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Semipositivity of relative canonical
bundles via Kahler-Ricci flows

S. Boucksom and H. Tsuji

Abstract

In this paper, we shall discuss the fact that the fiberwise Kahler-Ricci
flow preserves the semipositivity on a smooth projective family. The full
accounts will be given in [B-T].

1 Introduction

In [Kal], Y. Kawamata proved a semipositivity of the direct image of a relative
pluricanonical systems. The second author extended the result to the case of
logpluricanonical systems in terms of the generalized Kéhler-Einstein metric by
using the method in [T4] ([T7]).

In February in 2010, the second aurhor attended the talk given by R. Berman
in Luminy about [B].

Inspired by this talk the authors began to work on the stability of the semi-
positivity of the fiberwise Kahler-Ricci flows on a smooth projective family.
This enables us to provide the homotopy version of the semipositivity of rela-
tive canonical bundles (cf. Theorem 7). This provides us a new tool to explore
the projective (or possibly) Kahler families. For example, as a consequence we
may give an alternative proof of the quasiprojectivity of the moduli space of
polarized varieties with semiample canonical sheaves.

This is a reserch annoucement and the full accounts will be given in [B-T).

1.1 Kahler-Einstein metrics

Let X be a compact Kahler manifold. It is important to construct a canonical

Kéhler metric on X.
Let (X,w) be a compact K&hler manifold. (X,w) is said to be Kahler-

Einstein, if there exists a constant ¢ such that
Ric(w) =c-w
holds, where the Ricci tensor: Ric(w) is defined by
Ric(w) = —v/—188log det w.

This means that X admits a K&hler-Einstein metrics, then ¢; (X) is positive
or negative or 0.

Theorem 1 (A, Y1]) Let X be a compact Kdihler manifold.



201

(1) If c1(X) < 0, then there exists a Kdhler-Finstein metric w such that
—Ric(w) = w.

(2) If c1(X) is 0, for every Kdhler class c, there exists a Ricci flat Kdhler
metric w such that [w] = ¢ and

Ric(w) = 0.

O

1.2 Twisted Kahler-Einstein metrics

Let X be a smooth projective variety defined over C and let (L, hz): a (singular)
hermitian Q-line bundle on X with v/—10,, = 0.
w is said to be a twisted Kéhler-Einstein metrics associated with (L, hz), if

—Ric(w) + vV—-10p, = w
holds in the sense of current.

Theorem 2 ([T7]) Ifhy, is C* on a nonempty Zariski open subset and Z(hy) ~
Ox. Then there ezists a closed positive current w on X such that

(1) There exists a nonempty Zariski open subset U of X such that w|U is C®,
(2) —Ric(w) ++/—10n, = w holds on U,
(3) (w™)~'-hy is an AZD of Kx + L.

1.3 Bergman metrics

Let X be a smooth projective variety and let (L, h) be a singular hermitian
line bundle on X. We set

K(X,Kx +L,h) =Y _|oif?,

where {0;} is an orthonormal basis of H*(X, Ox(Kx +L)®Z(hr)) with respect
to the inner product:

(o,7) :=/X0-7"-hL.

We call K(X,Kx + L,hz) the Bergman kernel of X with respect to (L, hr). If
|HO(X,Ox(Kx + L) ® Z(hz))| is very ample, then the pull back of the Fubini-
Study metric

w:=+/—1001log K(X,Kx + L,hz)

is a K&hler form on X. We call it the Bergman metric on X with respect to
(L,hpL).
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1.4 Dynamical construction of K-E-metrics

Let X be a smooth projectve n-fold with ample Kx and (A, h4) be a sufficiently
ample line bundle with C®°-metric hy. We set K1 = K(X,Kx + A,ha),h1 =
K. And inductively we define

Kpn=K(X,mKx + A hm_1),hm = K;;!
for m 2 2. Then we have the following rather unexpected result.

Theorem 3 ([T]) dVg = limp—00 ¥V (m!) Ky, is the K-E volume form on
X, i.e., wg = —RicdVg is K-E-form.

1.5 Kahler-Ricci flow

Let X be a compact Kéhler manifold and let wp: C°°-Kéhler form on X.
We consider the initial value problem:

2 0(t) = ~Ric(w(®)) - () (1)

on X x [0,T),
w(0) = wp,

where Ric(w(t)) = —v/—180logdetw(t) and T is the maximal existence time
for the C*-solution. This type of Kahler-Ricci flow was first considered by the
second author in [T1]. Then by taking the exterior derivative of the both sides
of (1),

[w()] = (1 — e7)2mc1(Kx) + e two] € HM(X,R)
Let (X)) denote the Kahler cone of X. Then the following holds:
Proposition 1 ([T1])
T = sup{t|lw(t)] € K(X)}
holds.

