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1 Introduction

The theory of dynamic equations on time scale [3] has a tremendous potential for
applications and has recently received much attention and seen many progresses in the
past two decades due to the fact that a dynamic equation on time scales is related not
only to the set of real numbers (continuous time scale, differential equations) and the set
of integers (discrete time scale, difference equations) but also to more general time scales
(an arbitrary nonempty closed subset of the real numbers R). Its history can be traced
back to the calculus on time scales-the foundational work initiated by Stefan Hilger in
his $PhD$ thesis [9] in order to unify continuous and discrete analysis.

Stability plays an important role in the theory of dynamic equations on time scales.
Since the pioneer work of Liapunov more than 100 years ago, Liapunov‘s direct method
has been the primary tool to deal with stability problems in various type of dynamical
systems such as differential equations[18], difference equations [1] and dynamic equations

on time scales[3, 10]. However, the construction of appropriate Liapunov functions or
functionals are technical, empirical and are not universally applicable. Criteria deduced
from the direct method usually requires point-wise conditions, while many of the real-
world dynamical models call for averages; calculations involved in the direct method are
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very technical and sophisticated. New methods and techniques are needed to address
those difficulties.

Recently, the fixed point theory has been proven to be a powerful tool for dealing
with the stability of differential equations. Burton [5] was among the first who study the
stability using fixed point theory. When applicable, by the fixed point theory, one can try

to avoid certain difficulties incurred in applying the Liapunov method but usually achieve
conditions of average type [5]. For the comparison of these two approaches in dealing
with the stability of differential equations, we refer to [4], [5] and [19, 20]. Though there
have been studies of the stability of differential equations using the fixed point theory, it
still remains open whether it can be applied to explore the stability of dynamic equations

on time scales.
In this paper, the main approach is based on the contraction mapping principle (also

Banach fixed point theorem). The tree of this paper is as following. In Section 2, we
introduce some basic results of the calculus on general time scale. In Section 3, we first
derive sufficient criteria for the uniform boundedness and the uniform ultimate bound-
edness of (2.2) and then establish necessary and sufficient criterion for the asymptotic
stability of (2.2)

2 Preliminaries

Let $T$ be a time scale, i.e., an arbitrary nonempty closed subset of the real numbers $\mathbb{R}$ .
For more details of the time scale, one can see [3, 9]. To facilitate the discussion below,

we introduce many notations $\sigma=\min\{[0, \infty)\cap T\},$ $T^{+}=[\sigma, \infty)\cap T,$ $\mathbb{R}^{+}=[0, \infty)$ .
Now, we propose some definitions of boundedness and stability of dynamic equations

on time scales. Consider the following nonlinear dynamic equations on time scales

$x^{\Delta}(t)=F(t, x)$ , (2.1)

where $F$ : $T\cross \mathbb{R}arrow \mathbb{R},$ $F(\cdot, x)$ is rd-continuous on $T$ for all $x\in \mathbb{R}$ and $F(t, \cdot)$ is continuous
on $\mathbb{R}$ for all $t\in$ T. Moreover, for clarity we denote by $x(t, x_{0}, t_{0})$ the solution of (2.1) with
initial values $x(t_{0})=x_{0}$ .

Definition 2.1. The solutions of (2.1) are uniformly bounded, if for any $\alpha>0$ and
$t_{0}\in T^{+}$ , there exists a $\beta_{1}(\alpha)>0$ such that $|x_{0}|\leq\alpha,$ $|x(t, x_{0}, t_{0})|<\beta_{1}$ for all $t\geq t_{0}$ .

Definition 2.2. The solutions of (2.1) are uniformly ultimately bounded for bound $\beta_{2}$ ,

if there exists a $\beta_{2}>0$ , for any $\alpha>0$ and $t_{0}\in T^{+}$ , there exists a $T(\alpha)>\sigma$ such that
$|x_{0}|\leq\alpha,$ $|x(t, x_{0}, t_{0})|<\beta_{2}$ for all $t\geq t_{0}+T$ .
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Definition 2.3. [see [10]] The zero solution of (2.1) is said to be stable, if for any $\epsilon>0$

and $t_{0}\in T$ , there exists a $\delta(t_{0}, \epsilon)>0$ such that $|x_{0}|\leq\delta,$ $|x(t, x_{0}, t_{0})|<\epsilon$ for all $t\geq t_{0}$ .

Definition 2.4. [see [10]] The zero solution of (2.1) is said to be asymptotically stable, if
the zero solution is stable and if there exists a $\delta(t_{0})>0$ such that if $|x_{0}|\leq\delta,$ $x(t, x_{0}, t_{0})arrow$

$0$ as $tarrow\infty$ .

