rho<\rho_{F}(N)$ , the solution $u$ behaves like the self-similar solution $w(t, x)$ $:=$

$(t+1)^{\frac{\rho-1}{2}f(|x|/\sqrt{t+1})}$ of the corresponding semilinear parabolic equation

$\phi_{t}-\triangle\phi+|\phi|^{\rho-1}\phi=0$ .

Therefore, the exponent $\rho_{F}(N)$ is critical, which is called the Fujita exponent named after
his pioneering work [1].

While
$f(u)=|u|^{\rho-1}u,$ $|u|^{\rho}$ etc.

works as the source term, and the behaviors of the solution $u$ to (1.1) are classified as
follows:

(iv) If $\rho>\rho_{F}(N)$ , then for suitably small data $(u_{0}, u_{1})$ there exists a time-global solution
$u\in C([0, oo); H^{1})\cap C^{1}([0, \infty);L^{2})$ , whose asymptotic profile is $\theta_{0}G(t, x)$ for suitable
constant $\theta_{0}$ .

(v,vi) If $\rho\leq\rho_{F}(N)$ , then the time-local solution $u(t)$ cannot be extended time-globally for
some data $(u_{0}, u_{1})$ . Depending on (v) $\rho=\rho_{F}(N)$ and (vi) $\rho<\rho_{F}(N)$ , the estimates
of its life span are different from each other.

(For (i) $\sim$ (vi) see [2, 3, 4, 5, 6, 8, 9, 12, 13, 14, 15, 16, 21, 22, 28] and the references
therein. Many parts are already solved, but some are still expected.)

Thus the Fujita exponent $\rho_{F}(N)$ is critical in both the absorbing and source semilinear
problems. These imply so called the diffusion phenomenon of the damped wave equation.

We now consider the time-dependent damping problem $(P)$ . Wirth [24, 25] analyzed
the linear equation of $(P)$

(1.4) $v_{tt}-\triangle v+b(t)v_{t}=0$, $b(t)=(t+1)^{-\beta}$ .

If $\beta>1$ , then the damping become weaker and the solution $v$ behaves as the corresponding
wave equation, when the damping is called non-effective. If-l $<\beta<1$ , then the damping
is called effective, that is, the solution behaves like that of the corresponding parabolic
equation. The rest case $\beta<-1$ is called over-damping (For $\beta\geq 0$ see also Yamazaki
[26, 27] $)$ .

In this note we consider the case of effective damping, and show that

Conclusion. When-l $<\beta<1$ (effective damping) and $f(u)=|u|^{\rho}$ (source semilinear
term) with $1< \rho<\frac{N+2}{[N-2]_{+}}$ , the Fujita exponent $\rho_{F}(N)$ is still critical even in the time-
dependent damping case.

In the case of semilinear absorbing term $f(u)=-|u|^{\rho-1}u$ we had the following theorem.
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Theorem 1.1 Suppose-l $<\beta<1$ and $f(u)=-|u|^{\rho-1}u$ with $1< \rho<\frac{N+2}{N-2}$ . Then the
$[$ $]_{+}$

following assertions hold.

(I) ([20]) When $\rho\geq\rho_{F}(N)$ , the time-global solution $u\in C([0, \infty);H^{1})\cap C^{1}([0, \infty);L^{2})$

decays with rate

(1.5) $\int_{R^{N}}e^{2\psi}u(t, x)^{2}dx\leq CI_{0}^{2}(t+1)^{-\frac{(1+\beta)N}{2}+\epsilon}$ ,

where $\psi(t, x)=\frac{(1+\beta)|x|^{2}}{4(2+\delta)(t+1)^{1+\beta}}(0<\delta\ll 1)$ with $\epsilon=\epsilon(\delta)>0,$ $\epsilon(\delta)arrow 0(\deltaarrow 0)$ and

$I_{0}^{2}= \int_{R^{N}}e^{2\psi(0,x)}(u_{1}^{2}+|\nabla u_{0}|^{2}+|u_{0}|^{\rho+1}+u_{0}^{2})dx<\infty$ .

(II) ([19]) Moreover, assume $N=1$ and $\rho>3=\rho_{F}(1)$ . Then

(1.6) $\Vert u(t, \cdot)-\theta_{0}G_{B}(t, \cdot)\Vert_{Lp}=o(t^{-\frac{1+\beta}{2}(1-\frac{1}{p})})$ ,

for suitable constant $\theta_{0}$ , where

$G_{B}(t, x)=(4\pi B(t))^{-\frac{N}{2}}e^{-\frac{|x|^{2}}{4B(t)}}$ , $B(t)= \int_{0}^{t}\frac{1}{b(\tau)}d\tau$ .

