
On Weak Approximation of Stochastic Differential
Equations with Discontinuous Drift Coefficient1

Arturo Kohatsu-Higa
Department ofMathematical Sciences

Ritsumeikan University
1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.

Antoine Lejay
Project-team TOSCA, Institut \’Elie Cartan Nancy

(Nancy-Universit\’e, CNRS, INRIA)
BP 239, F-54506 Vandoeuvre-les-Nancy, France.

Kazuhiro Yasuda
Faculty of Science and Engineering

Hosei University
3-7-2, Kajino-cho, Koganei-shi, Tokyo, 184-8584, Japan.

Abstract

In this paper, weak approximations ofmulti-dimensional stochastic differential equa-
tions with discontinuous drift coefficients are considered. Here as the approximated pro-
cess, the Euler-Maruyama approximation of SDEs with approximated drift coefficients
is used, and we provide a rate of weak convergence of them. Finally we present a rate
of weak convergence of the Euler-Maruyama approximation of the original SDEs with
constant diffusion coefficients.

1 Introduction
In mathematical finance, one describes asset price processes as the solution to the following
stochastic differential equations (SDEs):

$dX_{t}=b(t,X_{t})dt+\sigma(t,X_{t})dW_{t}$ . (1.1)

where $b$ and $\sigma$ are certain fimctions and $W_{t}$ is a Brownian motion. Then we consider a
flmction $f$, which represents a payoff mnction in financial derivatives, and one write its
associated option price as the expectation $E[f(X_{T})]$ , where $T$ is a maturity of the option and
$X_{T}$ is the asset price at $T$ . Note that we are using the interpretation ofthe expectation using a
financial situation, but, ofcourse, it is also important in many other fields and applications.

It is rare the occasion when one is able to calculate the previous expectation analytically.
Therefore in order to obtain its value, one resorts to computer simulations and tries to obtain
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an approximated value. In practice, two kinds of approximations are needed to simulate this
expectation. One is an approximation of the SDEs (1.1) and the other is an approximation
of the expectation. For the latter, one can typically use the Monte-Carlo method, which is
based on law of large numbers in probability theory. On the other hand, for the former, the
Euler-Mamyama approximation is often used. The Euler-Maruyama approximation can be
described as follows: For simplicity, we split the interval $[0, T]$ equally in $n$ subintervals and
let the length of each time subinterval $\Delta t$ be equal to $\frac{T}{n}$ ,

$\overline{X}_{0}=x$ , $\overline{X_{i+1}}=\overline{X_{i}}+b(i\Delta t,\overline{X_{i}})\Delta t+\sigma(i\Delta t,\overline{X}_{i})\sqrt{\Delta t}\xi_{i}$,

where the random variables $\xi_{i},$ $i=0,1,$ $\cdots,n-1$ , are independent of each other and are
distributed according to a $N(O,I_{d})$ law, where $0$ is the d-dimensional zero vector and $I_{d}$ is
$d\cross d$-unit matrix. When we approximate stochastic processes, one needs a criteria in order
to determine the quality of the approximation. One mainly uses the following two criteria
(strong error and weak error): the definition of an approximation with strong error of order
$\gamma>0$ is that there exists a positive constant $C$, which does not depend on $\Delta t$ , such that

$E[|X_{T}-\overline{X}_{n}|]\leq C\Delta t^{\gamma}$.

Under enough regularity for coefficients $b$ and $\sigma$ , the strong $elTor$ has the order 1/2 for the
above Euler-Maruyama approximation. For more details, readers can refer Exercise 9.6.3 in
Kloeden and Platen [4]. The definition ofweak error with order $\gamma>0$ is that for all ffinctions
$f$ in a certain class, there exists a positive constant $C$, which does not depend on $\Delta t$, such
that

$|E[f(X_{T})]-E[f(\overline{X}_{n})]|\leq C\Delta t^{\gamma}$.

Here under enough regularity on the coefficients $\sigma$ and $b$ and on $f$, we have the weak error
with order 1 for the Euler-Mamyama approximation.

The purpose of this paper is to treat an SDE with discontinuous drift coefficients and
obtain an order ofweak error for its approximation. Precisely speaking, we consider an SDE
with an approximated drift coefficient $b_{\epsilon}$, which is approximated using the Euler-Maruyama
approximation. Then, one uses the approximated process as the approximation ofthe original
SDEs. Then we estimate an order of the weak error between the original SDEs and the
approximated process. In the latter part of this article, we deal with an SDE with constant
diffusion coefficients and obtain an order of the weak elTor between the SDEs and their
approximated process to which the Euler-Mamyama approximation is directly applied.

