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1 Introduction

Let $p$ be an odd prime. Let $G$ be a compact connected Lie group. Let $T$ be a maximal
toms of $G$ . We denote by $W$ the Weyl group $N_{G}(T)/T$ of $G$ . We write $H^{*}(X)$ for the
$mod p$ cohomology of a space $X$ . Then, the Weyl group $W$ acts on $G,$ $T,$ $G/T,$ $BG$ ,
$BT$ and their cohomologies through the inner automorphism. The $mod p$ cohomology
of $BT$ is a polynomial algebra $Z/p[t_{1}, \ldots, t_{n}]$ . We denote by $H^{*}(BT)^{W}$ the ring of
invariants of the Weyl group $W$ . Since $G$ is path connected, the action of the Weyl
group on $BG$ is homotopically trivial and so the action of the Weyl group on the mod
$p$ cohomology $H^{*}(BG)$ is trivial. Therefore, we have the induced homomorphism

$\eta^{*}:H^{*}(BG)arrow H^{*}(BT)^{W}$ .

If $H_{*}(G;Z)$ has no p-torsion, the induced homomorphism $\eta^{*}$ is an isomorphism. In
[8], [9], Toda proved that even if $H_{*}(G;Z)$ has p-torsion, the induced homomorphism

$\eta^{*}$ is an epimorphism for $(G,p)=(F_{4},3),$ $(E_{6},3)$ . However, Toda’s results depend
on the computation of the invariants. The purpose of this paper is not only to show
the following Theorem 1.1 but also to give a proof without explicit computation of the
Weyl group invariants.
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We denote by $y_{2}$ a generator of $H^{2}(BG)$ for $(G,p)=(PU(p),p)$ . Let $Q_{i}$ be the Milnor
operation defined by $Q_{0}=\beta,$ $Q_{1}=\wp^{1}\beta-\beta\wp^{1},$ $Q_{2}=\mu Q_{1}-Q_{1}\phi,$ $\ldots$ , where
$\wp^{i}$ is the i-th Steenrod reduced power operation. Let $y_{2p+2}=Q_{0}Q_{1}y_{2}$ . For a graded
vector space $M$ , we denote by $M^{even},$ $M^{odd}$ for graded subspaces of $M$ spanned by
even degree elements and odd degree elements, respectively. The following Theorems
1. 1 and 1.2 are our results.

Theorem 1.1 Let $p$ be an odd prime. For $(G,p)=(PU(\rho),p)$ , the induced homo-
morphism $\eta^{*}$ above is an epimorphism. Moreover, we have

$H^{*}(BT)^{W}=H^{even}(BG)/(y_{2p+2})$ .

Theorem 1.2 Let $p$ be an odd prime. For $(G,p)=(F_{4},3),$ $(E_{6},3),$ $(E_{7},3)$ and
$(E_{8},5)$ , the indu$ced$ homomorphism $\eta^{*}$ above is an epimorphism.

If $G$ is a simply-connected, simple, compact connected Lie group, then $G$ is one of
classical groups $SU(n),$ $Sp(n)$ and Spin$(n)$ or one of exceptional groups $G_{2},$ $F_{4},$ $E_{6}$ ,
$E_{7},$ $E_{8}$ . Since $H_{*}(G;Z)$ has no p-torsion except for the cases $(G,p)=(F_{4},3),$ $(E_{6},3)$ ,
$(E_{7},3),$ $(E_{8},3)$ and $(E_{8},5)$ , the above theorem provides a supporting evidence for the
following conjecture.

Conjecture 1.3 Let $p$ be an oddprim$e$. Let $G$ be a simply-connected, simple, compact
connected Lie group. Then, the induced homomorphism $\eta^{*}$ above is an epimorphism.

To prove this conjecture, it remains to prove the case $(G,p)=(E_{8},3)$ . However, the
$mod 3$ cohomology of $BE_{8}$ seems to be rather different from the other cases. For
instance, the Rothenberg-Steenrod spectral sequence for the $mod p$ cohomology for
$(G,p)$ ’s in Theorems 1. 1 and 1.2 collapses at the $E_{2}$ -level but the one for the $mod 3$

cohomology of $BE_{8}$ is known not to collapse at the $E_{2}$ -level and its computation is
still an open problem. See [5].