In this paper, we will explore the boundedness and asymptotic stability of the following
semi-linear equation on general time scale $T$

$x^{\Delta}(t)=-a(t)x(\sigma(t))+f(t, x(t))$ . (2.2)

where $a\in \mathcal{R}^{+},$ $f$ : $\mathbb{T}\cross \mathbb{R}arrow \mathbb{R},$ $f(\cdot, x)$ is rd-continuous on $T$ for all $x\in \mathbb{R}$ and $f(t, \cdot)$ is
continuous on $\mathbb{R}$ for all $t\in$ T. When $T=\mathbb{R}$ or $T=Z,$ $(2.2)$ reduces to the semi-linear
differential equations or difference Equations, whose boundedness and stability have been
extensively studied. For example, see [1, 18].

Carrying out similar arguments as those in Theorem 2.74 in [3], we can easily obtain
the following theorem.

Theorem 2.1. Suppose $a\in \mathcal{R},$ $u\in C(T, \mathbb{R})$ . Let $t_{0}\in \mathbb{T}$ and $x_{0}\in \mathbb{R}$ . The unique solution
of the initial value problem

$x^{\triangle}(t)=-a(t)x(\sigma(t))+f(t, u(t))$ , $x(t_{0})=x_{0}$ (2.3)

is given by $x(t)=e_{\ominus a}(t, t_{0})x_{0}+ \int_{t_{0}}^{t}e_{\ominus a}(t, \tau)f(\tau, u(\tau))\triangle\tau$ .

3 Boundedness and asymptotic stability

In this section, we explore the boundedness and asymptotic stability of the solutions of
(2.2). The approach will base on the famous contraction mapping principle (also known
as the Banach fixed point theorem or the contraction mapping theorem).

Lemma 3.1. Let (X, d) be a complete metric space and $P:Xarrow X$ be a contraction
mapping (that is, there exists a constant $\lambda$ with $0\leq\lambda<1$ such that $d(P(x), P(y))\leq$

$\lambda d(x, y),$ $x,$ $y\in X)$ , then $P$ has a unique fixed point in $X$ .

Theorem 3.1. Assume that

(i) there is a function $b:Tarrow \mathbb{R}^{+}$ such that $|f(t, x_{1})-f(t, x_{2})|\leq b(t)|x_{1}-x_{2}|$ for any
$x_{1},$ $x_{2}\in \mathbb{R},$ $t\in T$ ;
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(ii) $\lim_{tarrow\infty}l^{t}\xi_{\mu(\tau)}(a(\tau))\Delta\tau=\infty$ and there are a $0<\chi<1$ and a $M>0$ such that

$l^{t}e_{\ominus a}(t, \tau)|f(\tau, 0)|\triangle\tau<M$ , $l^{t}e_{\ominus a}(t, \tau)b(\tau)\triangle\tau\leq\chi$, $t\geq\sigma$ .

Then the solutions of (2.2) are uniformly bounded.

Proof. According to the condition (ii), for any fixed $t_{0}\geq\sigma$ , we have

$l_{t_{0}}^{t} \xi_{\mu(\tau)}(a(\tau))\triangle\tau=l^{t}\xi_{\mu(\tau)}(a(\tau))\triangle\tau-\int_{\sigma}^{t_{0}}\xi_{\mu(\tau)}(a(\tau))\triangle\tauarrow\infty$ as $tarrow\infty$

and $e_{ea}(t, t_{0})=1/e_{a}(t, t_{0})arrow 0$ as $tarrow\infty$ . Hence, we can find a positive number $b_{1}$ such

that $e_{\ominus a}(t, t_{0})\leq b_{1}$ for all $t\geq t_{0}$ . For any $\alpha_{1}$ , let $\beta_{1}=(\alpha_{1}b_{1}+M)/(1-\chi)$ and define

$S_{1}=\{u\in C_{rd}(T,$ $\mathbb{R})|u(t_{0})=x_{0}$ , and $|u(t)|<\beta_{1}$ for $t\geq t_{0},$ $|x_{0}|\leq\alpha_{1}\}$ ,

then it is not difficult to show that the set $S_{1}$ is a complete metric space endowed with

metric $d(u_{1}, u_{2})= \Vert u_{1}-u_{2}\Vert=\sup_{t\in[t_{0},\infty)}|u_{1}(t)-u_{2}(t)|$. In view of Theorem 2.1, for any