The next question is what happens on w(t) after exiting the Kéhler cone.
Let PE(X) denote the pseudoeffective cone C H1(X,R).

Definition 1 Let T be a closed positive (1,1) current on X. T is said to be of
minimal singularities, if for every closed positive (1,1)-crrent T' with [T'] = [T),
there exists a L-function ¢ such that

T' =T + /=108y
and is bounded from above.

The following proposition is an easy consequence of [Le, p.26, Theorem 5].

Proposition 2 Let n € PE(X) be a pseudoeffective class. Then there exists a
closed positive (1,1)-current Tpin with minimal singularities which represents
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A closed semipositive current T' with [T] € PE(X) is said to be of almost
minimal singularities if we write T as T' = Tyin ++v/—100y for some ¢ € L(X),
e~ % € LP(X) holds for every p = 1.

For a pseudoeffective R-line bundle F' on a smooth projective manifold M,

we say that the decomposition:
F =P+ N(P,N € Div(M) ®R)

is said to be a Zariski composition, if there exists a closed semipositive (1,1)
current 7" on M such that

(1) T is aclosed semipositive current of almost minimal singularities in 2mcy (F),

(2) Tsing = 2N in the sense of currents, where T = Ty p. + Tsing is the
Lebesgue decomposition.

Let X be a smooth projective variety with pseudoeffective Kx. Then we
have the following lemma by [B-C-H-M].

Lemma 1 There exists a sequence: T =Ty < Ty < --- < T; < --- such that
for each j, there exists a modification w; : X; — X such that
7i(e*L+ (1 - e *)Kx) admits a Zariski decomposition:

W;(e—tL + (1 - e_t)KX) = Pt + Nt
such that Ny is independent of t € [T}, Tj41).
Then we have the following theorem.

Theorem 4 Let X be a smooth projective variety with pseudoeffective canonical
class. Let (L,hy) be a C*°-hermitian line bundle such that wo := /=104, is a
Kdhler form on X. Then the initial value problem:

%w(t) = —Ric(w(t)) — w(t) on X x [0, 00), (2)

w(0) = wq has the unique long time soluriton w(t) such that

(1) For t € [T},Tj41), w(t) is C* on a nonempty Zariski open subset U(T})
depending on Tj € [0,00) defined as in Lemma 1.

(2) Fort e [T;,Tjt1), w(t) satisfies the equation (2) on U(Ty).

(3) w(t) is a closed semipositive current with almost minimal singularity in
(1—e™?)2me1(Kx) +etei(L). O

2 Proof of Theorem 4

Let X be a smooth projective variety with pseudoeffective canonical class and
let (L,hr) be a C*°-hermitian line bundle on X such that wy = /=104, is a
Kahler form.
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2.1 Discretization of Kahler-Ricci flows

Let a be a positive integer. We consider the following successive equations:
a(Wm,a — Wm-1,0) = —RiCy,, ., — Wm,a (3)

for m 2 1 under the initial condition wp,, = wo. We see that the cohomology
class [wm,q| satisfies the equations:

a([wm,a] = [Wm-1,0]) = 2mc1(Kx) = [Wm,d] (4)

Hence we see that

(Wi a] = (1 - (1 + 2) _m) omey(Kx) + (1 + %)_m [wo] 5)

We define the singular hermitian metric
hma 1= ()T - R (®)
on
(1 —tma)l +tmKx, (7)

where

bra=1-— (1+%>_m. (8)

w(m, a) 1= tm,a(—RicQ) + (1 — tm,qa)wo 9)

Then the {um,q}35_( satisfies the successive differential equations:

a(Um,a — Um—1,a) = log (w(m,a) + \(/zfiaéum,a)n — Um,q- (10)
Now we introduce the following notation:
0aUm,a = @(Um,q — Um—1,a), (11)
i.e., 0qUm,q denotes the (backward) difference at um, 4.
Then (10) is denoted as:
Jotim,q = log (w(m,a) + \é-_-iaéum,a)n — Um.a- (12)

Later we shall see that the this equation corresponds to the parabolic Monge-
Ampere equation:

u, (13)

Ou _ 1 (wi + vV/—180u)™ B
ot 8 Q

where

wt 1= (1 — e *)(—Ric) + e twp (14)
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with the initial condition: v =0 on X x {0}.
And there are correspondences:

m
Pl tUm,e ¢ u( 1), w(m,a) <> w;

and
OgUm,q ¢ %
We set
T :=sup{t € R|2n(1 — e™%)c1(Kx) + e *[wo] € K} (15)

Since the Kahler-Ricci flow corresponds to the minimal model with scalings in
[B-C-H-M] in an obvious manner, we have the following lemma.