In this paper, we prove Theorem 1.1. The proof in this paper is a restricted version of
the proof in [3]. We will prove Theorems 1. 1 and 1.2 both in [3] in the same manner.

Acknowlegement. The first named author is partially supported by the Japan Society
for the Promotion of Science, Grant-in-Aid for Scientific Research (C) 22540102.
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2 The Weyl group and the spectral sequence

As in \S 1, let $G$ be a compact connected Lie group. We consider the Leray$-SeI\tau e$

spectral sequence associated with the fibre bundle

$G/Tarrow^{\iota}BTarrow^{\eta}BG$ .

Since $BG$ is simply connected, the $E_{2}$ -term is given by

$H^{*}(BG)\otimes H^{*’}(G/T)$ .

It converges to $grH^{*}(BT)$ . Moreover, the Weyl group acts on this spectral sequence
and its action is given by

$r^{*}(y\otimes x)=y\otimes r^{*}x$ ,

where $r$ is an element in $W$ . Denote by $\sigma$ the induced homomorphism $1-r^{*}$ . It is
clear that

$H^{*}(G/T)^{W}=\cap Ker\sigma$ ,

and $\sigma(x\otimes y)=x\otimes o^{:}(y)$ . Moreover, we have

$(E_{r’}^{**’})^{w}=\cap Ker\sigma$.

To relate the Weyl group invariants of $H^{*}(BT)$ and the one of $E_{\infty}$ -term, that is
$grH^{*}(BT)$ , of the spectral sequence, we use the following lemma.

Lemma 2.1 Suppose that $f$ : $Marrow N$ is a filtration preserving homomorphism of
finite dimensional vector spaces with filtration. Denote by $grf$ : $grMarrow grN$ the
induced homomorphism between associated graded vector spaces. Then, we have

dim Ker $grf\geq$ dim Ker $f$ .

It is clear that
$E_{\propto)}^{*,0}={\rm Im}\eta^{*}:H^{*}(BG)arrow H^{*}(BT)^{W}$,

.so that $\dim E_{(\infty}^{*,0}\leq\dim H^{*}(BT)^{W}$ . By Lemma 2.1 above, we have

$\sum_{*}\dim(E_{\infty}^{*-*’*’})^{W}\geq\dim H^{*}(BT)^{W}$ .

Hence, if we have
$(E_{\propto)}^{**’})^{W}=E_{\propto)}^{*,0}$ ,

we obtain
$\dim H^{*}(BT)^{W}\leq\dim E_{\infty}^{*,0}$
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and the desired result $E_{\infty}^{*,0}=H^{*}(BT)^{W}$ .

In [2], Kac mentioned the following theorem and Kitchloo gave the detail of Kac’s
result in \S 5 of [7].

Theorem 2.2 (Kac, Kitchloo) Let $p$ be an oddprime. Let $G$ be a compact connected
Lie group. Let $T$ be a maximal torus of $G$ and $W$ the Weyl group of G. Then, $we$

have $H^{*}(G/T)^{W}=H^{0}(G/T)=Z/p$ .

Theorem 2.2 is the starting point of this paper. By Theorem 2.2, we have

$(E_{2’}^{**’})^{W}=(H^{*}(BG)\otimes H^{*’}(G/T))^{W}=(H^{*}(BG)\otimes Z/p)=E_{2}^{*,0}$ .

Since the cohomology $H^{*}(G/T)$ has no odd degree generators, if $H_{*}(G;Z)$ has no
p-torsion, then the $E_{2}$ -term has no odd degree generators. Hence, it collapses at the
$E_{2}$ -level. Thus, we have that

$(E_{\propto)}^{**’})^{W}=E_{\infty}^{*,0}=H^{*}(BG)$ .

Therefore, it is clear that the induced homomorphism $\eta^{*}:H^{*}(BG)arrow H^{*}(BT)^{W}$ is an
isomorphism if $H_{*}(G;Z)$ has no p-torsion.

