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Weyl group invariants
— the case of projective unitary group PU(p) -
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1 Introduction

Let p be an odd prime. Let G be a compact connected Lie group. Let 7 be a maximal
torus of G. We denote by W the Weyl group Ng(T)/T of G. We write H*(X) for the
mod p cohomology of a space X. Then, the Weyl group W actson G, T, G/T, BG,
BT and their cohomologies through the inner automorphism. The mod p cohomology
of BT is a polynomial algebra Z/p[ty,...,t,]. We denote by H*(BT)V the ring of
invariants of the Weyl group W. Since G is path connected, the action of the Weyl
group on BG is homotopically trivial and so the action of the Weyl group on the mod
p cohomology H*(BG) is trivial. Therefore, we have the induced homomorphism

n* : H*(BG) — H*(BT)" .

If H,(G;Z) has no p-torsion, the induced homomorphism 7n* is an isomorphism. In
[8], [9], Toda proved that even if H.(G;Z) has p-torsion, the induced homomorphism
7™ is an epimorphism for (G,p) = (F4,3), (F¢,3). However, Toda’s results depend
on the computation of the invariants. The purpose of this paper is not only to show
the following Theorem 1.1 but also to give a proof without explicit computation of the
Weyl group invariants.
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We denote by y; a generator of H 2(BG) for (G,p) = (PU(p), p). Let Q; be the Milnor
operation defined by Qo = 8, Q1 = p'8 — Bp', 02 = P*Q1 — Q1. ..., where
' is the i-th Steenrod reduced power operation. Let Y2p+2 = QoQ1y2. For a graded
vector space M, we denote by M®¢", M°% for graded subspaces of M spanned by
even degree elements and odd degree elements, respectively. The following Theorems
I.1 and 1.2 are our results.

Theorem 1.1 Let p be an odd prime. For (G,p) = (PU(p),p), the induced homo-
morphism n* above is an epimorphism. Moreover, we have

H*(BT)Y = H**"(BG)/(y2p+2)-

Theorem 1.2 Let p be an odd prime. For (G,p) = (Fa4,3), (Ee,3), (E7,3) and
(Es, 5), the induced homomorphism 1* above is an epimorphism.

If G is a simply-connected, simple, compact connected Lie group, then G is one of
classical groups SU(n), Sp(n) and Spin(n) or one of exceptional groups G3, F4, Eg,
E7, Eg. Since H,.(G;Z) has no p-torsion except for the cases (G, p) = (F4, 3), (Es, 3),
(E7,3), (Eg, 3) and (Eg, 5), the above theorem provides a supporting evidence for the
following conjecture.

Conjecture 1.3 Let p be an odd prime. Let G be a simply-connected, simple, compact
connected Lie group. Then, the induced homomorphism n* above is an epimorphism.

To prove this conjecture, it remains to prove the case (G, p) = (Es,3). However, the
mod 3 cohomology of BEg seems to be rather different from the other cases. For
instance, the Rothenberg-Steenrod spectral sequence for the mod p cohomology for
(G,p)’s in Theorems 1.1 and 1.2 collapses at the E;-level but the one for the mod 3
cohomology of BEg is known not to collapse at the E;-level and its computation is
still an open problem. See [5].

In this paper, we prove Theorem 1.1. The proof in this paper is a restricted version of
the proof in [3]. We will prove Theorems 1.1 and 1.2 both in [3] in the same manner.
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2 The Weyl group and the spectral sequence

As in §1, let G be a compact connected Lie group. We consider the Leray-Serre
spectral sequence associated with the fibre bundle

G/T - BT - BG.
Since BG is simply connected, the E,-term is given by
H*(BG) ® H* (G/T).

It converges to gr H*(BT). Moreover, the Weyl group acts on this spectral sequence -

and its action is given by
ry®x) =yert,

where r is an element in W. Denote by o the induced homomorphism 1 — r*. It is

clear that
H*(G/T)Y =) Kero,

and o(x ® y) = x ® a(y). Moreover, we have

(ESYW = ﬂ Kero.

