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1 Introduction

1.1. This paper is concerned with positive solutions of generalized Thomas-Fermi
differential equations of the form

(A) $(|x’|^{\alpha}$sgn $x’)’=q(t)|x|^{\beta}$sgn $x$ ,

where $\alpha$ and $\beta$ are positive constants and $q$ : $[a, \infty)arrow(0, \infty)$ is a continuous function.
Equation (A) is said to be half-linear, super-half-linear or sub-half-linear according as
$\alpha=\beta,$ $\alpha<\beta$ or $\alpha>\beta$ .

Our analysis will be performed in the framework of regular variation (in the sense of
Karamata).

For the readers benefit we recall here the definition and some basic properties of
regularly varying functions.

A measurable function $f$ : $(0, \infty)arrow(0, \infty)$ is said to be regularly varying of index
$\rho\in \mathbb{R}$ if it satisfies

$\lim_{tarrow\infty}\frac{f(\lambda t)}{f(t)}=\lambda^{\rho}$ for $\forall\lambda>0$ ,

or equivalently, if it is expressed in the form

$f(t)=c(t) \exp\{\int_{t_{O}}^{t}\frac{\delta(s)}{s}ds\}$ , $t\geqq t_{0}$ ,

for some $t_{0}>0$ and for some measurable functions $c(t)$ and $\delta(t)$ such that

$\lim_{tarrow\infty}c(t)=c_{0}\in(0, \infty)$ , $\lim_{tarrow\infty}\delta(t)=\rho$ .
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We denote by RV$(\rho)$ the set of all regularly varying functions of index $\rho$ . If in particular
$\rho=0$ , then we use the symbol SV for RV(0) and refer to members of SV as slowly varying

functions.
By definition a function $f(t)\in$ RV$(\rho)$ can be expressed as

(1.1) $f(t)=t^{\rho}g(t)$ with $g(t)\in$ SV

and so the class of slowly varying functions is of fundamental importance in the theory

of regularly varying functions. If $c(t)\equiv c_{O}$ , then $f(t)$ is called a normalized regularly

varying function of index $\rho$ . Furthermore, a function $f(t)\in$ RV$(\rho)$ satisfying

(1.2) $\lim_{tarrow\infty}\frac{f(t)}{t^{\rho}}=$ const $>0$

is termed a trivial regularly varying function of index $\rho$ , and a nontrivial regularly varying

function of index $\rho$ otherwise. The set of all trivial (resp. nontrivial) regularly varying

functions of index $\rho$ is denoted by tr-RV $(\rho)$ (resp. ntr-RV$(\rho)$ ).

We quote the following result - Karamata integration theorem, which is frequently

used throughout the paper and is of the highest importance in the application of regularly

varying functions.

Proposition 1.1. Let $L(t)$ be a slowly vawing function. Then we have as $tarrow\infty$

(i) $\int_{t_{O}}^{t}s^{\gamma}L(s)ds\sim\frac{t^{\gamma+1}}{\gamma+1}L(t)$ if $\gamma>-1$ ;

(ii) $l^{\infty}s^{\gamma}L(s)ds \sim-\frac{t^{\gamma+1}}{\gamma+1}L(t)$ if $\gamma<-1$ ;

(iii) If $\gamma=-1$ the occurring integrals are new slowly varying functions.

A comprehensive treatment of the theory and application of regular variation is pre-

sented by Bingham, Goldie and Teugels in [1]. Also, properties often needed for the

analysis of regularly varying solutions of differential equations can be found in [4].

1.2. The study of the half-linear equation (A) in the framework of regular variation

(in the sense of Karamata) was first attempted by Jaro\v{s}, Kusano and Tanigawa [2] who

obtained the following result.

Proposition 1.2. Equation (A) with $\alpha=\beta$ possesses a regularly varying solution of
index $\rho$ if and only if
(1.3) $\rho\in(-\infty, 0]U[1, \infty)$
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and
$\lim_{tarrow\infty}t^{\alpha}\int_{t}^{\infty}q(s)ds=|\rho|^{\alpha-1}\rho(\rho-1)$ .