However, for $(G,p)$ in Theorems 1. 1 and 1.2, $H_{*}(G;Z)$ has p-torsion and we have odd
degree generators in the $E_{2}$ -level. These odd degree generators do not survive to the
$E_{\infty}$ -level. So, the spectral sequence does not collapse at the $E_{2}$ -level. We deal with the
spectral sequence for $(G,p)=(PU(p),p)$ in \S 4 and we will see that $(E_{4’}^{**’})^{W}\neq E_{4}^{*,0}$

but still $(E_{(\infty}^{**’})^{W}=E_{\propto)}^{*,0}$ holds.

We end this section by recalling the $mod p$ cohomology of $G/T$ for $(G,p)=$

$(PU(p),p)$ .

Theorem 2.3 (Kac) For $(G,p)=(PU(p),p)$ , as an S-module, $H^{*}(G/T)$ is a free
S-module generated by $i_{2}(0\leq i\leq p-1)$ , that is,

$H^{*}(G/T)=S\{x_{2}^{i}|0\leq i\leq p-1\}$ ,

where $S$ is the image of the induced homomorphism $\iota^{*}:H^{*}(BT)arrow H^{*}(G/T)$ .

3 Cohomology of classifying spaces

In order to describe the odd degree generators of $H^{*}(BG)$ , we consider non-toral
elementary abelian p-subgroups of $G$ . Non-toral elementary abelian p-subgroups of
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a compact connected Lie group $G$ and their Weyl groups are described in [1] not
only for $(G,p)$ in Theorems 1.] and 1.2 but also for $(G,p)=(E_{8},3),$ $(PU(p^{n}),p)$ .
For $(G,p)=(PU(p),p)$ , there exists a unique maximal non-toral elementary abelian
p-subgroup $A$ of rank 2, up to conjugacy. Their Weyl groups $W(A)=N_{G}(A)/C_{G}(A)$

are also determined in [1]. We refer the reader to [1] for the detail.

From now on, we consider the case $(G,p)=(PU(p),p)$ only. We denote by $\xi$ : $Aarrow G$

the inclusion of $A$ into $G$ and by abuse of notation, we denote the induced map
$BAarrow BG$ by the same symbol $\xi$ : $BAarrow BG$ . It is easy to describe the ring of
invariants $H^{*}(BA)^{W(A)}$ in terms of Dickson-Mui invariants because the Weyl groups
$W(A)$ is $SL_{2}(Z/p)$ and its action on $H^{*}(BA)$ is the obvious one.
We have

$H^{*}(BA)=Z/p[t_{1}, t_{2}]\otimes\wedge(dt_{1}, dt_{2})=Z/p[t_{1}, t_{2}]\{1, dt_{1}, dt_{2}, dt_{1}dt_{2}\}$ ,

where $dt_{i}$ ’s are generators of $H^{1}(BA_{2}),$ $t_{i}=\beta dt_{i}$ , and $\beta$ is the Bockstein homomor-
phism. We denote the element $dt_{1}dt_{2}$ by $u_{2}$ . We denote by $e_{2}$ the element $Q_{0}Q_{1}u_{2}$ .
Dickson invariants $c_{2,0},$ $c_{2,1}$ are defined by

$\prod_{x\in Z/p\{t_{1},t_{2}\}}(X-x)=X^{p^{2}}-c_{2,1}X^{p}+c_{2,0}X$
.

Moreover, $we^{\text{へ}}$ have $c_{2,0}=l_{2}^{-1}$ . Then, the ring of invariants is given as follows:

$H^{*}(BA)^{W(A)}=Z/p[c_{2,1}, e_{2}]\{1, Q_{0}u_{2}, Q_{1}u_{2}, u_{2}\}$ .

See [6] for the detail.

Let

$N_{0}=Z/p[c_{2,1}, e_{2}]\{1, Q_{1}u_{2}\}$ ,
$N_{1}=Z/p[c_{2,1}, e_{2}]\{Q_{0}u_{2}, u_{2}\}$ .