SDEs with discontinuous drift coefficients are of course used in various fields. For in-
stant, in mathematical finance, if one wants to model a stock price process whose trend
dramatically changes when a factor goes down a threshold value. In this case, the drift can
be modeled as taking two values specified by some indicator hnction. This kind of SDE
also appears in some control problems.

Weak error of SDEs with discontinuous coefficients (not only drift coefficients, but also
diffusion coefficients) have been studied in Chan and Stramer [2] and Yan [12]. However in
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their papers, they only proved weak convergence ofthe Euler-Mamyama approximation, not
mentioned an order of the weak convergence. And also strong error and the rate are studied
in Przybylowicz [10] for SDEs with some type of discontinuous coefficients. Note that in
this paper, the diffusion coefficients of our SDEs have enough regularity.

This paper is organized as follows: Some notations and assumptions are given in Sec-
tion 2. We provide our main result on a rate ofweak errors under SDEs with discontinuous
drift and nonlinear diffusion coefficient in Section 3, and also give results under constant dif-
ffision coefficients in Section 4. Finally we give some numerical results in Section 5. Proofs
of theorems and so on below can be found in Kohatsu-Higa, Lejay and Yasuda [5].

2 Notations and Hypotheses
Let $d\in \mathbb{N}$ . The space ofcontinuous ffinctions that are slowly increasing is denoted by $C_{Sl}(\mathbb{R}^{d})$.
A fimction $f$ in $C_{Sl}(\mathbb{R}^{d})$ is such that for every $k>0$ ,

$\lim_{|x|arrow\infty}|f(x)|e^{-k|x|^{2}}=0$ .

Fix $T>0$ . Let $H$ be the set $[0, T)\cross \mathbb{R}^{d}$ and $\overline{H}=[0, T]\cross \mathbb{R}^{d}$.
Let $\sigma$ be a measurable fimction on $[0, T]\cross \mathbb{R}^{d}$ with values in the space of symmetric

$d\cross d$-matrices. We set $a=\sigma\sigma^{*}$ and assume that

there exist some positive constants $\Lambda$ and $\lambda(\Lambda\geq\lambda>0)$

(Hl)
such that $\lambda|\xi|^{2}\leq\xi^{*}a(t,x)\xi\leq\Lambda|\xi|^{2}$ , for all $(t,x)\in\overline{H}$, and all $\xi\in \mathbb{R}^{d}$,

$\sigma$ is uniformly continuous on H. (H2)

Remark 2.1 Note that (Hl) gives a lower and upper bound on the eigenvalues of$a$, which
arefrom the very construction equal to the eigenvalues of $\sigma$ (we have chosen $\sigma$ to be sym-
metric) for which (Hl) holds with $\lambda$ and $\Lambda$ replaced by $\sqrt{\lambda}$ and $\sqrt{\Lambda}$.

Let us also consider a measurable fimction $b$ ffom $[0, T]\cross \mathbb{R}^{d}$ to $\mathbb{R}^{d}$ such that

$|b(t,x)|\leq\Lambda$ for all $(t,x)\in H.$ (H3)

From now on, we always assume (Hl), (H2) and (H3) for $b$ and $\sigma$ .
Now, we give some notations. Fix $\alpha>0$ . Let $H^{\alpha}(\mathbb{R}^{d})$ be the space of continuous,

bounded fimctions with continuous, bounded derivatives up to order $\lfloor\alpha\rfloor$ and such that $\partial_{x}^{\lfloor\alpha\rfloor}f$ is
$(\alpha-\lfloor\alpha\rfloor)$-H\"older continuous. Let $H^{\alpha/2,\alpha}(\overline{H})$ be the set ofcontinuous fimctions with continuous
derivatives $\partial_{t}^{r}\partial_{x}^{s}u$ for all $2r+s<\alpha$ and such that

$||u||_{H^{\alpha\prime 2.\alpha}}= \sum_{2r+s\leq\lfloor\alpha\rfloor}\sup_{(t,x)\in\overline{H}}|\partial_{t}^{r}\partial_{x}^{s}u(t,x)|+\sum_{2r+s--\lfloor\alpha\rfloor}\sup_{(t,x),(ty)\in\overline{H}}\frac{|\partial_{t}^{r}\partial_{x}^{s}u(t,x)-\partial_{t}^{r}\partial_{x}^{s}u(t,y)|}{|x-y|^{\alpha-\lfloor\alpha\rfloor}}$