The non-half-linear case of equation (A) has been analyzed from the viewpoint of
regular variation in a recent paper [3] by the present authors, in which the existence of
slowly and regularly varying solutions of index 1 and their asymptotics are studied for
both super-half-linear and sub-half-linear cases of (A).

Here we consider the sub-half-linear case of equation (A) and assume that the coeffi-
cient $q(t)$ is regularly varying of index $\sigma\in \mathbb{R}$ i.e.

(L4) $\alpha>\beta$ , $q(t)\in$ RV$(\sigma)$ ie. $q(t)=t^{\sigma}L(t),$ $L(t)\in$ SV.

We establish some simple necessary and sufficient conditions for the existence of non-
trivial regularly varying solutions $x(t)$ of index $\rho$ in the range (1.3) using Schauder-
Tychonoff fixed point theorem, and determine the precise asymptotic behavior for $tarrow\infty$

of such solutions $x(t)$ .
These results (in Section 3) are preceded by a short section showing that information

about the surprisingly simple and clear structure of regularly varying solutions of (A) can
be obtained on the basis of Proposition 1.2.

Let us emphasize that in the fundamental paper on the subject by Mizukami, Naito
and Usami [5] cases (2.1) a) and (2.2) a) (i.e. the trivial SV and RV(1) ones) are completely
resolved, both for the super- and sub- half-linear equation (A) with the continuity of $q(t)$

as the basic hypothesis on $q(t)$ (i.e. without the regular variation).

2 Structure of regularly varying solutions

Let $x(t)$ be a positive solution of equation (A) on $[t_{0}, \infty)$ . Then, we see from (A)
that $|x’(t)|^{\alpha-1}x’(t)$ is increasing for $t\geqq t_{0}$ , which means that $x’(t)$ is either positve or
negative for all large $t$ . If $x’(t)$ is positive, then it is increasing and tends to a positive
constant or grows to infinity as $tarrow\infty$ , which implies that either

(2.1) a) $\lim_{tarrow\infty}\frac{x(t)}{t}=$ const $>0$ or b) $\lim_{tarrow\infty}\frac{x(t)}{t}=\infty$ ,

while if $x’(t)$ is negative, then $x’(t)arrow 0$ as $tarrow\infty$ , and $x(t)$ is decreasing and satisfiess
either

(2.2) a) $\lim_{tarrow\infty}x(t)=$ const $>0$ or b) $\lim_{tarrow\infty}x(t)=0$ .
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Note that if $x(t)\in$ RV$(\rho)$ is an increasing (resp. a decreasing) solution of (A), then

(2.1) (resp. (2.2)) implies that $\rho\geqq 1$ (resp. $\rho\leqq 0$).

This shows that the restriction (1.3) on $\rho$ holds also for sub- (and super) half-linear

cases.

Let $\mathcal{R}+$ (resp. $\mathcal{R}_{-}$ ) denote the totality of increasing (resp. decreasing) regularly

varying solutions of (A). The symbol $\mathcal{R}(\rho)$ is used to mean the set of all regularly varying

solutions of index $\rho$ of (A). Then, from what is remarked above we have the following

schematic representation for $\mathcal{R}_{+}$ and $\mathcal{R}_{-}$ :

(2.3)
$\mathcal{R}_{+}=\bigcup_{\rho\geqq 1}\mathcal{R}(\rho)$

,
$\mathcal{R}_{-}=\bigcup_{\rho\leqq 0}\mathcal{R}(\rho)$

.

It turns out, however, that use of Proposition 1.2 for half-linear equations enables us
to make a deeper analysis of (2.3), depicting a surprisingly simple picture of the structure

of increasing and decreasing regularly varying solutions of the sub-half-linear equation

(A).

Theorem 2.1. Let $\alpha>\beta$ and suppose that $q(t)$ is a regularly varying function.
Then, the structure of regularly varying solutions of (A) is as follows:

(2.4) $\mathcal{R}+=\mathcal{R}(\rho_{+})$ for some single $\rho+\in[1, \infty)$ ,

(2.5) $\mathcal{R}_{-}=\mathcal{R}(0)\cup \mathcal{R}(\rho_{-})$ for some single $\rho-\in(-\infty, 0)$ .

