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1. Introduction

This paper is concerned with the existence of eventually positive solutions of fourth
order quasilinear differential equations of the form

$(p(t)|u’’|^{\alpha-1}u’’)’’+q(t)|u|^{\beta-1}u=0$ , (1)

where $\alpha$ and $\beta$ are positive constants, $p(t)$ and $q(t)$ are positive continuous functions
defined on an infinite interval $[a, \infty),$ $a>0$ . Throughout the paper we assume that $p(t)$

satisfies
$\int_{a}^{\infty}(\frac{t}{p(t)})^{1/\alpha}dt=\infty$ , (2)

or, more strongly,

$\int_{a}^{\infty}\frac{t}{(p(t))^{1/\alpha}}dt=\infty$ and $\int_{a}^{\infty}(\frac{t}{p(t)})^{1/\alpha}dt=\infty$ . (3)

By a solution of (1) we mean a real-valued function $u(t)$ such that $u\in C^{2}[b, \infty)$ and
$p|u’’|^{\alpha-1}u’’\in C^{2}[b, \infty)$ and $u(t)$ satisfies (1) at every point of $[b, \infty)$ , where $b\geq a$ and $b$ may
depend on $u(t)$ . Such a solution $u(t)$ of (1) is called nonoscillatory if $u(t)$ is eventually
positive or eventually negative. A solution $u(t)$ of (1) is called oscillatory if it has an

infinite sequence of zeros clustering at $t=$ oo. Equation (1) itself is called oscillatory if

all of its solutions are oscillatory.
If $u(t)$ is a solution of (1), $then-u(t)$ is a solution of (1). Therefore, without loss of

generality, we can assume a nonoscillatory solution of (1) is eventually positive. If $u(t)$ is
an eventually positive solution of (1), then there is $T\geq a$ such that $u(t)>0$ for $t\geq T$ .

The oscillatory and asymptotic behavior of nonoscillatory solutions of (1) has been
recently considered by Wu [1] under the condition (2) or (3). The results in [1] are as
follows:
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Theorem 1 (Wu [1]). (i) Suppose (3) holds. Then Eq. (1) has an eventually positive

solution $u(t)$ satisfying

$\lim_{tarrow\infty}u(t)$ exists and is a positive finite value (4)

if and only if
$\int_{a}^{\infty}t(\frac{1}{p(t)}\int_{t}^{\infty}(s-t)q(s)ds)^{1/\alpha}dt<\infty$ . (5)

(ii) Suppose (2) holds. Then Eq. (1) has an eventually positive solution $u(t)$ satisfying

$\lim_{tarrow\infty}\frac{u(t)}{\int_{a}^{t}(t-s)(\frac{s}{p(s)})^{1/\alpha}ds}$

exists and is a positive finite value (6)

if and only if
$\int_{a}^{\infty}q(t)(\int_{a}^{t}(t-s)(\frac{s}{p(s)})^{1/\alpha}ds)^{\beta}dt<\infty$ . (7)

Moreover it is shown [1] that, under the integral condition (3) and the condition
$0<\alpha\leq 1<\beta$ $[$resp. $0<\beta<1\leq\alpha]$ , Eq. (1) has an eventually positive solution if and
only if (5) [resp. (7)] holds.

The purpose of this paper is to show that, in the preceding statements, the conditions
$0<\alpha\leq 1<\beta$ and $0<\beta<1\leq\alpha$ can be replaced by the natural conditions $0<\alpha<\beta$

and $0<\beta<\alpha$ , respectively, provided that $p(t)$ meets additional conditions.
If $p(t)\equiv 1$ , then Eq. (1) turns into

$(|u’’|^{\alpha-1}u’’)’’+q(t)|u|^{\beta-1}u=0$ . (8)

The results for (8) in Naito and Wu [2] are as follows:

Theorem 2 (Naito and Wu [2]). (i) Suppose that $0<\alpha<\beta$ . Then Eq. (8) has an
eventually positive solution if and only if

$\int_{a}^{\infty}t(\int^{\infty}(s-t)q(s)ds)^{1/\alpha}dt<\infty$ . (9)

(ii) Suppose that $0<\beta<\alpha$ . Then Eq. (8) has an eventually positive solution if and
only if

$\int_{a}^{\infty}t^{(2+(1/\alpha))\beta}q(t)dt<\infty$ . (10)

If $p(t)\equiv 1$ , then the conditions (5) and (7) reduce to (9) and (10), respectively.

Especially, if $p(t)\equiv 1$ and $\alpha=1$ , the oscillatory and nonoscillatory solutions of (1) were
also considered by Ou and Wong [3]. But, this paper does not include the results of [3].
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The oscillatory and asymptotic behavior of nonoscillatory solutions of (1) were also
considered by Kamo and Usami [4, 5], Manojlovi\v{c} and Milo\v{s}evi\v{c} [6], Kusano and Tanigawa
[7] and Kusano, Manojlovi\v{c} and Tanigawa [8]. In [4] it is asumed that $p(t)$ satisfies

$\int_{a}^{\infty}(\frac{t}{p(t)})^{1/\alpha}dt=\infty$ and $\int_{a}^{\infty}\frac{t}{(p(t))^{1/\alpha}}dt<\infty$ , (11)

while in [5, 6] it is asumed that $p(t)$ satisfies

$\int_{a}^{\infty}(\frac{t}{p(t)})^{1/\alpha}dt<\infty$ and $\int_{a}^{\infty}\frac{t}{(p(t))^{1/\alpha}}dt<oo$ . (12)