Since
$Q_{0}u_{2}\cdot Q_{1}u_{2}=-e_{2}u_{2}$ ,

it is easy to see the following proposition.

Proposition 3.1 There exist short exact sequences

(1) $0arrow N_{0}arrow N_{1}Q_{0}u_{2}arrow N_{1}^{even}/(e_{2})arrow 0$ ,

(2) $0arrow N_{1}arrow^{Q_{1}}N_{0}arrow N_{0}^{even}/(e_{2})arrow 0$ .
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By comparing odd degree generators of $H^{*}(BG)$ and the image of the induced homo-
morphism $\xi^{*}:H^{*}(BG)arrow H^{*}(BA)$ , it is easy to see that

$\xi^{*}:H^{odd}(BG)arrow H^{odd}(BA)$

is a monomomorphism and

$\xi^{*}:H^{odd}(BG)arrow H^{odd}(BA)^{W(A)}$

is an isomorphism. For $H^{*}(BG)$ , we refer the reader to [4].

Let $y_{2}$ be the generator of $H^{2}(BG)$ such that $\xi^{*}(y_{2})=u_{2}$ . Let $y_{3}=Q_{0}y_{2},$ $y_{2p+1}=$

$Q_{1}y_{2},$ $y_{2p+2}=Q_{0}Q_{1}y_{2}$ and choose $y_{2p^{2}-2p}$ such that $\xi^{*}(y_{2p^{2}-2p})=c_{2,1}$ . We put

$M_{0}=Z/p[y_{2p^{2}-2p},y_{2p+2}]\{1,y_{2p+1}\}$ ,
$M_{1}=Z/p[y_{2p^{2}-2p},y_{2p+2}]\{y_{3},y_{2}\}$ .

It is clear that $H^{*}(BG)$ is a $Z/p[y_{2-2p},y_{2p+2}]$ -module. For dimensional reasons, we
have $Q_{1}y_{2p^{2}-2p}=0$ . Thus, we have the following proposition.

Proposition 3.2 There holds

(1) $\xi^{*}M_{0}\oplus\xi^{*}M_{1}={\rm Im}\xi^{*}$ .

Moreover, there exist the following short exact sequences:

(2) $0arrow M_{0}arrow^{\mathcal{Y}3}M_{1}arrow M_{1}^{even}/(y_{2p+2})arrow 0$ ,

(3) $0arrow M_{1}arrow^{Q_{1}}M_{0}arrow M_{0}^{even}/(y_{2p+2})arrow 0$ .

4 The spectral sequence

In this section, we prove Theorem 1. 1 by computing the Leray-Serre spectral sequence
for

$G/Tarrow^{\iota}BTarrow^{\eta}BG$ ,

where $G=PU(p)$ . The $E_{2}$ -term of the spectral sequence is given by

$E_{2}=H^{*}(BG)\otimes H^{*’}(G/T)$

as an $H^{*}(BG)\otimes S$ -algebra. The algebra generator is $1\otimes x_{2}$ . So, the first non-trivial
differential is determined by $d_{r}(1\otimes x_{2})$ for some $r\geq 2$ .
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Proposition 4.1 For $r<3,$ $d_{r}=0$ . The first nontnvial differential is $d_{3}$ and there
holds

$d_{3}(1\otimes x_{2})=\alpha(y_{3}\otimes 1)$

for some $\alpha\neq 0\in Z/p$ .

Proof Suppose that $d_{r_{0}}(1\otimes x_{2})\neq 0$ for some $r_{0}<3$ . Then, up to degree $\leq 2,$ $E_{r_{0+1^{-}}}$

term is generated by $1\otimes 1$ as an $H^{*}(BG)\otimes S$-module. So, for $r_{1}\geq r_{0},$ ${\rm Im} d_{r_{1}}$ does
not contain any element of degree less than or equal to 3. Hence, $y_{3}\otimes 1$ survive to the
$E_{\infty}$ -term. Then, $\eta^{*}(y_{3})\neq 0$ . This contradicts the fact $E_{\infty}^{odd}=\{0\}$ since $\deg y_{3}=3$ is
odd. Therefore, we have $d_{r}(1\otimes x_{2})=0$ for $r<3$ .
Next, we verify that $d_{3}(1\otimes x_{2})=\alpha(y_{3}\otimes 1)$ for some $\alpha\neq 0$ in $Z/p$ . If ${\rm Im} d_{3}$ does not
contain $y_{3}\otimes 1$ , then up to degree $\leq 3$ , the spectral sequence collapses at the $E_{4}$ -level
and $y_{3}\otimes 1$ survives to the $E_{\infty}$ -term. As in the above, it is a contradiction. Hence, the
proposition holds. $\square$

To consider the next nontrivial differential, first, we show the following lemmas.