Remark 2.2. The class $\mathcal{R}_{+}$ is always non-empty, and the index $\rho+$ in (2.4) is uniquely

determined by $q(t)$ and its regularity index. It may happen that $\mathcal{R}_{-}$ is empty, but if
$\mathcal{R}_{-}\neq\emptyset$ , then the subclass $\mathcal{R}(0)$ in (2.5) is always non-empty, while $\mathcal{R}(\rho_{-})$ may or may

not be empty. In case $\mathcal{R}(\rho_{-})\neq\emptyset$ the index $\rho_{-}$ is uniquely determined by $q(t)$ and its

regularity index.

3 The case $\rho\neq 0,1$ and the case $\rho=0,1$

We prove

Theorem 3.1. Suppose that (1.4) holds; then equation (A) possesses regularly varying

solutions $x(t)$
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a$)$ of index $\rho<0$ if and only if $\sigma<-\alpha-1$ ,

b $)$ of index $\rho>1$ if and only if $\sigma>-\beta-1$ .

In both cases $\rho$ is given by

(3.1) $\rho=\frac{\sigma+\alpha+1}{\alpha-\beta}$ .
Furthermore, all of such solutions are governed by the unique asymptotic formula

(3.2) $x(t) \sim[\frac{t^{\alpha+1}q(t)}{\alpha|\rho|^{\alpha-1}\rho(\rho-1)}]^{\frac{1}{\alpha-\beta}}$ , $tarrow\infty$ .

Here and throughout the symbol $\sim$ $is$ used to mean the asymptotic equivalence

$f(t)\sim g(t)$ as $tarrow\infty$ $\Leftrightarrow$ $\frac{f(t)}{g(t)}arrow 1$ as $tarrow\infty$ .
PROOF. The “only if“ part.
a$)$ Suppose that $x(t)$ is an RV$(\rho)$-solution of index $\rho<0$ . Then as is explained at

the beginning of Section 2, it is decreasing and $x(t)$ and $x’(t)$ both tend to $0$ as $tarrow\infty$ .
By integrating on both sides of (A) from $t$ to $\infty$ one obtains

(3.3) $x(t)=l^{\infty}( \int_{s}^{\infty}q(r)x(r)^{\beta}dr)^{\frac{1}{\alpha}}ds$ ,

for all large $t$ . We need to analyze the right-hand side of (3.3). Using the expression (1.1)
for $q(t)$ and $x(t)$ , i.e. by writing $q(t)=t^{\sigma}l(t),$ $x(t)=t^{\rho}\xi(t),$ $l(t),$ $\xi(t)\in$ SV, we
have

(3.4) $l^{\infty}q(s)x(s)^{\beta}ds=l^{\infty}s^{\sigma+\rho\beta}l(s)\xi(s)^{\beta}ds$.
The convergence of the last integral means that $\sigma+\rho\beta\leqq-1$ , but the case $\sigma+\rho\beta=-1$

is impossible. Therefore, we have $\sigma+\rho\beta<-1$ . Karamata integration theorem i.e.
Proposition 1.1 (ii) applied to (3.4) gives

(3.5) $(l^{\infty}q(s)x(s)^{\beta}ds)^{\frac{1}{\alpha}} \sim\frac{t^{\frac{\sigma+\rho\beta+1}{\alpha}l(t)^{\frac{1}{\alpha}}\xi(t)^{\frac{\beta}{\alpha}}}}{[-(\sigma+\rho\beta+1)]^{\frac{1}{\alpha}}}$ , $tarrow\infty$ .

Since the right-hand side function is by (3.5) integrable in a neighborhood of $\infty$ , one
has

(3.6) $\frac{\sigma+\rho\beta+1}{\alpha}\leqq-1$ .
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But the case of equality is excluded. For, because of (3.3), (3.5) and Proposition 1.1
(iii), this would lead to

(3.7) $x(t) \sim\frac{1}{\alpha^{\frac{1}{\alpha}}}l^{\infty}s^{-1}l(s)^{\frac{1}{\alpha}}\xi(s)^{E}\alpha ds\in$ SV, $tarrow\infty$ ,

which implies that $\rho=0$ , contradicting the hypothesis $\rho<0$ .
We are left with the inequality case of (3.6) which permits another application of

Proposition 1.1 (ii) giving

(3.8) $l^{\infty}( \int_{\epsilon}^{\infty}q(r)x(r)^{\beta}dr)^{\frac{1}{\alpha}}ds\sim\lambda t^{\frac{\sigma+\rho\beta+1}{\alpha}+1}l(t)^{\frac{1}{\alpha}}\xi(t)^{E}\alpha$ ,

as $tarrow\infty$ , where

(3.9) $\lambda=[-(\sigma+\rho\beta+1)]^{-\frac{1}{\alpha}}[-(\frac{\sigma+\rho\beta+1}{\alpha}+1)]^{-1}$ .