Lemma 2 (/B-C-H-M]) The followings holds:
(1) eTeQ,
(2) (1—eT)Kx)+e TL is semiample. [
By Lemma 2, there exists a C*°-function ¢ such that
wrp = (1—e T)(RicQ + vV—100¢) + e Twy (16)

is a C*°-semipositive form on X and is strictly positive on a nonempty Zariski
open subset of X. We set

—-m

w(m,a)y = (1 - (1 + é) _m> (RicQ + v/—180¢) + (1 + é) wo (17)

= w(m,a) + (1 - (1 + %) _m) V—198¢

We set
m(a) := sup {m (1 - (1 + 2) _m) a(Kx)+ (1 + %)—m [wo] € IC} . (18)
Then since
wma)e =20 T WD) e,

for every m < m(a), w(m,a)y is a C>°-Kahler form on X and for m = m(a),
w(m,a)y = wr e holds.

Theorem 5 (8) has a smooth solution wp, q as long as [w(m,a)] € K. And
(10) has C*-solution as [w(m,a)] € K. 7

Lemma 3 Suppose that T is finite, then we see that
w(T) := ltlTIr}lw(t)

exists in C*°-topology on X\E and is a well defined as a limit of closed positive
current on X. O
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2.2 Beyond the Kahler cone

After exiting the Kahler cone, the singular solution of the Kéhler-Ricci flow can
be constructed as follows.

Theorem 6 There ezists a sequence of closed semipositive currents {wm. o }55_o
such that

(1) For every m 2 0, wmq s a closed semipositive current on X,

(2) There exists a nonempty Zariski open subset Up of X such that hm o|Um
is C*,

(3) hm,q is an AZD of the Q-line bundle (1 — tm,a)L + tm,aKx,

(4) Wm,a = —1Oh,, . is a well defined closed semipositive current on X,

(5) {wm,a}So satisfies the equations (3) on Un,.

The following lemma is a slight refinement of Lemma 1.

Lemma 4 There erists a sequence of positive number T =Ty < T1 < -+ <
T; < --- such that for every t € [T}, Tj41)

(1) There ezists a modification m; : X; — X such that 7} (e”*L+(1~e™*)Kx)
admits a Zariski decomposition:

7i(e'L+ (1 — e ")Kx) = P, + Ni(P;, N; € Div(X;) ®R),
where P, is nef and Ny is effective and
H(X;,0x,(ImP;)) = HO(X;, Ox, (mm(e~*L + (1 - ™) Kx))
holds for every m such that me™® € Z.
(2) N is independent of t € [T;,Tj+1),
(3) If e € Q, then P, is semiample.

We set N; := Ny(t € [T},Tj+1)). Let 7; be the multivalued holomorphic section
of Nj with divisor N;. Then there exists a C*°-hermitian metric || || such that
wr; +v/—1801og || 7; ||? is a closed semipositive current. We set

¢;=log |l =5 II%. (20)

Suppose that we have already defined ug o (¢;) such that for every € > 0, there
exists a constant C/(¢)

ug,a(#5) 2 e¢; + C(e) (21)
holds. We set

—m —-m
wj(m,a) = (1 —e T (1 + %) ) (—RicQ) +e 5 (1 + %) we. (22)
We consider the Ricci iteration:

Satima(;) = log (T2 21 +Q€£5“m’“(¢j Vvt (@3)

The rest of the proof is similar to the case t € [0,T).
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3 Semipositivity of a Kihler-Ricci flow

In this section we shall sketch the proof of the fact that the relative Kahler-
Ricci flows preserve the semipositivity in the horizontal direction on projective
families.