$+$ $\sum$$\sup_{0<\alpha-2r-s<2(t,x),(v,x)\in\overline{H}}\frac{|\partial_{t}^{r}\partial_{x}^{s}u(t,x)-\partial_{t}^{r}\partial_{x}^{s}u(v,x)|}{|t-v|^{(\alpha-2r-s)/2}}$

is finite.
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3 Main Theorems
Let $\sigma$ and $b$ satisfy $(H1)-(H3)$ . These conditions are sufficient to ensure the existence of a
unique weak solution $(X, (\mathcal{F}_{t}’)_{t\geq 0},\mathbb{P}_{x})$ to

$X_{t}=x+ \int_{0}^{t}\sigma(s,X_{s})dB_{s}+\int_{0}^{t}b(s,X_{s})ds$ (3.1)

for a Brownian motion $B$ .

Remark 3.1 $IfX_{t}=x+ \int_{0}^{t}\sigma(s,X_{s})dB_{s}$ has a strong solution, then (3.1) also admits a strong
solution (See Veretennikov [11]).

Let $b_{\epsilon}$ be a family ofmeasurable coefficients on $\overline{H}$ with $|b_{\epsilon}(t, x)|\leq\Lambda$ for $(t,x)\in\overline{H}$. Let
us consider the unique weak solution $(X^{\epsilon}, (F_{t})_{t\geq 0}, \mathbb{P}_{x})$ to

$X_{t}^{\epsilon}=x+ \int_{0}^{t}\sigma(s,X_{s}^{\epsilon})W_{s}+\int_{0}^{t}b_{\epsilon}(s,X_{s}^{\epsilon})ds$ . (3.2)

Since $b_{\epsilon}$ and $b$ are bounded, the distribution of $X^{\epsilon}$ may be deduced ffom the distribution
of$X$ through a Girsanov transform.

For $T>0$ , let $T$ be the continuous solution of the Euler-Mamyama scheme of step size
$T/n$ . If $\phi(s)=\sup\{t\leq s|t=k/n$ for $k\in \mathbb{N}\}$ , then

$T_{t}=x+ \int_{0}^{t}\sigma(\phi(s),z_{\phi(s)})dB_{s}+\int_{0}^{t}b_{\epsilon}(\phi(s),r_{\phi(s)})ds$ . (3.3)

When $\sigma$ and $b_{\epsilon}$ belong to an appropiate class offfinctions $\mathfrak{M}$ (for example $\mathfrak{M}=H^{\alpha/2,\alpha}(\overline{H})$

for some $\alpha>0$ or $\mathfrak{M}=C_{b}^{1,3}(\overline{H}))$ , and when $f$ belongs to a proper class of ffinctions $S$ (for
example, $ff=H^{2+\alpha}(\mathbb{R}^{d})$ or $S=C^{3}(\mathbb{R}^{d})\cap C_{Sl}(\mathbb{R}^{d}))$, a rate ofweak convergence of the Euler-
Mamyama scheme $\mathscr{K}^{-}$ is known. This means that there exists some constant $C_{\epsilon}$ such that

$| E[f(X_{T})]-E[f(\overline{X}_{T}^{\epsilon})]|\leq\frac{C_{\epsilon}}{n^{\delta}}$ .

Assume that $C_{\epsilon}=O(\epsilon^{-\beta})$ . This is in general the case when one chooses to use a regularization
$b_{\epsilon}$ of $b$ by using mollifiers.

On the other hand, as we will show below in Proposition 3.2 and Remarks 3.3 and 3.5,
one has

$| E[f(X_{T})]-E[f(X_{T}^{\epsilon})]|\leq C’E[(\int_{0}^{T}|b(s, Y_{s})-b_{\epsilon}(s, Y_{s})|^{p}ds)^{q/p}]^{\iota/q}$ (3.4)

for some appropriate values of $p$ and $q$ and positive constant $C’$ .
Assume that the quantity in the right-hand side of (3.4) decreases to $0$ as $O(\epsilon^{\gamma})$ . optimiz-

ing over the choice of $\epsilon$ leads to the following theorem.
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Assume that $f$ belongs to some appropriate class offunctions $\mathfrak{F}$, and an approximation
$b_{\epsilon}$ ofthe drift $b$ belongs to some class offmctions SEJt in a way such that

$|E[f(X_{T})]-E[f(X_{T}^{\epsilon})]|=O(\epsilon^{\gamma})$ (3.5)

and
$| E[f(X_{T}^{\epsilon})]-E[f(\overline{X}_{T}^{\epsilon})]|=O(\frac{1}{\epsilon^{\beta}n^{\delta}})$ . (3.6)

Thenfor $\epsilon=O(n^{-\delta/(\gamma+\beta)})$,

$| E[f(X_{T})]-E[f(\overline{X_{T}^{-}})]|\leq O(n^{-\kappa})where\kappa=\frac{\delta\gamma}{\gamma+\beta}$ .