(III) ([20]) When $\rho\leq\rho_{F}(N)$ , the solution decays with

(1.7) $\int_{R^{N}}e^{2\psi}u(t, x)^{2}dx\leq CI_{0}^{2}(t+1)^{-(1+\beta)(\frac{2}{\rho-1}-\frac{N}{2})}$

where $\psi(t, x)=\frac{a|x|^{2}}{(t+t_{0})^{1+\beta}}(0<a\ll 1, t_{0}\gg 1)$ .

Note that decay rates in both (1.5) and (1.7) are available for $1<\rho<(N+2)/[N-2]_{+}$ .
But, the decay rate in (1.5) with $\epsilon=0$ is equal to that in (1.7) when $\rho=\rho_{F}(N)$ , and so
(1.5) is effective for $\rho\geq\rho_{F}(N)$ and (1.7) for $\rho\leq\rho_{F}(N)$ . Also, note that the solution $u$ in
the case of $\rho=\rho_{F}(N)$ is expected to decay a little bit faster than $G_{B}(t, x)$ like the case
(ii), but it remains open.

Let us discuss about the decay rates obtained in Theorem 1.1. Our equation is

(1.8) $u_{tt}-\triangle u+b(t)u_{t}+|u|^{\rho-1}u=0$ ,

whose corresponding linear and nonlinear parabolic equations are, respectively,

(1.9) $b(t)\phi_{t}-\triangle\phi=0$ or $\phi_{t}=\frac{1}{b(t)}\triangle\phi$ ,

and

(1.10) $b(t)\phi_{t}-\triangle\phi+|\phi|^{\rho-1}\phi=0$ .
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The solution $\phi$ of (1.9) with $\phi(0, x)=\phi_{0}(x)$ is given by

$\phi(t, x)=\int_{R^{N}}G_{B}(t, x-y)\phi_{0}(y)dy$

thanks to the fundamental solution $G_{B}(t, x)$ , so that

(1.11) $\Vert\phi(t)$ $II$
$L^{2}\leq C\Vert\phi_{0}\Vert_{L^{q}}t^{-\frac{(1+\beta)N}{4}}$ $t>0$ .

While, (1.10) has the similarity solution of the form

$w_{0}(t, x)=(c+ct)^{-\frac{1+\beta}{\rho-1}f}( \frac{|x|}{(c+ct)^{\frac{1+\partial}{2}}})$ , $c^{1+\beta}(1+\beta)=1$ ,

(see [20]) and its decay rate is

(1.12) $\Vert w_{0}(t, \cdot)\Vert_{L^{2}}=O(t^{-(\frac{1N}{\rho-14})(1+\beta)})$ .

The decay rate (1.5) is the almost same as (1.11) and the rate (1.7) is the same
as (1.12). Therefore, from the viewpoint of the diffusion phenomenon, the decay rate
(1.5) imphes almost optimal and (1.7) does optimal, which suggest the Fujita exponent
$\rho_{F}(N)$ will be critical. The behavior (1.6) means that the decay rate $\Vert u(t)\Vert_{L^{2}}=O(t^{-\frac{\beta+1}{4}})$

is completely optimal and that the Fujita exponent is actually critical, when $N=1$ .
However, the (almost) optimalities of (1.5) and (1.7) are not shown when $N\geq 2$ and so
we cannot say that $\rho_{F}(N)$ is completely critical.

In the source semilinear problem we have the following two theorems, which derives
our Conclusion.

Theorem 1.2 (Small data global existence) Suppose that-l $<\beta<1$ and $\rho_{F}(N)<$

$\rho<\frac{N+2}{[N-2]_{+}}$ . If $(u_{0}, u_{1})\in H^{1}\cross L^{2}$ as compactly supported and

$I_{0}^{2}:= \int_{R^{N}}e\frac{(1+\beta)|x|^{2}}{2(2+\delta)}(|u_{1}|^{2}+|\nabla u_{0}|^{2}+|u_{0}|^{\rho+1})dx\ll 1$

for some small $\delta>0$ , then there $ex\iota sts$ a unique global solution $u\in C([0, \infty);H^{1})\cap$

$C^{1}([0, \infty);L^{2})$ to $(P)$ , which satisfies
$\Vert u(t)\Vert_{L^{2}}\leq C_{\delta}I_{0}(t+1)^{-\frac{N}{4}(1+\beta)+\frac{\epsilon}{2}}$

for $\epsilon=\epsilon(\delta)>0,$ $C_{\delta}>0$ with $\epsilonarrow 0,$ $C_{\delta}arrow\infty$ as $\deltaarrow 0$ .

