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1 Introduction

1.1 Focus of Macroeconomics
$\bullet$ The Great Depression $\Rightarrow$ Keynesian view that markets may not read-

ily equilibrate.

$\bullet$ The Great Ination $\Rightarrow$ importance of aggregate supply shocks and
spurred real business cycle research.

$\bullet$ The Great $Di\sin flation\Rightarrow$ New Keynesianism recognizing the potency
of monetary policy.

$\bullet$ The Great Moderation $\Rightarrow$ dynamic stochastic general equilibrium
(DSGE) model as a macroeconomic orthodoxy.

$\bullet$ The Great Panic and Recession of 2008 and $2009\Rightarrow??$?
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1.2 Aim of This Presentation
$\bullet$ To show a subjective summary of macroeconomic attempts to explain

risk premium, particularly equity premium and term premium in dy-
namic macroeconomic framework.

$\bullet$ A key feature of recent events has been the close feedback between the
real economy and financial conditions.

$\bullet$ Joint analysis of macroeconomy and risk premium, in addition to the
financial frictions and macroeconomy, can be a central focus of macro-
economics.

1.3 Structure of Presentation
$\bullet$ Introduction to the Dynamic Macroeconomics

$\bullet$ Equity Premium Puzzle

$\bullet$ Macro-Finance: Joint Explanation of Term Structure and Macroecon-
omy

$\bullet$ Summary

2 DSGE Model

2.1 History
$\bullet$ Neoclassical growth model, namely Ramsey (1928) –Cass (1965) -

Koopmans (1965) model (stochastic extension, Brock and Mirman,
1972), that is Solow (1956) –Swan (1956) model $+$ optimal saving
choice, was thought to be very theoretical.

$\bullet$ Kydland and Prescott (1982) use this neoclassical growth model for
positive analysis.

$\bullet$ Neoclassical model calibrated to explain the data is then called Real
Business Cycle (RBC) models.

$\bullet$ Macroeconomics has been increasingly paying more attention to fitting
the data.
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$\bullet$ RBC models has developed to explain the data better by incorporating
such mechanisms as indivisible labor (Hansen, 1985, Rogerson, 1988),
tax distortions (Braun, 1994, McGrattan, 1994), capacity utilization
(Greenwood, Hurcowitz and Hoffman, 1988), labor hoarding (Burnside,
Eichenbaum and Rebelo, 1996), home production (Benhabib, Rogerson
and Wright, 1991), or Labor search and matching (Merz, 1995, Andol-
fatto, 1996).

$\bullet$ New Keynesian Model, further incorporating nominal rigidities, is now
the workhorse model (especially, Christiano, Eichenbaum and Evans,
2005, and Smets and Wouters, 2003) in many policy institutions.

Simplest Example

2.2 Simple RBC Model
$\bullet$ The social planner maximizes

$E_{0}\sum_{t=0}^{\infty}\beta^{t}[\log(C_{t})-\frac{\chi}{2}h_{t}^{2}]$ ,

subject to
$Y_{t}=[\exp(z_{t})h_{t}]^{1-\alpha}K_{t}^{\alpha}$ ,

$C_{t}+I_{t}=Y_{t}$ ,

$K_{t+1}=(1-\delta)K_{t}+I_{t}$ ,

and
$z_{t}=\rho_{z}z_{t-1}+u_{t}$ ,

$\bullet$ Uniqueness of the equilibrium path in this economy can be proved by
applying contraction mapping theorem to functional space.

$\bullet$ Note that by specifying functional forms and shocks, the model can fit
the data.