Under the assumptions (3.5) and (3.6), we have the order $\kappa$ of the weak error among the
SDEs (3.1) and the approximated process (3.3). Therefore, ffom now on, our interest is to
find some conditions that the assumptions (3.5) and (3.6) hold.

3.1 A Perturbation Formula

Through Theorem 3.2 and the remarks below, we can find some situations where Assump-
tion (3.5) holds.

Let $X$ be the solution to (3.1) and $X^{\epsilon}$ be the solution to (3.2).

Theorem 3.2 For $\alpha>2$ and $p>2$ such that $1/\alpha+1/p<1/2$ and $f\in C_{Sl}(\mathbb{R}^{d})$ ,

$|E[f(X_{T})]-E[f(X_{T}^{\epsilon})]|\leq C_{2}(\alpha,p, T)A_{T}(\epsilon)\sqrt{Var_{\mathbb{P}}(f(X_{T}))}$

with

$C_{2}( \alpha,p, T)=T^{1/2-1/p}\exp(T\Lambda^{2}\lambda^{-1}(\alpha-\frac{1}{2}+(1-\frac{2}{\alpha})\frac{\alpha(\frac{1}{2}+\frac{1}{p})-1}{\alpha(\frac{1}{2}-\frac{1}{p})-1}\Vert$ ,

$A_{T}( \epsilon)=E^{0}[\int_{0}^{T}|b_{\epsilon}(s, Y_{s})-b(s, Y_{s})|^{p}ds]^{1/p}$ ,

where $(Y, \mathbb{P}^{0})$ is the weak solution to $Y_{t}=x+ \int_{0}^{t}\sigma(s, Y_{s})dW_{s}$for some Brownian motion $W$.

Remark 3.3 Let us assume that an upper Gaussian estimate holdsfor the transition density
function $p(t,x,y)$ of$Y$ defined by $Y_{t}=x+ \int_{0}^{t}\sigma(s, Y_{s})dW_{s}$. This means thatfor some constants

$C_{1}$ and $C_{2}$ ,

$p(t,x,y) \leq\frac{C_{1}}{t^{d/2}}\exp(\frac{-C_{2}[\gamma-x|^{2}}{t})$ , (3.7)
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for all $(t,x,y)\in \mathbb{R}_{+}\cross \mathbb{R}^{d}\cross \mathbb{R}^{d}$. Then for any $1<r,q\leq+\infty$ satisf2$ingd/2r+1/q<1$ , it
follows that

$A_{T}( \epsilon)\leq C_{3}(\int_{0}^{T}(\int_{\mathbb{R}^{d}}|b(s,y)-b_{\epsilon}(s,y)|^{pq}dy)^{r/q}ds)^{1/rp}=C_{3}||b-b_{\epsilon}||_{L^{rp.qp}(H)}$,

where $C_{3}$ is a certain positive constant $C_{3}$ , andfor $r<+\infty$ set

$||f \rceil|_{L^{r.q}(H)}=(\int_{0}^{T}(\int_{0}^{T}|f(s,x)|^{q}dx)^{r/q}ds)^{1/r}$

and also set $||J||_{L^{\infty,q}(H)}= \sup_{t\in[0,T]}||f(t, \cdot)||_{Lq}$ .

Remark3.4 Such estimate (3.7) holds for example $\iota f$ the diffusion coefficient $a$ belongs to
$H^{\alpha/2,\alpha}(H)$for some $\alpha>0$ (Seefor example Ladyzenskaja [7, \S IV. 13, p. 377]).

Remark 3.5 Even in absence ofa Gaussian upper bounds, the $K’\gamma lov$ estimate (Krylov [6]
or Bass [1, Theorem 7.6.2, p. 114]$)$ could also be used with Hypothesis (Hl) in order to get
an estimate on $A_{T}(\epsilon)$. In this case $ofa$ homogeneous coefficient $b$, from the Krylov estimate,
we have

$|A_{T}(\epsilon)|\leq C(\lambda, \Lambda)e^{T}||b-b_{\epsilon}||_{L^{dp}}$ .
In case $ofa$ time-inhomogeneous coefficient, a similar estimate could be obtained but on the
bounded domain case and one should then estimate the exit timefrom such domains.

3.2 Rates of Convergence of the Euler-Maruyama Approximation with
Regular Enough Coefficients

We now exhibit some situations where Assumption (3.6) holds, under the weakest possible
assumptions on the regularity of the coefficients. Note that other results may hold (See
Theorem 4.3 below).