Lemma 4.2 Both

(1) the multiplication by $y_{3}$ and

(2) the multiplication by $y_{2p+2}$

are zero on $Ker\xi^{*}$ .

Proof Suppose that $z\in Ker\xi^{*}$ .

Then, $\xi^{*}(z\cdot y_{3})=0$ and $\deg(z\cdot y_{3})$ is odd. Hence, we have $z\cdot y_{3}=0$ in $H^{*}(BG)$ .
We also get $Q_{1}(z\cdot y_{3})=0$ . On the other hand, , since $\xi^{*}(Q_{1}z)=0$ and $\deg(Q_{1}z)$ is
odd, we have $Q_{1}z=0$ in $H^{*}(BG)$ . Hence, we get

$Ql(z\cdot y_{3})=Q_{1}z\cdot y_{3}-z\cdot y_{2p+2}=-z\cdot y_{2p+2}=0$ .
So, we obtain $z\cdot y_{2p+2}=0$ . Thus, we have the desired result. $\square$

Then, we may consider

$E_{3}=E_{2}=(M_{0}\oplus M_{1}\oplus Ker\xi^{*})\otimes H^{*}(G/T)$ ,

as a $Z/p[y_{2p^{2}-2p},y_{2p+2}]\otimes S$ -module. By Propositions 4. 1 and 3.2 (2) and Lemma4.2
(1), we have the $E_{4}$ -term:

$E_{4}=(M_{1}\otimes N_{p-1})\oplus(M_{1}^{even}/(y_{2p+2})\otimes N_{\leq p-2})\oplus(M_{0}\otimes N_{0})\oplus(Ker\xi^{*}\otimes H^{*}(G/T))$ ,
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where $N_{\leq\iota}$ is the S-submodule of $H^{*}(G/T)$ generated by $x_{2}^{k}(k\leq i)$ and $N_{i}$ is the
S-submodule generated by a single element $i_{2}$ in $H^{*}(G/T)$ . The above direct sum
decomposition is in the category of $Z/p[y_{2p^{2}-2p},y_{2p+2}]\otimes S$ -modules.

Now, we investigate the action of the Weyl group on the spectral sequence in terms of
$\sigma$ . Recall that $\sigma=1-r^{*}$ , where $r\in W$ . Then, $\sigma$ acts on the spectral sequence by
$\sigma(y\otimes x)=y\otimes\sigma(x)$ and it commutes with the differential $d_{r}$ for $r\geq 2$ .

Lemma4.3 There $holds\sigma(i_{2})\in N_{\leq i-1}$ for $all\sigma$ .

Proof Since $d_{3}$ commutes with $\sigma$ , and since $\sigma(y_{3}\otimes 1)=0$ , we have

$d_{3}(\sigma(1\otimes x_{2}))=0$ .

Suppose that $\sigma(x_{2})=\beta x_{2}+s$ for some $\beta\in Z/p$ and $s$ in $S$ . Then, we have

$d_{3}(\beta(1\otimes x_{2})+1\otimes s)=\alpha\beta(y_{3}\otimes 1)=0$ .

Therefore, we have $\beta=0$ and $\sigma(x_{2})\in N_{0}=S$ . In general, we have

$\sigma(xy)=\sigma(x)y+x\sigma(y)-\sigma(x)\sigma(y)$ .