$u\in S_{1}$ , we let $Z_{u}(t)=e_{\ominus a}(t, t_{0})u(t_{0})+ \int_{t_{0}}^{t}e_{\ominus a}(t, \tau)f(\tau, u(\tau))\triangle\tau$ . Obviously, $Z_{u}(t_{0})=$

$u(t_{0})=x_{0}$ and it is easy to show that $Z_{u}\in C_{rd}(T, \mathbb{R})$ . In addition, for any $t\geq t_{0}$ , we
have

$|Z_{u}(t)| \leq e_{\ominus a}(t, t_{0})|x_{0}|+\int_{t_{0}}^{t}e_{ea}(t, \tau)b(\tau)|u(\tau)|\triangle\tau+\int_{t_{0}}^{t}e_{ea}(t, \tau)|f(\tau, 0)|\triangle\tau$

$<b_{1}\alpha_{1}+\chi\beta_{1}+M=\beta_{1}$ .

Therefore, we can define a mapping $P$ : $S_{1}arrow S_{1}$ by $(Pu)(t)=Z_{u}(t)$ . By the condition
(i), for any $u_{1},$ $u_{2}\in S_{1}$ , we have, for any $t\geq t_{0}$ ,

$|(Pu_{1}-Pu_{2})(t)|=| \int_{t_{0}}^{t}e_{ea}(t, \tau)(f(\tau, u_{1}(\tau))-f(\tau, u_{2}(\tau)))\Delta\tau|$

$\leq\int_{t_{0}}^{t}e_{\ominus a}(t, \tau)b(\tau)\Vert u_{1}-u_{2}\Vert\triangle\tau\leq\chi\Vert u_{1}-u_{2}||$ .

Therefore, $P$ is a contraction mapping and has a unique fixed point in $S_{1}$ , which is the

unique solution of (2.2) in $S_{1}$ . That is, for any $\alpha_{1}>0$ and $t_{0}\in T^{+}$ , there exists a $\beta_{1}(\alpha_{1})>$

$0$ such that, for any $|x_{0}|\leq\alpha_{1)}$ the solutions of (2.2) satisfies $|x(t, x_{0}, t_{0})|<\beta_{1},$ $t\geq t_{0}$ , that
is, the solutions of (2.2) are uniformly bounded. $\square$

Theorem 3.2. Assume that the conditions (i) and (ii) in Theorem 3.1 hold. Then the

solutions of (2.2) are uniformly ultimately bounded for bound $\beta_{2}>M/(1-\chi)$ .

48



Proof. By Theorem 3.1, for any $\alpha_{2}>0$ and $t_{0}\geq\sigma$ , there exists a $\beta_{1}(\alpha_{2})>0$ such that,
for any $|x_{0}|\leq\alpha_{2},$ $|x(t, x_{0}, t_{0})|<\beta_{1}$ for all $t\geq t_{0}$ . In order to prove the conclusion, we
define

$S_{2}=\{u\in C_{rd}(T, \mathbb{R})|$ $d(u(t), B(0,\beta_{3}))arrow 0u(t_{0})=x_{0},|x_{0}|\leq\alpha_{2},$ $|u(t)|<\beta_{1}astarrow\infty$
for $t\geq t_{0},$

$\}$ ,

where $\beta_{3}=M/(1-\chi)(<\beta_{1})$ is a fixed positive constant number and $B(0, \beta_{3})$ is a sphere

with center $0$ and radius $\beta_{3}$ . Then $S_{2}$ is a complete metric space endowed with metric
$d(u_{1}, u_{2})= \Vert u_{1}-u_{2}\Vert=\sup_{t\in[t_{0},\infty)}|u_{1}(t)-u_{2}(t)|$ .

For any $\epsilon>0$ and $u\in S_{2}$ , there is a $T_{1}$ such that $|u(t)|<\beta_{3}+\epsilon/2$ for any $t\geq T_{1}$ .
It follows from the condition (ii) that, for sufficiently large $T_{2}>T_{1},$ $\alpha_{2}e_{ea}(t, t_{0})<\epsilon/4$

and $\beta_{1}\chi e_{\ominus a}(t, T_{1})<\epsilon/4,$ $t\geq T_{2}$ . For $u\in S_{2}$ , we consider $Z_{u}(t)=e_{\ominus a}(t, t_{0})u(t_{0})+$

$\int_{t_{0}}^{t}e_{\ominus a}(t, \tau)f(\tau, u(\tau))\triangle\tau$ . Obviously, $Z_{u}(t_{0})=u(t_{0})=x_{0}$ and $Z_{u}(t)\in C_{rd}(T, \mathbb{R})$ . More-

over, by the proof of Theorem 3.1, we have $|Z_{u}(t)|<\beta_{1}$ for any $t\geq t_{0}$ . If $t\geq T_{2}$ , then we
have