To relate the Weyl group invariants of H*(BT) and the one of E -term, that is
gr H*(BT), of the spectral sequence, we use the following lemma.

Lemma 2.1 Suppose that f : M — N is a filtration preserving homomorphism of
finite dimensional vector spaces with filtration. Denote by grf : grM — grN the
induced homomorphism between associated graded vector spaces. Then, we have

dim Ker grf > dimKer f.

It is clear that
E:? = Imn* : H*(BG) — H*(BT)",
‘so that dim EXL < dim H*(BT)V. By Lemma 2.1 above, we have
> " dimEZ )Y > dim H*(BT)Y.
Hence, if we have

‘*, 'N\W __ %0
(Eoo*) —Eoo7

we obtain
dim H*(BT)Y < dim EX°
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and the desired result EX° = H*(BT)V.

In [2], Kac mentioned the following theorem and Kitchloo gave the detail of Kac’s
result in §5 of [7].

Theorem 2.2 (Kac, Kitchloo) Let p be an odd prime. Let G be a compact connected
Lie group. Let T be a maximal torus of G and W the Weyl group of G. Then, we
have H*(G/T)Y = HY(G/T) = Z/p.

Theorem 2.2 is the starting point of this paper. By Theorem 2.2, we have
(E;’*I)W = (H*(BG) ® H*,(G/T))W = (H*(BG)® Z/p) = E;’O.

Since the cohomology H*(G/T) has no odd degree generators, if H.(G;Z) has no
p-torsion, then the E,-term has no odd degree generators. Hence, it collapses at the
E;-level. Thus, we have that

(ELYW = EL® = H*(BG).

Therefore, it is clear that the induced homomorphism 7* : H*(BG) — H*(BT)Yis an
isomorphism if H.(G;Z) has no p-torsion.

However, for (G, p) in Theorems 1.1 and 1.2, H,(G; Z) has p-torsion and we have odd
degree generators in the E;-level. These odd degree generators do not survive to the
E.-level. So, the spectral sequence does not collapse at the E;-level. We deal with the
spectral sequence for (G, p) = (PU(p),p) in §4 and we will see that (EZ’*/)W #* EZ’O'
but still (£ = EX holds.

We end this section by recalling the mod p cohomology of G/T for (G,p) =
(PU(P),p)-

Theorem 2.3 (Kac) For (G,p) = (PU(p),p), as an S-module, H*(G/T) is a free
S-module generated by x, (0 < i < p — 1), that i,

H*G/T)=8{x,|0<i<p—1},
where S is the image of the induced homomorphism v* : H*(BT) — H*(G/T).

3 Cohomology of classifying spaces

In order to describe the odd degree generators of H*(BG), we consider non-toral
elementary abelian p-subgroups of G. Non-toral elementary abelian p-subgroups of
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a compact connected Lie group G and their Weyl groups are described in [1] not
only for (G,p) in Theorems 1.1 and 1.2 but also for (G,p) = (Es, 3),(PUQP™),p).
For (G, p) = (PU(p), p), there exists a unique maximal non-toral elementary abelian
p-subgroup A of rank 2, up to conjugacy. Their Weyl groups W(A) = Ng(A)/Cg(A)
are also determined in [1]. We refer the reader to [1] for the detail.

From now on, we consider the case (G, p) = (PU(p), p) only. We denoteby £ : A — G
the inclusion of A into G and by abuse of notation, we denote the induced map
BA — BG by the same symbol £ : BA — BG. It is easy to describe the ring of
invariants H*(BA)"@ in terms of Dickson-Mui invariants because the Weyl groups
W(A) is SLy(Z/p) and its action on H*(BA) is the obvious one.

We have
H*(BA) = Z/pln, 2] ® \(dt1,dt2) = Z/plty, 2){1,d1,dtz, dndry)},

where dt;’s are generators of H!(BA,), t; = (dt;, and 3 is the Bockstein homomor-
phism. We denote the element dr;dr, by u;. We denote by e, the element QyQ)u;.
Dickson invariants ¢, cz,1 are defined by

[T &-%=x"—cp X" +cr0%.
x€Z/p{t1,62}

-1 . . . ..
Moreover, we have ¢y 9 = e’; . Then, the ring of invariants is given as follows:

H*BAY™® = Z/plca1, e2){1, Qouz, Q1uz, up}.