Theorem 1.3 (Blow-up in critical and subcritical exponents) Suppose that-l $<$

$\beta<1$ and $(u_{0}, u_{1})\in H^{1}\cross L^{2}$ are compactly supported with

(1.13) $\int_{R^{N}}(u_{1}(x)+\hat{b}_{1}u_{0}(x))dx>0$ , $\hat{b}_{1}^{-1}=\int_{0}^{\infty}e^{-\int_{0}^{t}(\tau+1)^{-\beta}d\tau}dt$ .

Then the global solution $u\in C([0, \infty);H^{1})\cap C^{1}([0, \infty);L^{2})$ to $(P)$ does not exist provided
that $1<\rho\leq\rho_{F}(N)$ .
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Two theorems are shown in Nishihara [18] and Lin, Nishihara and Zhai [11]. In the
next section we only sketch the proof of Theorem 1.3. The proof of Theorem 1.2 is given
by the weighted energy method, originally developed in Todorova and Yordanov [22],
which is omitted in this note.

2 Nonexistence of time-global solution
To prove Theorem 1.3 we apply the test function method developed by Qi S. Zhang [28].

First we remember his method in [28] for the wave equation with damping of constant
coefficient

(2.1) $u_{tt}-\triangle u+u_{t}=|u|^{\rho}$

with data $(u_{0}, u_{1})$ satisfying

(2.2) $\int_{R^{N}}(u_{0}+u_{1})(x)dx>0$ .

Note that (1.13) is reduced to (2.2) since $\hat{b}_{1}=1$ when $b(t)=1$ . Assume that $u$ is a
non-trivial global solution to (2.1) with (2.2). To derive the contradiction, we set

$I_{R}= \int_{Q_{R}}|u|^{\rho}\cdot(\psi_{R})^{\rho’}(t, x)dxdt$ , $\frac{1}{\rho}+\frac{1}{\rho}=1$

for large constant $R>0$ , where $Q_{R}=[0, R^{2}]\cross B_{R}(0),$ $B_{R}=B_{R}(0)=\{|x|\leq R\}$ and

$\psi_{R}(t, x)=\eta_{R}(t)\phi_{R}(r)=\eta(\frac{t}{R^{2}})\phi(\frac{r}{R}),$ $r=|x|$

for the functions $\eta,$ $\phi\in C_{0}^{\infty}$ satisfying

$0\leq\eta\leq 1,$ $\eta(t)=\{\begin{array}{l}1 t\in[0,1/4], |\eta’(t)|, |\eta’’(t)|\leq C,0 t\in[1, \infty)\end{array}$

$0\leq\phi\leq 1$ , $\phi(r)=\{\begin{array}{l}1 r\in[0,1/2], |\phi’(r)|, |\phi’’(r)|\leq C,0 r\in[1, \infty)\end{array}$

$(\eta’)^{2}/\eta’\leq C(0\leq t\leq$ 1 $)$ , $|\nabla\phi|^{2}/|\phi|\leq C(0\leq r\leq 1)$ .
Then, by (2.1)

$I_{R}= \int_{Q_{R}}(u_{tt}-\triangle u+u_{t})\cdot(\psi_{R})^{\rho’}dxdt=:J_{1}+J_{2}+J_{3}$ .

By the integral by parts, for example,

$J_{3}(= \int_{Q_{R}}u_{t}(\psi_{R})^{\rho’}dxdt))$

$=- \int_{B_{R}}u_{0}(x)dx-\int _{R,t}u\cdot\rho’(\psi_{R})^{\rho’-1}\cdot\frac{1}{R^{2}}\eta’(\frac{t}{R^{2}})\psi(\frac{|x|}{R})dxdt$

$\leq-\int_{B_{R}}u_{0}(x)dx+(l_{R,t}|u|^{\rho}(\psi_{R})^{\rho’}dxdt)^{\frac{1}{\rho}}(\int _{R,t}\{\eta’(\frac{t}{R^{2}})\phi(\frac{|x|}{R})\}^{\rho’}dxdt)^{\frac{1}{\rho}}\frac{C}{R^{2}}$