$|Z_{u}(t)| \leq e_{\ominus a}(t, t_{0})|u(t_{0})|+|\int_{t_{0}}^{t}e_{\ominus a}(t, \tau)f(\tau, u(\tau))\triangle\tau|$

$=e_{\ominus a}(t, t_{0})|u(t_{0})|+ \int_{t_{0}}^{T_{1}}e_{\ominus a}(t, \tau)b(\tau)|u(\tau)|\triangle\tau$

$+ \int_{T_{1}}^{t}e_{\ominus a}(t, \tau)b(\tau)|u(\tau)|\triangle\tau+\int_{t_{0}}^{t}e_{\ominus a}(t, \tau)|f(\tau, 0)|\triangle\tau$

$\leq\frac{\epsilon}{4}+\beta_{1}e_{\ominus a}(t, T_{1})\int_{t_{0}}^{T_{1}}e_{\ominus a}(T_{1}, \tau)b(\tau)\triangle\tau$

$+( \beta_{3}+\frac{\epsilon}{2})\int_{T_{1}}^{t}e_{\ominus a}(t, \tau)b(\tau)\triangle\tau+\beta_{3}(1-\chi)$

$< \frac{\epsilon}{4}+\beta_{1}\chi e_{\ominus a}(t, T_{1})+(\beta_{3}+\frac{\epsilon}{2})\chi+\beta_{3}(1-\chi)$

$< \frac{\epsilon}{2}+\beta_{3}+\frac{\epsilon}{2}=\epsilon+\beta_{3}$ .

Since $\epsilon$ is arbitrary, we can conclude that $Z_{u}(t)$ approaches $B(0, \beta_{3})$ as $tarrow\infty$ . Now we
define a mapping $P:S_{2}arrow S_{2}$ by $(Pu)(t)=Z_{u}(t)$ . It is not difficult to show that $P$ is
a contraction mapping by the same arguments as those in Theorem 3.1. Hence, $P$ has
a unique fixed point in $S_{2}$ , which is a solution of (2.2). Therefore, for any fixed positive

number $c$ , we can choose $\beta_{2}=\beta_{3}+c$ as the bound of uniform ultimate boundedness. $\square$

Theorem 3.3. Assume that

(i) $\lim tarrow\infty\inf l^{t}\xi_{\mu(\tau)}(a(\tau))\triangle\tau>-\infty$ and $f(t, 0)=0$ for all $t\in \mathbb{T}$ ;
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(ii) there is a function $b$ : $Tarrow \mathbb{R}^{+}$ and an $N>0$ such that $|f(t, x_{1})-f(t, x_{2})|\leq$

$b(t)|x_{1}-x_{2}|,$ $|x_{1}|,$ $|x_{2}|\leq N,$ $t\in T$ ;

(iii) there is a $0<\chi<1$ such that $l^{t}e_{ea}(t, \tau)b(\tau)\triangle\tau\leq\chi$ for $t\geq\sigma$ .

Then the zero solution of (2.2) is asymptotically stable if and only if

(iv) $l^{t}\xi_{\mu(\tau)}(a(\tau))\triangle\tauarrow\infty$ as $tarrow\infty$ .

Proof. (Sufficiency) If the condition (iv) is satisfied, then there is a $b_{2}>0$ such that,

for any $t_{0}\geq\sigma,$ $|e_{\ominus a}(t, t_{0})|\leq b_{2}$ for all $t\geq t_{0}$ . Next, we choose a $\delta_{1}>0$ such that
$\delta_{1}b_{2}+\chi N\leq N$ . For any $|x_{0}|\leq\delta_{1}$ , define

$S_{3}=\{u\in C_{rd}(T,$ $\mathbb{R})|,$ $u(t_{0})=x_{0},$ $|u(t)|\leq N$ for $t\geq t_{0},$ $u(t)arrow 0$ as $tarrow\infty\}$ .