3.2.1 Case of $Hlder$ continuous coefficients

The weak rate of convergence of the Euler scheme when the coefficients of the PDE are
H\"older continuous has been smdied by R. Mikulevicius and E. Platen [9].

Theorem 3.6 (R. Mikulevicius and E. Platen [9]) Iffor $\alpha\in(0,1)\cup(1,2)\cup(2,3),$ $b$ and a
belongs to $H^{\alpha/2,\alpha}(\overline{H})$ and $f\in H^{2+\alpha}(\mathbb{R}^{d})$, then there exists a constant $K$ such that

$| E[f(X_{T})]-E[f(\overline{X}_{T})]|\leq\frac{K}{n^{E(\alpha)}}$

with

$E(\alpha)=\{\begin{array}{ll}\alpha/2 \iota f\alpha\in(0,1),1/(3-\alpha) \iota f\alpha\in(1,2),1 \iota f\alpha\in(2,3).\end{array}$

Besides, the constant $K$ is linear in $||b||_{H^{\alpha/2.\alpha}}and||a||_{H^{\alpha/2,\alpha}}$.
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3.2.2 Case of smooth coefficients

Theorem 3.6 requires the coefficients to be H\"older continuous. Of course, the convergence
rate is better for smooth coefficients. But in order to achieve a rate equal to 1, it requires $a$

to be in $H^{\alpha/2,\alpha}(\overline{H})$ with $\alpha>2$ and a terminal condition in $H^{2+\alpha}(\mathbb{R}^{d})$ and then with a better
regularity than $C_{p}^{4}$ .

With a bit more regularity on $a$ and $b$ (if we use molifier for the approximation, $b^{\epsilon}$ has
enough regularity), we see that we achieve a convergence rate equal to 1 provided that $f$ in
only in $C^{3}(\mathbb{R}^{d})\cap C_{Sl}(\mathbb{R}^{d})$ by using Malliavin calculus.

Theorem 3.7 Assume that $f$ in $C^{3}(\mathbb{R}^{d})\cap C_{Sl}(\mathbb{R}^{d}),$ $b_{\epsilon}\in C_{b}^{1,3}(\overline{H})$ and $\sigma\in C_{b}^{1,3}(\overline{H})$ . Thenfor a
uniform step size $T/n$,

$| E[f(X_{T}^{\epsilon})]-E[f(\mathscr{T}_{T}^{\epsilon})]|\leq\frac{C}{n}||b_{\epsilon}||_{3,\infty}$,

where $C$ is somepositive constant and $||b_{\epsilon}||_{3,\infty}$ is defined asfollows;

$||b_{\epsilon}||_{3,\infty}= \sum_{j--0}^{3}\Vert\frac{\partial^{i}b_{\epsilon}}{\partial}\Vert_{\infty}$

3.3 Example

Here we provide an example of order of $\epsilon$ in the case of the indicator flmction $b(t,x)=$

$1_{[\zeta_{1}i2]}(x)$ for $x\in \mathbb{R}$ and $\zeta_{1}<\zeta_{2}$ . Ifwe use the following $b_{\epsilon}$ for an approximation of $b,$ $b_{\epsilon}$ has
the Lipschitz continuity: for $\epsilon>0$ ,

$b_{\epsilon}(x)=\{\begin{array}{ll}0, (-\infty,\zeta_{1}-2\epsilon)\cup(\zeta_{2}+2\epsilon, \infty),\frac{1}{2\epsilon}x-\frac{\zeta_{1}-2\epsilon}{2\epsilon}, [\zeta_{1}-2\epsilon,\zeta_{1}),-\frac{1}{2\epsilon}x+\frac{\zeta_{2}+2\epsilon}{2\epsilon}, (\zeta_{2}, \zeta_{2}+2\epsilon],1, [\zeta_{1},\zeta_{2}].\end{array}$

Then we have the following orders: for $p>2$ ,

$( \int_{-\infty}^{\infty}|b_{\epsilon}(x)-b(x)|^{p}dx)^{p}\perp=(\frac{4\epsilon}{p+1})^{\frac{1}{p}}=O(\epsilon^{\frac{1}{p}})$ . (3.8)

And the rate of the divergence of $||b_{\epsilon}||_{H^{\alpha}}$ is $\epsilon^{-1}$ . Now ifwe write the constant $K$ in Theorem
3.6 as $K_{1}||b||_{H^{\alpha l2.a}}+K_{2}$ for some constants $K_{1}$ and $K_{2}$ , which do not depend on $\epsilon$ and $n$ , then
an optimal size of $\epsilon$ is given as