$\leq-\int_{B_{R}}u_{0}(x)dx+C(\hat{I}_{R,t})^{\frac{1}{\rho}}R^{(2+N)\frac{1}{\rho}-2}$ .
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Here we have used the $Hlder$ inequality with; $= \frac{\rho’-1}{\rho},$ $\rho’=(\rho’-1)\rho$ and denoted

$\hat{I}_{R,t}:=\int_{\hat{Q}_{R,t}}|u|^{\rho}(\psi_{R})^{\rho’}dxdt=\int_{R^{2}/4}^{R^{2}}\int_{B_{R}}|u|^{\rho}(\psi_{R})^{\rho’}dxdt$.

By the similar way to $J_{1},$ $J_{2}$ , we have

$I_{R}$ $\leq$
$- \int_{B_{R}}(u_{0}+u_{1})(x)dx+C(\hat{I}_{R,t}+\hat{I}_{R,|x|})^{\frac{1}{\rho}}R^{\frac{N+2}{\rho}-2}$

$\leq$
$- \int_{B_{R}}(u_{0}+u_{1})(x)dx+C(I_{R})^{\frac{1}{\rho}}R^{(N+2)(1-\frac{1}{\rho})-2}$ ,

where $\hat{I}_{R,|x|}=\int_{0}^{t}\int_{R/2\leq|x|\leq R}|u|^{\rho}(\psi_{R})^{\rho’}dxdt$ . Moreover, $(N+2)(1- \frac{1}{\rho})-2=N-\frac{N+2}{\rho}<0$

is equivalent to $\rho<1+\frac{2}{N}=\rho_{F}(N)$ . Hence if $\rho<\rho_{F}(N)$ , then $(I_{R})^{1-\frac{1}{\rho}}\leq CR^{(N+2)(1-\frac{1}{\rho})-2}$

and $I_{R}arrow 0$ as $Rarrow\infty$ , which contradicts to the non-triviality of the solution $u$ . If
$\rho=\rho_{F}(N)$ , then $I_{R}\leq C$ and $\int_{R^{N}}|u|^{\rho}dxdt<\infty$ as $Rarrow\infty$ . Hence,

$I_{R} \leq-\int_{B_{R}\frac{\hat{I}_{R,t}+\hat{I}_{R,|x|}}{arrow 0aSRarrow\infty}}(u_{0}+u_{1})+C()^{\frac{1}{\rho}}<0$
as $Rarrow\infty$ ,

which is also the contradiction. Thus we could show the non-existence of global solution
in the case of the damping of constant coefficient. In the proof both the divergence form
of the left-hand side of (2.1) and the positivity of the right-hand side were key points.

We now back to our equation

(2.3) $u_{tt}-\triangle u+b(t)u_{t}=|u|^{\rho}$ , $b(t)=(t+1)^{-\beta}(-1<\beta<1)$ ,

whose left-hand side is not in the divergence form. To change (2.3) to the divergence
form, we multiply (2.3) by some function $g(t)$ to get

(2.4) $(g(t)u)_{tt}-\triangle(g(t)u)-(g’(t)u)_{t}+(-g’(t)+b(t)g(t))u_{t}=g(t)|u|^{\rho}$ .

If the coefficient of $u_{t}$ is constant, then the left-hand side of (2.4) becomes the divergent
form. Since the positivity of $g(t)$ is also necessary, we define $g(t)|u|^{\rho}$ by the solution to
the initial value problem for the first order ordinary differential equation

(2.5) $\{\begin{array}{l}-g’(t)+b(t)g(t)=1, t>0,g(O)=1/\hat{b}_{1}, \hat{b}_{1}=(\int_{0}^{\infty}e^{-\int_{0}^{t}b(s)ds}dt)^{-1}.\end{array}$

Explicitly,

(2.6) $g(t)=e^{\int_{0}^{t}b(s)ds}( \int_{0}^{\infty}e^{-\int_{0}^{r}b(s)ds}d\tau-\int_{0}^{t}e^{-\int_{0}^{\tau}b(s)ds}d\tau)(>0)$.