Combining (3.3) with (3.8) and $x(t)=t^{\rho}\xi(t)$ gives for $tarrow\infty$

(3.10) $x(t)\sim\lambda^{\frac{\alpha}{\alpha-\beta}}[t^{\sigma+\alpha+1}l(t)]^{\frac{1}{\alpha-\beta}}=\lambda^{\frac{\alpha}{\alpha-\beta}}[t^{\alpha+1}q(t)]^{\frac{1}{\alpha-\beta}}$ .

This means that $\rho$ is given by (3.1), and hence the negativity of $\rho$ implies $\sigma<-\alpha-1$ .
Since $\lambda$ defined by (3.9) can be expressed as

$\lambda=(\alpha(-\rho)^{\alpha}(1-\rho))^{-\frac{1}{\alpha}}=(\alpha|\rho|^{\alpha-1}\rho(\rho-1))^{\text{噛}}$
，

formula (3.10) also gives the desired asymptotic formula (3.2).

b$)$ Suppose that $x(t)$ is an RV$(\rho)$-solution of index $\rho>1$ , then it is increasing and

by [5, Th. 3.8], the integral $\int_{t_{O}}^{\infty}q(r)x(r)^{\beta}dr$ diverges. Hence by integrating on both sides

of (A) twice from $t_{O}$ to $t$ , we obtain the asymptotic relation

(3.11) $x(t) \sim\int_{t_{O}}^{t}(\int_{t_{0}}^{\epsilon}q(r)x(r)^{\beta}dr)^{\frac{1}{\alpha}}ds$ , $tarrow\infty$ .

The divergence of the inner integral (3.11) implies

(312) $\sigma+\rho\beta\geqq-1$ .

But the equality, via Proposition 1.1 (i) applied to (3.11), would give for $tarrow\infty$

(313) $x(t) \sim t(\int_{t_{O}}^{t}s^{-1}l(s)\xi(s)^{\beta}ds)^{\frac{1}{\alpha}}$ , $tarrow\infty$ .
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This shows that $x(t)\in$ RV(1) contradicting $\rho>1$ .
We have yet to treat the inequality case in (3.12): A repeated application of Propo-

sition 1.1 (i) to the integral in (3.11) and the use of the expression (1.1) for $x(t)$ i.e.
$x(t)=t^{\rho}\xi(t)$ gives for $tarrow\infty$

(314) $x(t) \sim\mu\frac{\alpha}{\alpha-\beta}[t^{\sigma+\alpha+1}l(t)]^{\frac{1}{\alpha-\beta}}=\mu\frac{\alpha}{\alpha-\beta}[t^{\alpha+1}q(t)]^{\frac{1}{\alpha-\beta}}$,

where $\mu$ is given by

$\mu=(\sigma+\rho\beta+1)^{-\frac{1}{\alpha}}(\frac{\sigma+\rho\beta+1}{\alpha}+1)^{-1}$.
This shows that the regularity index $\rho$ of $x(t)$ is given by (3.1). In addition, since by
hypothesis $\rho>1$ , this implies $\sigma>-\beta-1$ , and since $\mu=(\alpha\rho^{\alpha}(\rho-1))^{-1/\alpha}$ , the
asymptotic formula (3.14) is identical to (3.2).