$\epsilon=\frac{1}{n^{p/2(1+p)}}\{\frac{pK_{1}}{C_{2}(\alpha,p,T)C_{3}\sqrt{Var_{\mathbb{P}}(f(X_{T}))}(4/(p-1))^{1/p}}\}^{T+p}L$ ,
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where $C_{2}(\alpha,p, T)$ is the same as in Theorem 3.2 and $C_{3}$ is the same as in Remark 3.3.
Ifwe use a mollifier with the Gaussian kemel as $b_{\epsilon}$ :

$b_{\epsilon}(x)= \int_{-\infty}^{\infty}b(\frac{x-u}{\epsilon})\frac{1}{\sqrt{2\pi}\epsilon}\exp(-\frac{u^{2}}{2\epsilon^{2}})du$ ,

then we have the same order of the convergence as the above (3.8) and this $b_{\epsilon}$ has enough
regularity. And also the rate ofthe divergence of $||b_{\epsilon}||_{3,\infty}$ is $\epsilon^{-3}$ . Hence we obtain an optimal
size of $\epsilon$ :

$\epsilon=\frac{1}{n^{p/(1+3p)}}\{\frac{3pC’}{C_{2}(\alpha,p,T)C_{3}C}\}^{\overline{1}+\overline{3p}}1$ ,

where assume that we have the following estimations: $C||b_{\epsilon}||_{3,\infty}\leq C’/\epsilon^{3}$ for some positive
constant C’ in Theorem 3.7 and $||b-b_{\epsilon}||_{LP}\leq C’’\epsilon^{1/p}$ for some positive constant $C”$ in the
above estimation with the mollifier.

4 Constant Diffusion Case
We now consider a simple case of a time-homogeneous coefficient and a constant diffusion
coefficient. To keep it simple, we assume that $\sigma$ is the identity matrix and then that $X$ is
solution to

$X_{t}=x+B_{t}+ \int_{0}^{t}b(X_{s})ds$ (4.1)

for a Brownian motion $B$ with distribution $\mathbb{P}$ . Let $b_{\epsilon}$ be a family of approximations of $b$

satisfying (H3).
Let $\overline{X}$ and $Z$ be the continuous Euler-Mamyama schemes

$\overline{X}_{t}=x+B_{t}+\int_{0}^{t}b(\overline{X}_{\phi(s)})ds$ and $\mathscr{K}_{t}^{-}=x+B_{t}+\int_{0}^{t}b_{\epsilon}(\overline{X}_{\phi(s)}^{\epsilon})ds$ .

Lemma 4.1 For $p>2$, there exists a constant $C_{3}(p, \Lambda, T)$ such that

$|E[f(\overline{X}_{T})]-E[f(z_{T})]|\leq C_{3}(p,\Lambda, T)\sqrt{Var(f(x+B_{T}))}||b-b_{\epsilon}||_{Lp}$ .

The next lemma is a direct consequence ofTheorem 3.2 and the H\"older inequality of the
Gaussian density.

Lemma 4.2 For $p>d\vee 2$, there exists a constant $C_{4}(p, \Lambda, T)$ such that

$|E\mathscr{K}(X_{T})]-E[f(X_{T}^{\epsilon})]|\leq C_{4}(p, \Lambda, T)\sqrt{Var(f(x+B_{T}))}||b-b_{\epsilon}||_{L^{p}}$.
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The rate ofweak convergence of the Euler-Mamyama scheme to the solution to (4.1) has
been studied by V. Mackevi\v{c}ius in [8] for a drift coefficient which is Lipschitz continuous.
The proof is given for the dimension $d=1$ , but it is remarked in the article that it is suitable
whatever the dimension (See Remark below Theorem 1 in [8]).

Let us denote by $C_{p}^{3}(\mathbb{R}^{d})$ the space of fimctions on $\mathbb{R}^{d}$ that are three times continu-
ously differentiable with all the derivatives up to order 3 of polynomial growth. Of course,
$C_{p}^{3}(\mathbb{R}^{d})\subset C_{Sl}(\mathbb{R}^{d})$ .

Theorem 4.3 (R. Mackevitius, [8, Theorem 1]) If $b_{\epsilon}$ is boundedLipschitz continuous with
constant Lip$(b_{\epsilon})$ and $f\in C_{p}^{3}(\mathbb{R}^{d})$ , then there exists a constant $C_{5}(T,\Lambda,f)$ such that

$| E[f(X_{T}^{\epsilon})]-E[f(z_{T})]|\leq\frac{C_{5}(T,\Lambda,f)}{n}$ Lip$(b_{\epsilon})$ .