3.1 Main results

Let f : X — S be a smooth projective family and let w be a relative Kéahler
form on X. We set n:=dim X — dim S and %k := dim S. We define the relative

Ricci form Ricy/s,, of w by

Ricx/sw = —V—1801og (w™ A f*|ds1 A -~ Adsk[?), (24)
where (s1,- -, s¢) is a local coordinate on S. Then it is easy to see that Ricy /8w
is independent of the choice of the local coordinate (si,---,sx). The Kahler-

Ricci flow preserves the semipositivity in the following sense.

Theorem 7 Let f : X — S be a smooth projective family of varieties with
pseudoeffective canonical bundles. Let L be an ample line bundle on X and let
hi be a C°°-hermitian metric on L with strictly positive curvature. Suppose
that there exists a C'*°-relative volume form Q on f : X — S such that RicQ +
V=10p, is also a Kihler form on X. We set wg := v/—104,. We consider
the normalized Kdhler-Ricci flow:

0 )
aw(t) = —Ricx/s,w(t) — w(t)

on X with the initial condition w(0) = wo, where Ricx/s . (r) denotes the relative
Ricci form of w(t) on X
Then w(t) is a closed semipositive current on X for every t € [0,00). 7

In Theorem 7, the semipositivity of w(t) corresponds to the pseudoeffectivity of
(1-e*)Kx/s+e*L. And as t goes to infinity, we observe that the relative
canonical bundle Kx /g is pseudoeffective.

Similarly we have the following theorem.

Theorem 8 Let f : X — S be a smooth projective family of varieties with
pseudoeffective canonical bundles. Let L be an ample line bundle on X and let
hr be a C°°-hermitian metric on L with strictly positive curvature. Let K be
a closed semipositive current on X such that K is C™ on a nonempty Zariski
open subset of X and [K] € 2nc;(Kx/s). We set wo :=+/—10y,,. We consider
the Kahler-Ricci flow:

0 .
%w(t) = _RICX/S,w(t) - K

on X with the initial condition w(0) = wo, where Ricx,s . (¢) denotes the relative
Ricci form of w(t) on X

Then w(t) s a closed semipositive current on X for every t € [0,00). More-
over as t goes to infinity, w(t) converges to a current solution of —Ricx;s ;) =
K. O
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3.2 Some conjecture for the Kahler case

We expect that the similar statement holds even in the case that f: X — S'is
a smooth Kahler fibration.

Conjecture 1 Let X be a compact Kihler manifold with pseudoeffective canon-
ical bundle. And let wy be a C*°-Kdhler form on X. Suppose that there exists
a C*®-volume form § such that

Ric + wp

is also a Kdihler form on X. Then there exists a family of closed semipositive
current w(t) on X such that

(1) w(0) = wo,

(2) For every T > 0, there ezists a nonempty Zariski open subset U(T) de-
pending on T such that w(t) is Kdhler form on U(T) x [0,T),

(3) [w(t)] = 2n(e wo] + (1 — e~ *)c1(Kx)) holds for every t € [0,00),
(4) On U(t) x [0,T) w(t) satisfies the differential equation:

dw(t) .
ot = —Rle(t) — w(t).

d

Conjecture 2 Let f : X — S be a smooth Kdhler family with pseudoeffective
canonical bundles. Let wg be a C*°-Kdihler form on X. Suppose that there
ezists a C®-relative volume form Q on f : X — S such that RicQ + wo s also
a Kdhler form on X. We consider the normalized Kdhler-Ricci flow:

0 )
Ew(t) = —Ricx/sw() — w(t)

on X with the initial condition:.w(0) = wo, where Ricx,sw () denotes the relative
Ricci form of w(t) on X
Then w(t) is a closed semipositive current on X for every t € [0,00).

This conjecture will lead us to the invariance of plurigenera in the Kéhler case.

4 Proof of Theorem 7

The essential technical difficulty here is the fact that we cannot apply the di-
rect calculation of the variation, since the K&hler-Ricci flow in Theorem 4 has
singularities. We overcome this difficulty by using the dynamical construction
of the solution of the Ricci iterations as in [LC]
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4.1 The relative Ricci iterations to the relative Kahler-
Ricci flow

Let f : X — S be a smooth projective family of varieties with pseudoeffective
canonical bundles. Let L be an ample line bundle on X and let hy be a C*°-
hermitian metric on L with strictly positive curvature. Suppose that there exists
a C'*-relative volume form Q on f : X — § such that RicQ ++/—10}, is also
a Kahler form on X. We set wp := /~10,,. We consider the normalized
Kahler-Ricci flow:

Ow(t)

5 = —Ricx/g,u(t) — w(t) (25)

on X with the initial condition w(0) = wo, where Ric, ;) denotes the relative
Ricci form on X.