We note that

(2.7) $\lim_{tarrow\infty}b(t)g(t)=1$
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and that $C^{-1}/b(t)\leq g(t)\leq C/b(t)$ for any $t\in[0, \infty)$ . In fact, by the 1‘H\^opital $s$ rule

$\lim_{tarrow\infty}b(t)g(t)$ $= \lim_{tarrow\infty}\frac{\int_{0}^{\infty}e^{-\int_{0}^{\tau}b(s)ds}d\tau-\int_{0}^{t}e^{-\int_{0}^{\tau}b(s)ds}d\tau}{\frac{1}{b(t)}e^{-\int_{0}^{t}b(s)ds}}$

$= \lim_{tarrow\infty}\frac{-e^{-\int_{0}^{\tau}b(s)ds}}{-\frac{b’(t)}{b(t)^{2}}e^{-\int_{0}^{\tau}b(s)ds}-e^{-\int_{0}^{\tau}b(s)ds}}$

$=1$ , since $\lim_{tarrow\infty}\frac{b’(t)}{b(t)^{2}}=-\lim_{tarrow\infty}\beta(1+t)^{-1+\beta}=0$ .

Thus, (2.4) is changed to

(2.8) $(g(t)u)_{tt}-\triangle(g(t)u)-(g’(t)u)_{t}+u_{t}=g(t)|u|^{\rho}$ .

We can now apply the test function method to (2.8) and set

(2.9) $I_{R}= \int_{Q_{R}}g(t)|u|^{\rho}\cdot(\psi_{R})^{\rho’}(t, x)dxdt$

for large constant $R>0$ , where $Q_{R}=[0, R^{2/(1+\beta)}]\cdot B_{R}(0)$ and

$\psi_{R}(t, x)=\eta_{R}(t)\cdot\phi_{R}(r)=\eta(\frac{t}{R^{2/(1+\beta)}})\cdot\phi(\frac{|x|}{R})$ .

Same as above, we can easily derive

$I_{R}$ $\leq$ $- \frac{1}{\hat{b}_{1}}\int_{B_{R}(0)}(u_{1}+\hat{b}_{1}u_{0})(x)dx+C(\hat{I}_{R,t}^{1/\rho}+\hat{I}_{R,|x|}^{1/\rho})R^{\frac{N+2}{\rho}2}$

$\leq$ $- \frac{1}{\hat{b}_{1}}\int_{B_{R}(0)}(u_{1}+\hat{b}_{1}u_{0})(x)dx+CI_{R}^{1/p}R^{(N+2)(1-\frac{1}{\rho})-2}$ .

Hence we have contradictions in both cases $\rho<\rho_{F}(N)$ and $\rho=\rho_{F}(N)$ .
We have now completed the sketch of the proof of Theorem 1.3.

Remark 1. Corresponding parabolic equation to (2.3) is

(2.10) $-\triangle u+b(t)u_{t}=|u|^{\rho}$ , or $u_{t}-\triangle(b(t)^{-1}u)=b(t)^{-1}|u|^{\rho}$ ,

which is itself in the divergence form. Hence we can apply the test function method to
(2.10) by taking

$I_{R}= \int_{Q_{R}}b(t)^{-1}|u|^{\rho}(\psi_{R})^{\rho’}(t, x)dxdt$ , $\frac{1}{\rho}+\frac{1}{\rho’}=1$ ,

which corresponds to (2.9) by (2.7).
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Remark 2. In the space-dependent damping case

(2.11) $u_{tt}-\triangle u+a(x)u_{t}=|u|^{\rho}$ , $a(x)=(1+|x|^{2})^{-\alpha/2}(0\leq\alpha<1)$ ,

the equation is in the divergence form. Hence we can apply the test function method
to (2.11). Ikehata, Todorova and Yordanov [7] have recently treated this equation and
obtained the critical exponent

(2.12) $\rho_{c}(N, \alpha)=1+\frac{2}{N-\alpha}$ .

For the absorbed semilinear problem see Nishihara [17] and references therein.
Remark 3. Related to Remark 2, we also want to have the critical exponent $\rho_{F}(N, \alpha, \beta)$

for the space and time-dependent damping case

(2.13) $u_{tt}-\triangle u+a(x)b(t)u_{t}=|u|^{\rho}$ .

The existence of time global solution for suitably small data will be shown by the weighted
energy method (cf. Lin, Nishihara and Zhai [10] and Wakasugi [23]). The key point is
to obtain the blow-up result. Our method adopted in the proof of Theorem 1.3 does not
seem to be applicable to (2.13). Our conjecture of the critical exponent $\rho_{c}(N, \alpha, \beta)$ is

(2.14) $\rho_{c}(N, \alpha, \beta)=1+\frac{2}{N-\alpha}$ ,

which still remains open.
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