Kusano, Manojlovi\v{c} and Tanigawa [7, 8] have considered the case

$\int_{a}^{\infty}(\frac{t^{\alpha+1}}{p(t)})^{1/\alpha}dt<\infty$ , (13)

which is a stronger condition than (12). Since our condition (3) does not imply (11), (12)

and (13), the results in this paper are not included in [4-8].
In this paper, in addition to (3), we will asume the following condition:

$\lim inftarrow\infty\frac{\int_{a}^{t}(\frac{s}{p(s)})^{1/\alpha}ds}{t(\frac{t}{p(t)})^{1/\alpha}}>0$ and $l_{i}m\sup_{tarrow\infty}\frac{\int_{a}^{t}(\frac{1}{p(s)})^{1/\alpha}ds}{t(\frac{1}{p(t)})^{1/\alpha}}<\infty$ . (14)

It is easy to see that if $p(t)\equiv 1$ , then the conditions (3) and (14) are satisfied.
Moreover, for the case where $p(t)$ satisfies

$0< \lim\inf\frac{p(t)}{t^{\gamma}}tarrow\infty\leq\lim_{tarrow}\sup_{\infty}\frac{p(t)}{t^{\gamma}}<\infty$ for some $\gamma\in R$ ,

if $\gamma<\alpha$ , then the conditions (3) and (14) are satisfied.

2. Results

The main purpose of this paper is to prove the next theorem.

Theorem 3. (i) Let $0<\alpha<\beta$ . Suppose (3) and (14) hold. Then Eq. (1) has an
eventually positive solution if and only if (5) holds.

(ii) Let $0<\beta<\alpha$ . Suppose (3) and (14) hold. Then Eq. (1) has an eventually positive

solution if and only if (7) holds.
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Therefore Theorem 3 gives an extension of Theorem 2. To prove Theorem 3, we give

several necessary lemmas.

Lemma 4. Suppose $x(t)>0$ and $y(t)>0$ are continuous functions on $[T, \infty)$ . Let
$T_{0}>T$ . If there is a constant $c>0$ such that

$x(t) \int_{T}^{t}y(s)ds\geq cy(t)\int_{T}^{t}x(s)ds$ (15)

for all $t\geq T_{0}$ . Then there exists a number $0<\theta_{0}<1$ such that

$\int_{T}^{t}x(s)\int_{T}^{s}y(r)drds\geq(1-\theta_{0})\int_{T}^{t}x(s)ds\int_{T}^{t}y(s)ds$ (16)

for all $t\geq T_{0}$ .

Lemma 5 (Wu [1]). Suppose (3) is satisfied. If $u(t)$ is an eventually positive solution of
(1), then there is $T\geq a$ such that one of the following cases holds:

$u’(t)>0$ , $u”(t)>0$ , $(p(t)|u’’(t)|^{\alpha-1}u’’(t))’>0$ for $t>T$ ; (17)

$u’(t)>0$ , $u”(t)<0$ , $(p(t)|u’’(t)|^{\alpha-1}u’’(t))’>0$ for $t>T$. (18)

Lemma 6. Suppose (3) and (14) hold. Let $0<\alpha<\beta$ . If Eq. (1) has an eventually

positive solution $u(t)$ satisfying (17), then, for an arbitrary constant $\epsilon$ with $0<\epsilon<\beta-\alpha$ ,

there are $C_{0}>0$ and $T_{0}>T$ such that

$\int^{\infty}q(s)ds<C_{0}t^{\alpha+\epsilon-\beta}(l_{T}^{t}\int_{T}^{s}(\frac{r-T}{p(r)})^{1/\alpha}drds)^{-\alpha}$ , $t>T_{0}$ (19)

holds.

Application of Lemma 4 and Lemma 6, we can prove (i) of Theorem 3.

Lemma 7. Suppose (3) and $0<\beta<\alpha$ hold. If Eq. (1) has an eventually positive solution
$u(t)$ satisfying (18), then

$\int_{a}^{\infty}t^{\beta/\alpha}(\frac{1}{p(t)}\int^{\infty}\int_{s}^{\infty}q(r)drds)^{1/\alpha}dt<\infty$ . (20)

Application of Lemma 4 and Lemma 7, we can prove (ii) of Theorem 3.
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3. Example

We present here an example which illustrates the main results in this paper. Consider
Eq. (1) for the special case that $p(t)$ and $q(t)$ satisfir

$0< \lim\inf\frac{p(t)}{t^{\gamma}}tarrow\infty\leq\lim_{tarrow}\sup_{\infty}\frac{p(t)}{t^{\gamma}}<\infty$ for some $\gamma\in R$ , (21)

and
$0< \lim\inf\frac{q(t)}{t^{\delta}}tarrow\infty\leq\lim_{tarrow}\sup_{\infty}\frac{q(t)}{t^{\delta}}<\infty$ for some $\delta\in R$ , (22)

respectively. Then, both of the conditions (3) and (14) hold if and only if $\gamma<\alpha$ . Using
Theorem 3, we have the following results for (1): Consider Eq. (1) under the conditions
(21) and (22). Then

(i) Let $\gamma<\alpha$ and $0<\alpha<\beta$ . Eq. (1) has an eventually positive solution if and only
if $\delta<\gamma-2(1+\alpha)$ .

(ii) Let $\gamma<\alpha$ and $0<\beta<\alpha$ . Eq. (1) has an eventually positive solution if and only
if $\delta<-1-((1+2\alpha-\gamma)\beta)/\alpha$.
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