Remark4.4 The statement of Theorem 1 in Mackevi\v{c}ius [8] is slightly different since $b$ is
not assumed to be bounded. Yet it is clearffom theproofthat the constant is linear in Lip$(b_{\epsilon})$

$\iota fb$ is also bounded

For a set $G$ in $\mathbb{R}^{d}$, we define $G(\epsilon)=\{x\in \mathbb{R}^{d}|d(x, G)\leq\epsilon\}$, where $d(x,G)= \inf_{y\in G}|x-y|$

is the distance between $x$ and $G$ .

Theorem 4.5 Let $b$ be a boundedfmction on $\mathbb{R}^{d}$ which is Lipschitz except on a set $G$ such
that the Lebesgue meas$(G(\epsilon))=O(\epsilon^{d})$ . Thenfor any $f\in C_{p}^{3}(\mathbb{R})$ and$p>dV2$,

$|E[f(X_{T})]-E[f(\overline{X}_{T})]|=O(n^{-d}\overline{p+}7)$ .

Remark 4.6 We see that the rate ofweak error converges to 1/2 (resp. 1/3) when $d>2$
(resp. $d=1$) when $parrow d$ (resp. $parrow 2$). However, the constants hidden in the $O(n^{-d/(p+d)})$

explode to infinity as $parrow d\vee 2$ . This means that with our estimates, a better rate of
convergence is obtained at the cost $ofa$ bigger constant infront ofthe rate.

Remark 4.7 In the proofofTheorem 4.5, we choose an optimal size of $\epsilon$ as

$\epsilon=\frac{1}{n^{p/(p+d)}}\{\frac{pC_{5}(T,\Lambda,f)C}{d(C_{3}(p,\Lambda,T)+C_{4}(p,\Lambda,T))\sqrt{Var(f(x+B_{T}))}C’}I$ ,

where assume that we have the following estimations: Lip$(b_{\epsilon})=C/\epsilon$ for some positive
constant $C$ in Theorem 4.3 and $||b-b_{\epsilon}||_{L^{p}}\leq C’\epsilon^{d/p}$for some positive constant $C’$ . Then we
obtain the above rate ofthe weak error
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5 Numerical Results
In this section, we give some preliminary numerical experiments in order to determine ifthe
rates of weak convergence are optimal and to which extent the slower rate of convergence
can be observed. Here we consider the following SDE:

$X_{t}=x+ \int_{0}^{t}b(X_{s})ds+W_{t}$ , (5.1)

where

$b(x)=\{\begin{array}{l}\theta_{1}, x\leq 0,\theta_{0}, x>0.\end{array}$

This process is called a Brownian motion with two-valued, state-dependent drift, which is
related to a stochastic control problem. Then ffom Karatzas and Shreve [3, Section 6.5], the
transition density ffinction is given as follows:

$p_{t}(x,z)=\{\begin{array}{ll}2 \int_{0}^{\infty}\int_{0}^{t}e^{2b\theta_{1}}h(t-s;y-z, -\theta_{1})h(s;x+y, -\theta_{0})dsdy, x\geq 0, z\leq 0,2 \int_{0}^{\infty}\int_{0}^{t}e^{2(b\theta_{1}+z\theta_{0})}h(t-s;y, -\theta_{1})h(s;x+y+z, -\theta_{0})dsdy +\frac{1}{\sqrt{2\pi t}}\{\exp(-\frac{(x-z+\theta_{0}t)^{2}}{2})-\exp(-\frac{(x+z-\theta_{0}t)^{2}}{2}-2\theta_{0}x)\}, x\geq 0, z>0,\end{array}$

where set

$h(t;x, \mu)=\frac{|x|}{\sqrt{2\pi t^{3}}}\exp(-\frac{(x-\mu t)^{2}}{2t})$ , $t>0,$ $x\neq 0,$ $\mu\in \mathbb{R}$ .

Note that if $\theta_{1}=-\theta_{0}=\theta>0$ and $x=0$, the distribution of $X_{t}$ is symmetric with respect to
y-axis. So that when $f$ is an odd fimction, we have $E[f(X_{t})]=0$ .