See [6] for the detail.
Let
No =Z/pleca1,e2{1, Qiuz},
N1 =Z/plea,1, e2l{ Qouz, uz }.
Since

Qouy - Qrup = —erun,

it is easy to see the following proposition.

Proposition 3.1 There exist short exact sequences
(1) 0 No 2% Ny — N (ey) — 0,
2 0> N 25 Ny — NE(ep) — 0.
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By comparing odd degree generators of H*(BG) and the image of the induced homo-
morphism £* : H*(BG) — H*(BA), it is easy to see that

¢* : H*“(BG) — H°%(BA)
is a monomomorphism and
¢* . H%(BG) — HU(BA)V®
is an isomorphism. For H*(BG) , we refer the reader to [4].

Let y, be the generator of H*(BG) such that £*(y2) = u. Let y3 = Qoy2, Yop+1 =
Q1y2, Yap+2 = Q0Q1y2 and choose yy,2_5, such that £*(y5,2_5,) = ¢2,1. We put

Mo = Z/plysp2—2ps Yip+2l{ 1, y2p+1},
My = Z/plyyp_2ps Yop+21{y3, ¥2}-

It is clear that H*(BG) is a Z/p[yzpz_zp, y2p+2]-module. For dimensional reasons, we
have Q1y,,2_5, = 0. Thus, we have the following proposition.
Proposition 3.2 There holds
(1) &EMy® &M =ImE*.
Moreover, there exist the following short exact sequences:
20— My =5 My — MP"/(2p+2) — 0,

30— M 25 My — M§ [(yap12) — O.

4 The spectral sequence

In this section, we prove Theorem 1.1 by computing the Leray-Serre spectral sequence
for
G/T - BT - BG,

where G = PU(p). The E,-term of the spectral sequence is given by
E, = H*(BG) ® H* (G/T)

as an H*(BG) ® S-algebra. The algebra generator is 1 ® x2. So, the first non-trivial
differential is determined by d,(1 ® x,) for some r > 2.



Proposition 4.1 For r < 3, d, = 0. The first nontrivial differential is d; and there
holds
d3(1®x)=aly; ®1)

forsome a #0 € Z/p.

Proof Suppose that d,(1 ®x2) # 0 for some rg < 3. Then, uptodegree < 2, E, 1 -
term is generated by 1 ® 1 as an H*(BG) ® S-module. So, for r; > rp, Imd,, does
not contain any element of degree less than or equal to 3. Hence, y3 ® 1 survive to the
Es-term. Then, n*(y3) # 0. This contradicts the fact ES% = {0} since degys; = 3 is
odd. Therefore, we have d,(1 ® x5) = 0 for r < 3.

Next, we verify that d3(1 ® x2) = a(y3 ® 1) for some o # 0 in Z/p. If Imds does not
contain y3 ® 1, then up to degree < 3, the spectral sequence collapses at the E4-level
and y3 ® 1 survives to the E, -term. As in the above, it is a contradiction. Hence, the

proposition holds. a

To consider the next nontrivial differential, first, we show the following lemmas.

Lemma 4.2 Both

e)) the multiplication by y3 and
2) the multiplication by yy,12

are zero on Ker £*.

Proof Suppose that z € Ker&*.
Then, £*(z - y3) = 0 and deg(z - y3) is odd. Hence, we have z - y3 = 0 in H*(BG).

We also get Q1(z - y3) = 0. On the other hand, , since £*(Q1z) = 0 and deg(Q;2) is
odd, we have Q;z = 0 in H*(BG). Hence, we get

Oi1(z-y3) =Q1z-y3 — 2 Yp+2 = =2+ Yop+2 = 0.