It is easy to show that $S_{3}$ is a complete metric space endowed with metric $d(u_{1}, u_{2})=$

$\Vert u_{1}-u_{2}\Vert=\sup_{t\in[t_{0},\infty)}|u_{1}(t)-u_{2}(t)|$ .
For any $\epsilon>0$ and $u\in S_{3}$ , we can easily find a $T_{3}>t_{0}$ such that $|u(t)|<\epsilon/3$

for all $t\geq T_{3}$ . It follows from the condition (iv) that there is a $T_{4}>T_{3}$ such that
$\delta_{1}e_{\ominus a}(t, t_{0})<\epsilon/3$ and $N\chi e_{\ominus a}(t, T_{3})<\epsilon/3$ for $t\geq T_{4}$ . Define $Z_{u}(t)=e_{ea}(t, t_{0})u(t_{0})+$

$\int_{t_{0}}^{t}e_{\ominus a}(t, \tau)f(\tau, u(\tau))\triangle\tau$ , then $Z_{u}(t_{0})=u(t_{0})=x_{0}$ and $Z_{u}(t)\in C_{rd}(T, \mathbb{R})$ . If $t\geq T_{4}$ , then

$|Z_{u}(t)| \leq e_{\ominus a}(t, t_{0})|u(t_{0})|+|\int_{t_{0}}^{t}e_{\ominus a}(t, \tau)f(\tau, u(\tau))\triangle\tau|$

$=e_{ea}(t, t_{0})|u(t_{0})|+ \int_{t_{0}}^{T_{3}}e_{\ominus a}(t, \tau)b(\tau)|u(\tau)|\triangle\tau+\int_{T_{3}}^{t}e_{\ominus a}(t, \tau)b(\tau)|u(\tau)|\triangle\tau$

$\leq\frac{\epsilon}{3}+Ne_{\ominus a}(t, T_{3})\int_{t_{0}}^{T_{3}}e_{\ominus a}(T_{3}, \tau)b(\tau)\triangle\tau+\frac{\epsilon}{3}\int_{T_{3}}^{t}e_{\ominus a}(t, \tau)b(\tau)\triangle\tau$

$< \frac{\epsilon}{3}+N\chi e_{ea}(t, T_{3})+\frac{\epsilon}{3}\chi<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$ .

We now define a mapping $P$ : $S_{3}arrow S_{3}$ by $(Pu)(t)=Z_{u}(t)$ . Then $P$ is a contraction
mapping. Thus, $P$ has a unique fixed point in $S_{3}$ , which is a solution of (2.2) and
$x(t)=x(t, t_{0}, x_{0})arrow 0$ as $tarrow\infty$ .

Now we show that the zero solution of (2.2) is stable. For any $\epsilon>0(\epsilon<b_{2})$ , choose

a $\delta_{2}>0(\delta_{2}<\epsilon)$ such that $\delta_{2}b_{2}+\chi\epsilon<\epsilon$ . To prove the conclusion, we will show that,

for any $|x_{0}|<\delta_{2},$ $|x(t, x_{0}, t_{0})|<\epsilon$ for any $t\geq t_{0}$ . Assume that there exists a $t^{*}>t_{0}$ such

that $|x(t^{*})|=\epsilon$ and $|x(\tau)|<\epsilon$ for $t_{0}\leq\tau<t^{*}$ . From Theorem 2.1, the solutions of (2.2)

can be expressed as
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$x(t)=e_{\ominus a}(t, t_{0})x(t_{0})+ \int_{t_{0}}^{t}e_{\ominus a}(t, \tau)f(\tau, x(\tau))\triangle\tau$ . (3.1)

Hence, we have $|x(t^{*})| \leq\delta_{2}e_{\ominus a}(t^{*}, t_{0})+\int_{t_{0}}^{t^{*}}e_{\ominus a}(t^{*}, \tau)b(\tau)|x(\tau)|\triangle\tau\leq\delta_{2}b_{2}+\chi\epsilon<\epsilon$ , which

contradicts to the definition of $t^{*}$ , then the zero solution of (2.2) is stable. Therefore, if
(iv) is satisfied, then the zero solution of (2.2) is asymptotically stable.

(Necessity) If (iv) fails, then there exist a sequence $\{t_{n}\}(t_{n}arrow\infty as narrow\infty)$ and

some real number $m_{1}$ such that $\lim_{narrow\infty}l^{t_{n}}\xi_{\mu(\tau)}(a(\tau))\triangle\tau=m_{1}$ . It is easy to show that

there is a positive constant $L$ such that $|l^{t_{n}}\xi_{\mu(\tau)}(a(\tau))\triangle\tau|\leq L$ and $e_{a}(t_{n}, \sigma)\leq e^{L}$ for all

$n=1,2,$ $\cdots$ . Therefore, it follows from the condition (iii) that

$l^{t_{n}}e_{a}(\tau, \sigma)b(\tau)\triangle\tau=l^{t_{n}}e_{a}(t_{n}, \sigma)e_{\ominus a}(t_{n}, \tau)b(\tau)\triangle\tau\leq\chi e_{a}(t_{n}, \sigma)\leq e^{L}$.