For every s € S, we consider Lemma 1. Then by the invariance of the twisted
plurigenra, we see that for every C > 0 the sequence

T=Th<h<---<T <---<C (26)

in Lemma 1 are constant on a nonempty Zariski open subset S(C) of S.

Suppose that we have already proven the (logarithmic) plurisubharmonic
varitation property of the solution w(t) of (25) for every ¢t < C on f~1(S(C)).
Then the removable singularity theorem for plurisubharmonic function implies
the logarithmic plurisubharmonic variation property of the solution w(t) over
the whole X.

Hence we may and do assume that the sequence Tp < -+ < Tj < ---
are constant over the whole S without loss of generality. Moreover since the
assertion of Theorem 7 is local in S, we may and do assume that S is the unit
open polydisk A* in C¥.

The plurisubharmonic variation propety of the Ricci iteration is proven by

the parallel argument as follows.
NN _np
1+ ’ >e 10 5, (27)

We set
First we shall consider the relative Ricci iteration:

m(a) := sup {m

5awm,a = _Ricwm,a,/S — Wm,a,Wo,a = Wo (28)
on X for 0 £ m < m(a). This is equivalent to the fiberwise Ricci iteration:
5awm,a,z = —Ricwm,a/s,s — Wm,a,s)W0,a = wole, (29)

on X, for 0 £ m < m(a). Then by the proof of Theorem 4, letting a tends to
infinity, we may construct the solution of the relative K&hler-Ricci flow:
Ow(t)

5 = —~Ricx/gw@) — w(t) (30)

on X x [0,Tp).

Then as in the previous section, we may continue this process beyond the
critical time 7p and we obtain the long time existence of the current solution of
the relative Kédhler-Ricci flow on X.
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4.2 Auxiliary Ricci iterations

We prove Theorem 7 by decomposing the Ricci iterations by a dynamical sys-
tem of Bergman kernels and apply the plurisubharmonic variation properties of
Bergman kernels due to Berndtsson. The main difficulty is to deal with Q-line
bundles. We deal with Q-line bundles in terms of the auxiliary Ricci iterations.

Lemma 5 For every 0 £ m £ m(a), Wm,qa is semipositive on X.

We prove Lemma 5 by induction on m.

For m = 0 wp,, = wp is a Kéhler form on X by the assumption. Hence
Lemma 5 holds for m = 0. Suppose that wy, , is semipositive on X. We shall
prove that wp,1 4 is also semipositive on X.

To prove this assertion, we consider the auxiliary Ricci iteration which con-
nects wWm,q and Wmy1,q.

First we define the Q-line bundle L,, by

o (- (102) Ymoor (162 "5

Let g = g(m + 1) be a postive integer such that gL, 1 is a genuine line bundle
on X. Since

1\ ~(m+1) 1\ ~(m+1)
L1 = 1_(1+E) KX/S+(1+E) L

is of the form B(Kx,s + aL) for some positive rational numbers @ and 8. By
B-C-H-M, we have that the relative logcanonical ring:

R(X,Kx;s + aL) = ®;20f.Ox ([v(Kx/s + aL)])

is a finitely generated algebra over Og. By the invariance of twisted plurigeera,
we see that each f,Ox(|v(Kx/s + aL)]) is a vector bundle over S which is
biholomorphic to the unit open polydisk A¥. We take a sufficiently large positive
integer v and take a set of generators {0;} of f.Ox (vo!(Kx/s + aL)) (In this
casse Kx/s + al is relatively ample. But later we also consider the case
Kx/s + alL is big, but not relatively ample). Then we set

_B
wo!

hm,a,O = (Z |ai|2) (32)

and
wmsa')o =V _lehm.a,o' (33)

Then A 6,0 is a hermitian metric of L1 = B(Kx/s + aL) with semipositive
curvature on X. Now we shall consider the following Ricci iteration:

—Rijm,a,l + (q —a— 1)wm,a,£—-1 + Wm,a = qWm,a,¢ (34)

for £ 2 1. The following lemma follows entirely the same way as the dynamical
construction of Kahler-Einstein metrics.
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Lemma 6 limg—yo W, g0 ezists in C*°-topology on X. And

lE)noo Wm,a,l = Wm+l,a (35)

holds. [

We use this auxiliary Ricci iteration to connect wpm, o and wm+1,. by @ dynamical
system of Bergman kernels. This method is exactly the same one in [T7].