So, we obtain z - y5,42 = 0. Thus, we have the desired result. )

Then, we may consider
Es=E=MyoM; & Keré*) ®H*(G/T),

as a Z/plyyp2_2p, yop+2] ® S-module. By Propositions 4.1 and 3.2 (2) and Lemma 4.2
(1), we have the E4-term:

Ey = (M) ® Ny—1) © (M7 | (y2p+2) ® N<p_2) ® (Mo ® No) © (Ker§* ® H*(G/T)),

37
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where Ng; is the S-submodule of H*(G/T) generated by x5 (k < i) and N; is the
S-submodule generated by a single element x, in H*(G/T). The above direct sum
decomposition is in the category of Z/p[y,p2_p, Y2p+2] ® S-modules.

Now, we investigate the action of the Weyl group on the spectral sequence in terms of
o. Recall that ¢ = 1 — r*, where r € W. Then, o acts on the spectral sequence by
o(y ® x) =y ® o(x) and it commutes with the differential d, for r > 2.

Lemma 4.3 There holds o(x,) € N<;_; forall o.

Proof Since d; commutes with ¢, and since o(y3 ® 1) = 0, we have
d3(0(1 ® x2)) = 0.
Suppose that o(x;) = Bx; + s for some 8 € Z/p and s in S. Then, we have
BRI+ 1®s)=af(yz®1)=0.
Therefore, we have 3 = 0 and o(x;) € Np = S. In general, we have
o(xy) = o(x)y + xo(y) — a(x)o(y).

Hence, we have

o(xy) = o)Xy + X200 ) — o(x2)o(x; ") € Ngi-1,
as desired. O
Remark 4.4 By Lemma 4.3, o acts trivially on N; = N<;/N<;_;. Hence, it is easy
to see that

(E7™) = (M ®y2paMP ") ON,—1 &M | (3p42) Mo ®Ker £)OZp # E;°.
Now, we begin to compute the next nontrivial differential.

Proposition 4.5 For r > 4 such that E, = E4, we have

dr(Mo ® No) = dy(Ker&™ ® H*(G/T)) = d(M7™" /(y2p+2) ® N<p—2) = {0}

Proof Since My®Np is generated by Mo®Z/p as an Z/plyy,2_zp, y2p+2]1®S-module,
dy(Mo ® No) = {0} holds for r > 4. For M§**" /(y2p4+2) ® N<p—2, there exists no odd
degree generators. Hence, we have

dr(M" /(y2p42) ® N<p_2) C Egdd = M‘fdd ® Np_1 @Mgdd ® Np.



On the one hand, the multiplication by y,42 ® 1 is zero on M$" /(y2p12) ® N<p_3.
On the other hand, the multiplication by y2,.2 ® 1 is a monomorphism on M¢% ®
Ny_1® Mgdd & Ny. Hence, we have

dr(vaen/(yZp+2) & NSp—-Z) = {O}
Finally, by Lemma 4.2, the same holds for Ker £* ® H*(G/T) and so we obtain
d,(Ker&* @ H*(G/T)) = {0}. |

Next, we show the following proposition.

Proposition 4.6 If r > 4 and if d, is nontrivial, then r > 2p — 1.

Proof Suppose that we have a nontrivial differential d, for some r < 2p — 1, say,
d(z®x )=z, ®x| + - + 27, ®x,
where ze My, 1 <ij<---<iy<L,{z,...,2.} is a basis for
(M /(y2p+2) ® Mo © Ker €)%,

and x},...,x, € HP~1¥"(G/T), %}, ...,x, # 0. Since H*(G/T)¥ = Z/p,for x| # 0
in H?#~1%7(G/T), there exists o such that o(x]) # 0. Therefore, we have

ad (z® %" #0.

On the other hand, by Lemma 4.3, we have a(x’z’"l) € N<p_2. Hence, by Proposi-
tion 4.5 above, we have

odr(z @ 57") € d (M /(y2p12) ® N<p—2) = {0}.

This is a contradiction. Hence, we have r > 2p — 1. a

Finally, we complete the computation of the spectral sequence.

Proposition 4.7 There holds da—1(M; ® Np_1) = (M{% & y2,.2M§*™) @ No.