This implies that there exists a convergent subsequence. Without loss of generality, we
still assume that it is $\{t_{n}\}$ such that $\lim_{narrow\infty}l^{t_{n}}e_{a}(\tau, \sigma)b(\tau)\triangle\tau=m_{2}$ for some positive

constant $m_{2}$ . Hence, we can find sufficiently large $k^{*}$ such that $\int_{t_{k^{*}}}^{t_{n}}e_{a}(\tau, \sigma)b(\tau)\triangle\tau<$

$(1-\chi)/(2Q^{2})$ for $n\geq k^{*}$ , where $Q= \sup_{t\geq\sigma}e_{\ominus a}(t, \sigma)$ . Since the zero solution of (2.2) is
asymptotically stable, for given a real number $B>0$ , there exits a $\delta_{0}>0(\delta_{0}<B)$ such
that $|x(t, x(t_{k^{*}}), t_{k^{*}})|<B$ for $t\geq t_{k^{*}}$ with the initial value $|x(t_{k^{*}})|=\delta_{0}$ . For all $t\geq t_{k^{*}}$ ,

we have $|x(t)| \leq x(t_{k}\cdot)e_{\ominus a}(t_{n}, t_{k^{*}})+\int_{t_{k^{*}}}^{t}e_{\ominus a}(t, \tau)|f(\tau, x(\tau))|\triangle\tau\leq\delta_{0}Q+\chi\sup_{t\geq t_{k^{*}}}|x(t)|$. This

shows that $|x(t)|\leq\delta_{0}Q/(1-\chi)$ for all $t\geq t_{k^{*}}$ . Meanwhile, it is easy to show that

$|x(t_{n})| \geq\delta_{0}e_{\ominus a}(t_{n}, t_{k^{*}})-\int_{t_{k}}^{t_{n}}.e_{\ominus a}(t_{n}, \tau)b(\tau)|x(\tau)|\triangle\tau$

$\geq\delta_{0}e_{\ominus a}(t_{n}, t_{k^{*}})-\frac{\delta_{0}Q}{1-\chi}e_{\ominus a}(t_{n}, \sigma)\int_{t_{k^{*}}}^{t_{n}}e_{a}(\tau, \sigma)b(\tau)\triangle\tau$

$\geq e_{\ominus a}(t_{n}, t_{k^{*}})[\delta_{0}-\frac{\delta_{0}Q}{1-\chi}Q\int_{t_{k^{*}}}^{t_{n}}e_{a}(\tau, \sigma)b(\tau)\triangle\tau]$

$\geq\frac{1}{2}\delta_{0}e_{\ominus a}(t_{n}, t_{k^{*}})\geq\frac{1}{2}\delta_{0}e^{-2L}$

for $n\geq k^{*}$ . This implies that $x(t)\prec\div 0$ as $tarrow\infty$ , which is contradiction. That is, (iv)

is necessary for asymptotically stable of the zero solution of (2.2). This completes the
proof. $\square$

Next, we consider the existence and stability of periodic solutions of (2.2) by the
famous contraction mapping principle. Therefore, the time scale $\mathbb{T}$ is supposed to be

51



$\omega$ -periodic, i.e., $t\in$ I implies $t\pm\omega\in$ T. This implies that the graininess $\mu$ is also $\omega-$

periodic, that is, $\mu(t\pm\omega)=\mu(t)$ . Some examples of such time scales are $\mathbb{R},$ $Z,$ $\bigcup_{k\in Z}[2k,$ $2k+$

$1],$ $\bigcup_{k\in Z}\bigcup_{n\in N}\{k+\frac{1}{n}\}$ . Moreover, in (2.2), we assume that $a\in C_{rd}(T, \mathbb{R}^{+})$ , and $a(t),$ $f(t, x)$

are both $\omega$-periodic in $t$ .