Hence, we have

$\sigma(x_{2}^{i})=\sigma(x_{2})x_{2}^{i-1}+x_{2}\sigma(x_{2}^{i-1})-\sigma(x_{2})\sigma(x_{2}^{i-1})\in N_{\leq\iota-1}$ ,

as desired. $\square$

Remark 4.4 By Lemma 4.3, $\sigma$ acts trivially on $N_{i}=N_{\leq i}/N_{\leq i-1}$ . Hence, it is easy
to see that

$(E_{4’}^{**’})^{W}=(M_{1}^{odd}\oplus y_{2p+2}M_{1}^{even})\otimes N_{p-1}\oplus(M_{1}^{even}/(y_{2p+2})\oplus M_{0}\oplus Ker\xi^{*})\otimes Z/p\neq E_{4}^{*,0}$.

Now, we begin to compute the next nontrivial differential.

Proposition 4.5 For $r\geq 4$ such that $E_{r}=E_{4}$ , we have

$d_{r}(M_{0}\otimes N_{0})=d_{r}(Ker\xi^{*}\otimes H^{*}(G/T))=d_{r}(M_{1}^{even}/(y_{2p+2})\otimes N_{\leq p-2})=\{0\}$.

Proof Since $M_{0}\otimes N_{0}$ is generated by $M_{0}\otimes Z/p$ as an $Z/p[y_{2p^{2}-2p},y_{2p+2}]\otimes S$ -module,
$d_{r}(M_{0}\otimes N_{0})=\{0\}$ holds for $r\geq 4$ . For $M_{1}^{even}/(y_{2p+2})\otimes N_{\leq p-2}$ , there exists no odd
degree generators. Hence, we have

$d_{r}(M_{1}^{even}/(y_{2p+2})\otimes N_{\leq p-2})\subset E_{4}^{odd}=M_{1}^{oM}\otimes N_{p-1}\oplus M_{0}^{odd}\otimes N_{0}$.
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On the one hand, the multiplication by $y_{2p+2}\otimes 1$ is zero on $M_{1}^{even}/(y_{2p+2})\otimes N_{\leq p-2}$ .
On the other hand, the multiplication by $y_{2p+2}\otimes 1$ is a monomorphism on $M_{1}^{odd}\otimes$

$N_{p-1}\oplus M_{0}^{odd}\otimes N_{0}$ . Hence, we have

$d_{r}(M_{1}^{even}/(y_{2p+2})\otimes N_{\leq\rho-2})=\{0\}$ .

Finally, by Lemma 4.2, the same holds for $Ker\xi^{*}\otimes H^{*}(G/T)$ and so we obtain

$d_{r}(Ker\xi^{*}\otimes H^{*}(G/T))=\{0\}$ . 口

Next, we show the following proposition.

Proposition 4.6 If $r\geq 4$ and if $d_{r}$ is nontnvial, then $r\geq 2p-1$ .

Proof Suppose that we have a nontrivial differential $d_{r}$ for some $r<2p-1$ , say,
$d_{r}(z\otimes l_{2}^{-1})=z\iota_{1}\otimes x_{1}’+\cdots+z_{i_{\ell}}\otimes x_{\ell}’$,

where $z\in M_{1},1\leq i_{1}<\cdots<i_{l}\leq L,$ $\{z_{1}, \ldots,z_{L}\}$ is a basis for

$(M_{1}^{even}/(y_{2p+2})\oplus M_{0}\oplus Ker\xi^{*})^{\deg z+r}$ ,

and $x_{1}’,$ $\ldots,x_{\ell}’\in H^{2p-1+r}(G/T),$ $x_{1}’,$ $\ldots,x_{l}’\neq 0$ . Since $H^{*}(G/T)^{W}=Z/p$ , for $x_{1}’\neq 0$

in $H^{2p-1+r}(G/T)$ , there exists $\sigma$ such that $\sigma(x_{1}’)\neq 0$ . Therefore, we have

$\sigma d_{r}(z\otimes l_{2}^{-1})\neq 0$ .

On the other hand, by Lemma 4.3, we have $\sigma(ff_{2}^{-1})\in N_{\leq p-2}$ . Hence, by Proposi-
tion 4.5 above, we have

$\sigma d_{\gamma}(z\otimes l_{2}^{-1})\in d_{r}(M_{1}^{even}/(J2p+2)\otimes N_{\leq p-2})=\{0\}$ .