The “if” part.

a$)$ Suppose that $\sigma<-\alpha-1$ . Define the constant $\rho$ by (3.1) and the function $X_{1}(t)$

by

(3.15) $X_{1}(t)=[ \frac{t^{\alpha+1}q(t)}{\alpha|\rho|^{\alpha-1}\rho(\rho-1)}]^{\frac{1}{\alpha-\beta}}$, $t\geqq a$ .
It is a matter of straightforward computation to verify that the integrals in (3.16) converge
and via Proposition 1.1 (ii), that $X_{1}(t)$ satisfies the following asymptotic relation

(3.16) $l^{\infty}( \int_{s}^{\infty}q(r)X_{1}(r)^{\beta}dr)^{\frac{1}{\alpha}}ds\sim X_{1}(t)$ , $tarrow\infty$ .
Therefore, there exists $T>a$ such that

(3.17) $\frac{1}{2}X_{1}(t)\leqq l^{\infty}(\int_{\epsilon}^{\infty}q(r)X_{1}(r)^{\beta}dr)^{\frac{1}{\alpha}}ds\leqq 2X_{1}(t)$ , $t\geqq T$.
Let $\mathcal{X}_{1}$ denote the set consisting of all continuous functions $x(t)$ on $[T, \infty)$ satisfying

(3.18) $kX_{1}(t)\leqq x(t)\leqq KX_{1}(t)$ , $t\geqq T$, and $x(t)\sim X_{1}(t)$ , $tarrow\infty$ ,

where $0<k<1$ and $K>1$ are constants such that

(3.19) $k^{1-\frac{\beta}{\alpha}} \leqq\frac{1}{2}$ , and $K^{1-\frac{\beta}{\alpha}}\geqq 2$ .
It is clear that $\mathcal{X}_{1}$ is a closed convex subset of the locally convex space $C[T, \infty)$ with the
topology of uniform convergence on compact subintervals of $[T, \infty)$ . We now consider
the integral operator $\mathcal{F}$ defined by

(3.20) $\mathcal{F}x(t)=l^{\infty}(\int_{s}^{\infty}q(r)x(r)^{\beta}dr)^{\frac{1}{\alpha}}ds$, $t\geqq T$.
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It will be shown that $\mathcal{F}$ is a self-map on $\mathcal{X}_{1},$ $\mathcal{F}$ is a continuous map and the set $\mathcal{F}(\mathcal{X}_{1})$

is relatively compact in $C[T, \infty)$ . Consequently, by the Schauder-Tychonoff fixed point

theorem there exists a fixed point $x(t)\in \mathcal{X}_{1}$ of $\mathcal{F}$ , which is a solution of the integral
equation (3.3) and hence of the differential equation (A) on $[T, \infty)$ . Since $x(t)\sim X_{1}(t)$

as $tarrow\infty,$ $x(t)$ provides a desired regularly varying solution of negative index $\rho<0$

given by (3.1) and with the asymptotics given by (3.2).

b $)$ Suppose that $\sigma>-\beta-1$ and put

(3.21) $X_{1}(t)=[ \frac{t^{\alpha+1}q(t)}{\alpha\rho^{\alpha}(\rho-1)}]^{\frac{1}{\alpha-\beta}}$ , $t\geqq a$ ,

where $\rho>1$ is defined by (3.1). As before it is verified without difficulty, $X_{1}(t)$ has the
asymptotic property

(3.22) $\int_{a}^{t}(\int_{a}^{s}q(r)X_{1}(r)^{\beta}dr)^{\frac{1}{\alpha}}ds\sim X_{1}(t)$ , $tarrow\infty$ ,

and one can choose $T>a$ large enough so that $X_{1}(t)\geqq 1$ and

(323) $\int_{T}^{t}(\int_{T}^{8}q(r)X_{1}(r)^{\beta}dr)^{\frac{1}{\alpha}}ds\leqq 2X_{1}(t)$ for $t\geqq T$.

Let $\mathcal{G}$ denote the integral operator

(3.24) $\mathcal{G}x(t)=1+\int_{T}^{t}(\int_{T}^{e}q(r)x(r)^{\beta}dr)^{\frac{1}{\alpha}}ds$ , $t\geqq T$,

and define $\mathcal{X}_{1}$ to be the set of continuous functions $x(t)$ on $[T, \infty)satisf\gamma ing$

(3.25) $1\leqq x(t)\leqq 2KX_{1}(t)$ , $t\geqq T$, and $x(t)\sim X_{1}(t)$ , $tarrow\infty$ ,

where $K>1$ is a constant such that

(3.26) $K^{1-E}a\geqq 2^{1+E}\alpha$ .
If $x(t)\in \mathcal{X}_{1}$ , then using (3.22), (3.23), (3.25) and (3.26), one obtains