Proof The E»,_;-term is equal to
M; @ Ny_1 @ M{™" [(yap42) ® N<p—2 & My @ No & (Ker &™) ® H*(G/T)
and

dap—1 (M7 | (¥2p+2) @ N<p—2 ® Mo ® No & (Ker &™) ® H*(G/T)) = {0}.

39
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Since M§" [(y2p+2) ON<p—2 @ Mo@No D (Ker £*)®H*(G/T) is generated by elements
of the second degree less than 2p — 2, that is, the elements in E;"* (¥ < 2p — 2), itis
clear that

dr(M" [(y2p+2) ® N<p—2 @ My @ No © (Ker£*) ® H*(G/T)) = {0}
forallr>2p—1.

On the other hand, since all elements in (Mgdd D y2p+2M§") ® Z/p do not survive
to the E -term and since d,(My ® No) = {0} for all r > 2, all elements in (M(‘)’dd &)
Yop+2M§'e") ® Z /p must be hit by nontrivial differentials.

Suppose that there exists an element in (Mgdd D yop+2ME") @ Z/p that is not hit by
dyp—1. Let z® 1 be a such element with the lowest degree s. Up to degree < s, by
Proposition 3.2,

d2p~1 : Mll X N, -1— (Mgdd @yzp’_*_zMgven)H-Zp——l ®NO
is an isomorphism for i < s.

Then, Kerdy,_; is equal to M§¥?" /(y2p42) @ N<p—2 ® Mo ® No ® (Ker £*) ® H*(G/T)
up to degree s. Therefore, for r > 2p, Imd, = {0} up to degree < s. Hence the
element z ® 1 survives to the E-term. This is a contradiction. So, the proposition
holds. O

So, by Propositions 4.5 and 4.7, we have
Eyp = (M /(¥2p42) ® N<p_2) & (MG*" /(y2p+2) ® No) @ (Ker&* @ H*(G/T)).

Since there are no odd degree elements in the E,,-term, the spectral sequence collapses
at the Ey,-level and we obtain E, = Ey, and

(E W = E3 = (M |(3p12) © ME™" /(y2p4+2) © Ker ") @ Z/p.

This completes the proof of Theorem 1.1.

References

[1] K. K. S. Andersen et al., The classification of p-compact groups for p odd, Ann. of
Math. (2) 167 (2008), no. 1, 95-210. MR2373153 (2009a:55012)

[2] V. G. Kac, Torsion in cohomology of compact Lie groups and Chow rings of reductive
algebraic groups, Invent. Math. 80 (1985), no. 1, 69-79. MR0784529 (86m:57041)

[3] M. Kameko and M. Mimura, Weyl group invariants. (in preparation)



(4]

(3]

(6]

(7]
(8]

(9]

M. Kameko, Cohomology of the cyclic group Z/p. Surikaisekikenkyusho Kokyuroku
No.1679 (2010), 98—112.

M. Kameko and M. Mimura, On the Rothenberg-Steenrod spectral sequence for the mod
3 cohomology of the classifying space of the exceptional Lie group Eg, in Proceedings
of the Nishida Fest (Kinosaki 2003), 213-226, Geom. Topol. Monogr., 10 Geom. Topol.
Publ., Coventry. MR2402786 (2009g:55019)

M. Kameko and M. Mimura, Mui invariants and Milnor operations, in Proceedings of
the School and Conference in Algebraic Topology, 107-140, Geom. Topol. Monogr.,
11 Geom. Topol. Publ., Coventry. MR2402803 (2009g:55020)

N. Kitchloo, On the topology of Kac-Moody groups, arXiv:0810.0851.

H. Toda, Cohomology mod 3 of the classifying space BFy4 of the exceptional group
F4, J. Math. Kyoto Univ. 13 (1973), 97-115. MR0321086 (47 #9619)

H. Toda, Cohomology of the classifying space of excéptional Lie groups, in Manifolds—
Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), 265-271, Univ. Tokyo Press, Tokyo.
MRO0368059 (51 #4301)

41