Lemma 3.2. $x(t)$ is an $\omega$ -periodic solution of (2.2) if and only if $x(t)$ is a solution of

$x(t)= \int_{t}^{t+\omega}\frac{e_{a}(\tau,t)}{e_{a}(\sigma+\omega,\sigma)-1}f(\tau, x(\tau))\triangle\tau$ . (3.2)

Proof. Let $x(t)$ be an $\omega$-periodic solution of (2.2), then one has $x^{\Delta}(t)+a(t)x(\sigma(t))=$

$f(t, x(t))$ . Multiplying both sides of the above equation by $e_{a}(t, \sigma)$ leads to $(e_{a}(t, \sigma)x(t))^{\Delta}=$

$e_{a}(t, \sigma)f(t, x(t))$ . Integrating from $t$ to $t+\omega$ , we have $x(t+\omega)e_{a}(t+\omega, \sigma)-x(t)e_{a}(t, \sigma)=$

$\int_{t}^{t+\omega}e_{a}(\tau, \sigma)f(\tau, x(\tau))\triangle\tau$. Since $x(t)$ is $\omega$-periodic, one can easily reach (3.2). Therefore,

the necessity of the claim is valid. The proof of the sufficiency is trivial. $\square$

Theorem 3.4. Assume that the conditions (ii), (iii) and (iv) of Theorem 3.3 are satisfied.
If A $l^{\sigma+\omega}b(\tau)\triangle\tau<1$ holds, where $A=e_{a}(\sigma+\omega, \sigma)/(e_{a}(\sigma+\omega, \sigma)-1)$ , then (2.2) has a

unique asymptotically stable periodic solution.

Proof. Define

$S_{4}=\{u\in C(T,$ $\mathbb{R})|u(t+\omega)=u(t)$ for all $t\in T\}$ , $\Vert u\Vert=\max_{t\in I_{\omega}}|u(t)|$ for $u\in S_{4}$ .

It is not difficult to show that $(S_{4}, \Vert\cdot\Vert)$ is a Banach space. Define a mapping $T$ as follows:

$Tu$ $(t)=l^{t+\omega} \frac{e_{a}(\tau,t)}{e_{a}(\sigma+\omega,\sigma)-1}f(\tau, u(\tau))\triangle\tau$ .

Obviously, $T:S_{4}arrow S_{4}$ . Meanwhile, for any $u_{1},$ $u_{2}\in S_{4}$ , we have

$|Tu_{1}( \tau)-Tu_{2}(\tau)|=\int_{t}^{t+\omega}\frac{e_{a}(\tau,t)}{e_{a}(\sigma+\omega,\sigma)-1}|f(\tau, u_{1}(\tau))-f(\tau, u_{2}(\tau))|\triangle\tau$

$\leq Al^{\sigma+\omega_{b(\tau)\triangle\tau\Vert u_{1}-u_{2}\Vert}}$ .

Then, $T$ is a contraction mapping with a unique fixed point in $S_{4}$ , which is a unique

periodic solution of (2.2) by Lemma 3.2. Proceeding the same as those in the proof
of Theorem 3.3, we can easily show that the periodic solution is asymptotically stable.
Therefore, (2.2) has a unique asymptotically stable periodic solution. $\square$
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4 Application

Now, we turn to some concrete dynamic equations on time scales, which incorporate
many mathematical models in real-world applications when the time scale reduces to $\mathbb{R}$

or Z.

Example 4.1. Consider the following autonomous dynamic equation

$x^{\triangle}(t)=-rx(\sigma(t))+\eta e^{-\gamma x(t)}$ (4.1)

where $r,$ $\eta,$ $\gamma$ are all positive constants and the initial values of (4.1) are positive.

Theorem 4.1. If $\eta\gamma<r$ , then the solutions of (4.1) are uniformly bounded and uniformly
ultimately bounded.

Proof. By Theorem 2.1, it is not difficult to show that the solutions of (4.1) are always

positive for all $t\geq\sigma$ if the initial values are positive. Obviously, $\lim_{tarrow\infty}l^{t}\xi_{\mu(\tau)}(r)\Delta\tau=\infty$

and for any $x_{1},$ $x_{2}\in \mathbb{R}^{+}$ , we have $|\eta e^{-\gamma x_{1}}-\eta e^{-\gamma x_{2}}|\leq\eta\gamma|x_{1}-x_{2}|$ . Moreover,

$\eta\gamma l^{t}e_{\ominus r}(t, \tau)\triangle\tau=\frac{\eta\gamma}{r}(1-e_{\ominus r}(t, \sigma))<\frac{\eta\gamma}{r}<1$, $\eta l^{t}e_{\ominus r}(t, \tau)\triangle\tau\leq\frac{\eta}{r}$ , $t\geq\sigma$ .

Theorem 3.1 and Theorem 3.2 imply the claims. $\square$

Remark 1. Let $\mathbb{T}=\mathbb{R}$ or $T=$ Z. Then (4.1) can been reformulated as continuous or
discrete Lasota-Wazewska model without delay. This kind of models with delay have been
extensively discussed in differential equations [6, 16] and difference equations [11].