This iS a contradiction. Hence, we have $\Gamma\geq 2p-1$ . 口

Finally, we complete the computation of the spectral sequence.

Proposition 4.7 There holds $d_{2p-1}(M_{1}\otimes N_{p-1})=(M_{0}^{odd}\oplus y_{2p+2}M_{0}^{even})\otimes N_{0}$ .

Proof The $E_{2p-1}$ -term is equal to

$M_{1}\otimes N_{p-1}\oplus M_{1}^{even}/(y_{2p+2})\otimes N_{\leq p-2}\oplus M_{0}\otimes N_{0}\oplus(Ker\xi^{*})\otimes H^{*}(G/T)$

and

$d_{2p-1}(M_{1}^{even}/(y_{2p+2})\otimes N_{\leq p-2}\oplus M_{0}\otimes N_{0}\oplus(Ker\xi^{*})\otimes H^{*}(G/T))=\{0\}$ .
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Since $M_{1}^{e\nu en}/(y_{2p+2})\otimes N_{\leq p-2}\oplus M_{0}\otimes N_{0}\oplus(Ker\xi^{*})\otimes H^{*}(G/T)$ is generated by elements
of the second degree less than $2p-2$ , that is, the elements in $E_{r’}^{**’}(*’<2p-2)$ , it is
clear that

$d_{r}(M_{1}^{even}/(y_{2p+2})\otimes N_{\leq p-2}\oplus M_{0}\otimes N_{0}\oplus(Ker\xi^{*})\otimes H^{*}(G/T))=\{0\}$

for all $r\geq 2p-1$ .

On the other hand, since all elements in $(M_{0}^{odd}\oplus y_{2p+2}M_{0}^{even})\otimes Z/p$ do not survive
to the $E_{\infty}$ -term and since $d_{r}(M_{0}\otimes N_{0})=\{0\}$ for all $r\geq 2$ , all elements in $(M_{0}^{odd}\oplus$

$y_{2p+2}M_{0}^{even})\otimes Z/p$ must be hit by nontrivial differentials.

Suppose that there exists an element in $(M_{0}^{odd}\oplus y_{2p+2}M_{0}^{even})\otimes Z/p$ that is not hit by
$d_{2p-1}$ . Let $z\otimes 1$ be a such element with the lowest degree $s$ . Up to degree $<s$ , by
Proposition 3.2,

$d_{2p-1}:M_{1}^{i}\otimes N_{p-1}arrow(M_{0}^{odd}\oplus y_{2p+2}M_{0}^{even})^{i+2p-1}\otimes N_{0}$

is an isomorphism for $i<s$ .

Then, $Kerd_{2p-1}$ is equal to $M_{1}^{even}/(y_{2p+2})\otimes N_{\leq p-2}\oplus M_{0}\otimes N_{0}\oplus(Ker\xi^{*})\otimes H^{*}(G/T)$

up to degree $s$ . Therefore, for $r\geq 2p,$ ${\rm Im} d_{r}=\{0\}$ up to degree $\leq s$ . Hence the
element $z\otimes 1$ survives to the $E_{\infty}$ -term. This is a contradiction. So, the proposition
holds. $\square$

So, by Propositions 4.5 and 4.7, we have

$E_{2p}=(M_{1}^{even}/(y_{2p+2})\otimes N_{\leq p-2})\oplus(M_{0}^{even}/(y_{2p+2})\otimes N_{0})\oplus(Ker\xi^{*}\otimes H^{*}(G/T))$.
Since there are no odd degree elements in the $E_{2p}$ -term, the spectral sequence collapses
at the $E_{2p}$ -level and we obtain $E_{\infty}=E_{2p}$ and

$(E_{(x)}^{**’})^{W}=E_{\infty}^{*,0}=(M_{1}^{even}/(y_{2p+2})\oplus M_{0}^{even}/(y_{2p+2})\oplus Ker\xi^{*})\otimes Z/p$ .

This completes the proof of Theorem 1. 1.
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