4.3 Dynamical systems of Bergman kernels

To prove the semipositivity of w(t) on X for t € [0,Tp), it is enough to prove
the following lemma.

Lemma 7 h.,,, has semipositive curvature on X. 0

We now use the strategy as in [T7]. We shall prove Lemma 7 by induction on
m. Since hy, has positive curvature, hg,, = h;, has semipositive curvature.
Suppose that we have already proven that A,_1 4 has semipositive curvature.
Let A be a sufficiently ample line bundle on X and let k4 be a C°°-hermitian
metric on X with strictly positive curvature.
Now we shall define the metric on L,,+; by

hm,a,éle - hm,a,l,s(s S S) (36)
By induction on ¢, we shall prove the following lemma.
Lemma 8 Ay, ¢ has semipositive curvarue on X for every £ 2 0. o

Proof of Lemma 8. By the construction (cf. (32)), hm,qe,0 has semipositive
curvature.

Suppose that we have already proven that hm q¢-1 is a hermitian metric with
semipositive curvature on X. For every s € S, we shall consider the dynamical
system of Bergman kernels as follows. We set

Ky, i= K (X, A+ Kx, + (= a— 1Dy + aLplXo), ha - hgT! - i o1 X)
(37)

and
hy,s = K7} (38)

Suppose that we have already constructed K,_1,s and hy,_1,s for some p = 2.
Then we define K, ; and h, s by

Kpo 1= K (Xoy A+ p(Kx, + (¢ = @ = 1) Emi1 + 0L | Xo), g ) B o - Bpa| X))

(39)

and

1
p,s = .
Kop,s

(40)

Similarly as in [T4, T7] we have the following lemma.
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Lemma 9
Koos := liprgfip (@) "ha - Kp,s) ™ (41)
exists in L'-topology and
hm,ats = Kos (42)
is a C*°-hermitian metric on Ly4+1|Xs. And the curvature
Wn,at,s = V—=1Ohpn ore.s (43)
satisfies the differential equation:
—RiCup ore +(@— 0= 1)Wmat-1,s + Wm,a,s = Wm,a,b,s (44)

on X. O
We define the relative Bergman kernel K, on X by
KPIXS = Kp,s-

Then hy = K, 1 ijs a hermitian metric with semipostive curvature on A +
p(Kx/s + (@ — a — 1)Lm41 + aLy,) by induction on p by the following theo-
rem mainly due to B. Berndtsson.

Theorem 9 (/B1, B2, B3, B-P]) Let f : X — S be a projective family of
projective varieties over a complex manifold S. Let S° be the mazimal nonempty
Zariski open subset such that f is smooth over S°.

Let (L,hr) be a pseudo-effective singular hermitian line bundle on X.
Let Ks := K(Xs,Kx + L|x,,h|x,) be the Bergman kernel of Kx, + (L| X;)
with respect to h | X5 for s € S°. Then the singular hermitian metric h of
Kx/s+ L|f~1(5°) defined by

h| X, =K l(se S

has semipositive curvature on f~1(S°) and extends to X as a singular hermitian
metric on Kx ;s + L with semipositive curvature in the sense current.

Now we prove the semipositivity of /—104, by induction on p. First the
semipositivity of +/—10y, follows from Theorem 9 by the assumption that
V=16, ., , and /=10, _, , are semipositive. Suppose that we have already
proven the semipositivity of h,_; for some p 2 2. We note that hy_1,Am 01
and hn, , has semipositive curvature on X by the induction assumption. Then
by the inductive definition of A, (cf. (39) and (40)) and Theorem 9, we see that
/=104, is also semipositive.

Hence by induction, we see that {h,}52; has semipositive curvature on X.
Then by Lemma 9, we see that hp, q ¢ has semiposive curvature. This completes
the proof of Lemma 8.

By Lemmas 6 and 8, we see that hp,+1 is a metric on L,,; with semipositive
curvature. Hence by induction on m, we complete the proof of Lemma 7.
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Now by Lemma 7 and the proof of Theorem 1, we see that w(t) is semipositive
on X for ¢t € [0, Tp).

Now we complete the proof of Theorem 7 by repeating the similar argument
inductively for ¢ € [T},T;41](j 2 0). This completes the proof of Theorem 7.
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