Example 4.2. Consider the following nonautonomous dynamic equation

$x^{\triangle}(t)=-a(t)x(\sigma(t))+b(t)$ , (4.2)

where $a,$ $b\in C_{rd}(T, \mathbb{R}^{+})$ and $b$ is bounded on T.

In fact, (4.2) is general to incorporate many single species models as special cases. For
example, if we let $T=\mathbb{R}$ and $x(t)=1/N(t)$ , then (4.2) reduces to the famous Verhulst
logistic equation $\dot{N}(t)=N(t)(a(t)-b(t)N(t))$ . If $T=Z$ and $x(t)=1/N(t)$ , then (4.2)
reduces to the famous Beverton-Holt equation [2, 13], $N(t+1)=(1+a(t))N(t)/[1+$
$b(t)N(t)]$ . If $b(t)=a(t)\ln(c(t))$ and $x(t)=\ln(N(t))$ , then (4.2) reduces to the continuous
Gompertz single species model [7, 14], $\dot{N}(t)=a(t)N(t)\ln(c(t)/N(t))$ . When $\mathbb{T}=\mathbb{R}$ or
discrete Gompertz single species model [15], $N(t+1)=N(t)_{C(t)}^{\frac{1}{1+a(t)}\frac{a(t)}{1+a(t)}}$ when $T=$ Z.

Applying those theorems in Section 3 to (4.2), one can easily reach the following
claims.
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Theorem 4.2. If $\overline{a}=\inf_{t\in T}(a(t))>0$ , then the solutions of (4.2) are uniformly bounded and
uniformly ultimately bounded. Moreover, if $a,$

$b$ are $\omega$ -periodic, then (4.2) has a unique

periodic solution $x(t)= \int_{-\infty}^{t}e_{ea}(t, \tau)b(\tau)\triangle\tau$ , which is asymptotically stable.

Example 4.3. Consider

$x^{\Delta}(t)=-a(t)x( \sigma(t))+\frac{b(t)}{1+x^{2}(t)}$ , (4.3)

where $a,$ $b\in C_{rd}(T, \mathbb{R}^{+})$ and $b$ is bounded on T. When $T=\mathbb{R},$ $(4.3)$ is a particular case
of physiological control systems [12, 17].

Theorem 4.3. Let $\overline{a}=\inf_{t\in T}(a(t))>0$ and $\Vert b\Vert=\sup_{t\in T}(b(t))$ . If $\Vert b\Vert<\overline{a}$ , then the solutions

of (4.3) are uniformly bounded and uniformly ultimately bounded.

Proof. Obviously, $\lim_{tarrow\infty}l^{t}\xi_{\mu(\tau)}(a(\tau))\triangle\tau=$ oo. For $x_{1},$ $x_{2}\in \mathbb{R}$ , one can reach $|1/(1+$

$x_{1}^{2})-1/(1+x_{2}^{2})|\leq|x_{1}-x_{2}|$ . In addition, for any $t\geq\sigma$ , we have $l^{t}e_{\ominus a}(t, \tau)b(\tau)\triangle\tau=$

$\Vert b\Vert/\overline{a}(1-e_{\ominus a}(t, \sigma))<\Vert b\Vert/\overline{a}<1$ . It follows from Theorem 3.1 and Theorem 3.2 that the
solutions of (4.3) are uniformly bounded and uniformly ultimately bounded. $\square$

By Theorem 3.4, we can easily get

Theorem 4.4. Assume that $a,$ $b$ are both w-periodic and the conditions of Theorem 4.3

hold. If $\frac{e_{a}(\sigma+\omega,\sigma)}{e_{a}(\sigma+\omega,\sigma)-1}l^{\sigma+\omega}b(\tau)\triangle\tau<1$ , then (4.3) has a unique asymptotically stable

periodic solution.

Example 4.4. Consider the dynamic equation

$x^{\Delta}(t)=-a(t)x(\sigma(t))+b(t)\tanh(x(t))+\gamma(t)$ (4.4)

where $a,$ $b,$ $\gamma\in C_{rd}(T, \mathbb{R}^{+}),$ $b,$ $r$ are both bounded on T.

When $T=\mathbb{R},$ $(4.4)$ reduces to a single artificial effective neuron with dissipation [7, 8].

It is clear that $|\tanh(x_{1})-\tanh(x_{2})|\leq|x_{1}-x_{2}|$ for $x_{1},$ $x_{2}\in \mathbb{R}$ . Applying Theorem 3.1,
Theorem 3.2 and Theorem 3.4 to (4.4), one can easily find that Theorem 4.3 and Theorem

4.4 hold for (4.4).
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