$1 \leqq \mathcal{G}x(t)\leqq 1+\int_{T}^{t}(\int_{T}^{\epsilon}q(r)(2KX_{1}(r))^{\beta}dr)^{\frac{1}{\alpha}}ds$

$\leqq 1+2(2K)^{g}\alpha X_{1}(t)\leqq 1+KX_{1}(t)\leqq 2KX_{1}(t)$ , $t\geqq T$,

and
$\mathcal{G}x(t)\sim \mathcal{G}X_{1}(t)\sim X_{1}(t)$ as $tarrow\infty$ .
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This implies that $\mathcal{G}$ maps $\mathcal{X}_{1}$ into itself. Furthermore one can prove in a routine manner
the continuity of $\mathcal{G}$ and the relative compactness of $\mathcal{G}(\mathcal{X}_{1})$ . Therefore $\mathcal{G}$ has a fixed point
$x(t)\in \mathcal{X}_{1}$ , which clearly gives an RV$(\rho)$-solution of equation (A) of index $\rho>1$ given
by (3.1) with the asymptotics (3.2).

This completes the proof of Theorem 3.1.
Using a similar argument as in the proof of Theorem 3.1 we obtain analogous results

for the cases $\rho=0$ , i.e. when $x(t)\in$ SV, and $\rho=1$ , i.e. when $x(t)\in$ RV(1). This is
encompassed in the following two theorems.

Theorem 3.2. Suppose that (1.4) holds; then equation (A) possesses nontrivial de-
creasing slowly varying solutions $x(t)$ if and only if

(3.27) (i) $\sigma=-\alpha-1$ , (ii) $\int_{a}^{\infty}(tq(t))^{\frac{1}{\alpha}}dt<\infty$ .
Furthermore, all such solutions are governed by the same asymptotic formula for $tarrow\infty$

(3.28) $x(t) \sim[\frac{\alpha-\beta}{\alpha^{1+\frac{1}{\alpha}}}\int_{t}^{\infty}(sq(s))^{\frac{1}{\alpha}}ds]^{\frac{\alpha}{\alpha-\beta}}$ .

Remark 3.3. Asymptotic formula (3.28) is identical to the formula (4.15) in [3].

Theorem 3.4. Suppose that (1.4) holds; then equation (A) possesses nontrivial (in-

creasing) regularly varying solutions of index $\rho=1$ if and only if

(3.29) (i) $\sigma=-\beta-1$ , (ii) $\int_{a}^{\infty}s^{\beta}q(s)ds=\infty$ .
Furthermore, all such solutions are governed by the same asymptotic formula for $tarrow\infty$

(3.30) $x(t) \sim t[\frac{\alpha-\beta}{\alpha}\int_{a}^{t}s^{\beta}q(s)ds]^{\frac{1}{\alpha-\beta}}$ , $tarrow\infty$ .

Remark 3.5. Asymptotic formula (3.30) is identical to the last one in [3].

Remark 3.6. Theorem 3.1 reveals how the asymptotic behavior of regularly varying
solutions of the sub-half-linear differential equation (A) is determined by its coefficient
$q(t)$ which is regularly varying, but also conversely.

Suppose that the equation $((x’)^{5})’=q(t)x^{3}$ with regularly varying $q(t)$ has a solu-
tion $x(t)\in$ RV$(-2)$ such that

$x(t)\sim t^{-2}(2+$ sin log $\log t)$ , $tarrow\infty$ ,
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then by Theorem 3.1 a) $q(t)$ must satisfy

$q(t)\sim 480t^{-6}(t^{-2}$ ( $2+$ sin log log $t$ ) $)^{2}=480t^{-10}(2+$ sin log log $t)^{2}$ , $tarrow\infty$ .
If it is known that the equation $((x’)^{7})’=q(t)x^{5}$ , has a solution $x(t)\in$ RV(2) such

that
$x(t)\sim t^{2}\exp(\sqrt{\log t})$ , $tarrow\infty$ ,

then, by Theorem 3.1 b) $q(t)$ must enjoy the asymptotic behavior

$q(t)\sim 896t^{-4}\exp(2\sqrt{\log t})$ , $tarrow\infty$ .