Two approximated processes are attempted: one is the Euler-Mamyama approximation
of the original SDE (5.1), and the other is the Euler-Mamyama approximaton of SDE with
the approximated drift coefficient

$b_{\epsilon}(x)=\{\begin{array}{ll}\theta_{1}, x\leq-\epsilon,\frac{\theta_{0}-\theta_{1}}{2\epsilon}x+\frac{\theta_{0}+\theta_{1}}{2}, -\epsilon<x\leq\epsilon,\theta_{0}, x>\epsilon,\end{array}$

for $\epsilon>0$ . From Remark 4.7, set $\epsilon=n^{\frac{2}{3}}$ , where $n$ is a number of time steps of the Euler-
Mamyama approximation.
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5.1 Case: $\theta_{1}=-\theta_{0}=1$ and $f(x)=x$

In this section, we show a numerical result in the case of $\theta_{1}=-\theta_{0}=1,$ $f(x)=x$ and the
initial value $X_{0}=0$ . Then the true value of $E[f(X_{1})]=0$ since $f(x)=x$ is an odd ffinction.

Through Figure 1 to Figure 3, x-axis denotes the number of time steps $n$ until time 1
Rom 10 to 150 with logarithmic scale. Weak errors of simulation results are reported at
a logarithmic scale on the y-axis, that is $|E[f(X_{1})]-E[f(\overline{X}_{1})]|$ (thin line) and $|E[f(X_{1})]-$

$E[f(\overline{X_{\sim_{1}}^{\sim}})]|arrow$ (dotted line), where to obtain their expectation values, we use the Monte-Carlo
method with $10^{7}$ simulations for each $n$ . If they are parallel to the thick straight line, the
convergence rate has the order 1.

The numerical result in the case of$f(x)=x$ is the following:

Weak oonvergence rate $(x)r)$

10 100
Number $othm\cdot t\cdot p\cdot(Q\infty 0)$

Figure 1: No. of time steps - weak error $(f(x)=x)$.

From Figure 1, it is easy to find that the convergence rate ofthe Euler-Mamyama method
has order 1, but for the Euler-Mamyama method with the approximated drift, the approxi-
mation converges much faster than the uncorrected one.

5.2 Case: $\theta_{1}=-\theta_{0}=1$ and $f(x)=\mathscr{K}$

Here we use the same values of parameters in the previous section and let $f(x)=x^{2}$ . From
Karatzas and Shreve [3, Exercise 6.5.3, pp.441], we have

$E[X_{t}^{2}]=\frac{1}{2}+\sqrt{\frac{t}{2\pi}}(|x|-t-1)\exp(-\frac{(|x|-t)^{2}}{2t})+\{(|x|-t)^{2}+t-\frac{1}{2}\}\Phi(\frac{|x|-t}{\sqrt{t}})$

$+e^{2|x|}(|x|+t- \frac{1}{2})[1-\Phi(\frac{|x|+t}{\sqrt{t}})]$ ,

where set

$\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{z}e^{-\frac{u^{2}}{2}}du$.
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And in the case of $x=0$ and $t=1$ , we obtain $E[f(X_{1})]=0.333369$ .
The numerical result in the case of$f(x)=$ is the following:

Weak convergence rate $(f(x)-^{A}2)$

$tO$ tOO
Number of tme steps (log-scale)

Figure 2: No. of time steps-weak error $( \int(x)=x^{2})$ .

From Figure 2, we easily find that the rate ofconvergence in the both methods is 1.

5.3 Case: $\theta_{1}=-\theta_{0}=1$ and $f(x)=1(x>0)-1(x\leq 0)$

In this section, we use $f(x)=1(x>0)-1(x\leq 0)$ which does not have regurality and does
not belong to our theorem. Note that the fimciton $f$ is symmetric with respect to the origin
a.e. and $X_{t}$ has the continuous and symmetric density fimction so that we have $E[f(X_{1})]=0$ .

The numerical result in the case of$f(x)=1(x>0)-1(x\leq 0)$ is the following:

Weak convergence rate $(f(x)^{-}-ind|cator)$

70 100
Number of bme steps $\{\log-\infty de)$

Figure 3: No. of time steps-weak error $(f(x)=1(x>0)-1(x\leq 0))$ .
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From Figure 3, it is easy to find that the convergence rate ofthe Euler-Maruyama method
has order 1, but as before the Euler-Mamyama method with the approximated drift, con-
verges faster.

We have tested three cases above, the weak convergence rate of the Euler-Mamyama ap-
proximation in all ofthem is 1. And in the case of the Euler-Mamyama approximation with
the approximated drift, we could not obtain the rate of convergence because the approxima-
tion converges too fast for $f(x)=x$ and $1(x>0)-1(x\leq 0)$ , but for $f(x)=x^{2}$ , we find that
the convergence rate is 1. This is probably due to how $\epsilon$ is chosen. In this case, we have
chosen this example because we can obtain the weak limit in closed form. In order to have
slower orders, we need to consider more complicated situations.
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