Example 3.7. Consider the equation

(3.31) $(|x’|^{\alpha-1}x’)’=q(t)|x|^{\beta-1}x$, $q(t)= \frac{\alpha\varphi(t)}{t^{\alpha+1}(\log t)^{\alpha}(\log\log t)^{2\alpha-\beta}}$ , $t>e$ ,

where $\alpha>\beta>0$ and $\varphi(t)$ is a continuous function such that $\lim_{tarrow\infty}\varphi(t)=k>0$ . It is

easy to see that (3.27) (ii) holds and

$l^{\infty}(sq(s))^{\frac{1}{\alpha}}ds \sim\frac{k^{\frac{1}{\alpha}}\alpha^{1+\frac{l}{\alpha}}}{(\alpha-\beta)(\log\log t)^{1-\frac{\beta}{\alpha}}}$ , $tarrow\infty$ .

Hence Theorem 3.2 ensures the existence of a nontrivial slowly varying solution $x_{1}(t)$ of
(3.31) such that

$k^{\frac{1}{\alpha-\beta}}$

$x_{1}(t)\sim\overline{\log\log t}$ ’
$tarrow\infty$ .

If in particular

$\varphi(t)=1+\frac{l}{\log t}+\frac{2}{\log t\cdot\log\log t}$ ,

then (3.31) has an exact SV-solution 1/log log $t$ . Note that (3.31) also has a trivial SV
solution $x_{2}(t)$ decreasing to a positive constant as $tarrow\infty$ .

Example 3.8. Consider the differential equation

(332) $(|x’|^{\alpha-1}x’)’=q(t)|x|^{\beta-1}x$ , $q(t)=\alpha t^{-(\beta+1)}(\log t)^{\alpha-\beta-1}\varphi(t)$ , $t\geqq e$ ,

where $\alpha>\beta>0$ and $\varphi(t)$ is a continuous function such that $\lim_{tarrow\infty}\varphi(t)=k>0$ .
Since $\sigma=-\beta-1$ and

$\int_{e}^{t}s^{\beta}q(s)ds\sim\frac{\alpha k}{\alpha-\beta}(\log t)^{\alpha-\beta}$ , $tarrow\infty$ ,
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Theorem 3.8 ensures the existence of nontrivial RV(l)-solutions of (3.32), all of which
satisfy

$x(t)\sim k^{\frac{1}{\alpha-\beta}}t\log t$, $tarrow\infty$ .
If in particular

$\varphi(t)=(1+\frac{l}{\log t}I^{\alpha-1}$

then (3.32) has an exact solution $t\log t$ .

Acknowledgement. The authors would like to thank Professor Hideaki Matsunaga
and Professor Jitsuro Sugie who are organizing committee of RIMS workshop “ Progress
in Qualitative Theory of Functional Equations “. This work is supported by the Grand-in
Aid for Scientific Research (C) (23540218) from Japan Society for Promotion of Science
(JSPS).

References

[1] N. H. Bingham, C. M. Goldie and J. L. Teugels, REGULAR VARIATION, Encyclopedia
of Mathematics and its Applications 27, Cambridge University Press, 1987.

[2] J. Jaro\v{s}, T. Kusano and T. Tanigawa, Nonoscillation theow for second order half-
linear differential equations in the fmmework of regular variation, Result. Math.
43(2003), 129 - 149.

[3] T. Kusano, V. Mari\v{c} and T. Tanigawa, Regularly varying solutions of genemlized
Thomas-Fermi equations, Bull. T. CXXXIX de Acad. des Serbe Sci. et Arts, Classe
Sci. Mat. Nat. Sci. Math. 34 (2009), 43–73.

[4] V. Mari\v{c}, REGULAR VARIATION AND DIFFERENTIAL EQUATIONS, Lecture Notes
in Mathematics 1726, Springer-Verlag, Berlin-Heidelberg-New York, 2000.

[5] M. Mizukami, M. Naito and H. Usami, Asymptotic behavior of a class of second order
quasilinear dlfferential equations, Hiroshima Math. J. 32 (2002), 51-78.

31