$\bullet$ First order necessary conditions are

$\frac{1}{C_{t}}=\beta E_{t}\frac{1}{C_{t+1}}\{(1-\delta)+\alpha[\exp(z_{t+1})h_{t+1}]^{1-\alpha}K_{t+1}^{a-1}\}$ ,

$(1-\alpha)[\exp(z_{t})h_{t}]^{-\alpha}\exp(z_{t})K_{t}^{a}=\chi h_{t}C_{t}$,

and
$C_{t}+K_{t+1}-(1-\delta)K_{t}=[\exp(z_{t})h_{t}]^{1-\alpha}K_{t}^{a}$ .
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$\bullet$ Usually, the model is log-linearly approximated as

$E_{t}\hat{C}_{t+1}$

$=$
$\hat{C}_{t}$

$+(1-\alpha)[1-\beta(1-\delta)](E_{t}z_{t+1}+E_{\eta}\hat{h}_{t+1}-\hat{K}_{t+1})$ ,

$\alpha\hat{K}_{t}-\hat{C}_{t}-(1+\alpha)\hat{h}_{t}+(1-\alpha)z_{t}=0$,

and

$\frac{1-\beta(1-\delta)-\alpha\beta\delta}{\alpha\beta}\hat{C}_{t}+\hat{K}_{t+1}-(1-\delta)\hat{K}_{t}$

$=$ $\frac{1-\beta(1-\delta)}{\alpha\beta}[(1-\alpha)z_{t}+(1-\alpha)\hat{h}_{t}+\alpha\hat{K}_{t}]$ ,

where
$\log(\frac{X_{t}}{X})\approx\frac{X_{t}-X}{X}\equiv\hat{x}_{t}$ .

$\bullet$ This system can be expressed in the state space form:

$A$ $(\begin{array}{l}E_{\eta}\hat{C}_{t+l}\hat{K}_{t+1}\end{array})=B(\begin{array}{l}\hat{C}_{t}\hat{K}_{t}\end{array})+CE_{t}z_{t+1}+Dz_{t}$,

or
$(\begin{array}{l}E_{t}\hat{C}_{t+1}\hat{K}_{t+l}\end{array})=A^{-1}B(\begin{array}{l}\hat{C}_{t}\hat{K}_{t}\end{array})+A^{-1}CE_{t}$ 銑 $+$ 1 $+A^{-1}Dz_{t}$ .

$\bullet$ With eigendecomposition:

$A^{-1}B=(\begin{array}{ll}v_{1l} v_{12}v_{2l} v_{22}\end{array})(\begin{array}{ll}\lambda_{l} 00 \lambda_{2}\end{array})(\begin{array}{ll}v_{ll} v_{12}v_{21} v_{22}\end{array})$ ,

we now have

$(\begin{array}{ll}v_{l1} v_{l2}v_{21} v_{22}\end{array})(\begin{array}{l}E_{\eta}\hat{C}_{t+l}\hat{K}_{t+l}\end{array})$

$=(\begin{array}{ll}\lambda_{l} 00 \lambda_{2}\end{array})(\begin{array}{ll}v_{11} v_{l2}v_{2l} v_{22}\end{array})(\begin{array}{l}\hat{C}_{t}\hat{K}_{t}\end{array})$

$+(\begin{array}{l}c_{l}c_{2}\end{array})E_{t}z_{t+1}+(\begin{array}{l}d_{l}d_{2}\end{array})z_{t}$,
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where

and

$(\begin{array}{l}c_{1}c_{2}\end{array})=(\begin{array}{ll}v_{1l} v_{12}v_{21} v_{22}\end{array})A^{-1}C$ ,

$(\begin{array}{l}d_{1}d_{2}\end{array})=(\begin{array}{ll}v_{11} v_{12}v_{2l} v_{22}\end{array})A^{-1}D$ .

$\bullet$ The first row is

$v_{11}E_{t}\hat{C}_{t+1}+v_{12}\hat{K}_{t+1}=\lambda_{1}(v_{11}\hat{C}_{t}+v_{12}\hat{K}_{t})+c_{1}E_{t}z_{t+1}$ .

$\bullet$ If
$|\lambda_{1}|>1$ , (1)

$(v_{11}\hat{C}_{t}+v_{12}\hat{K}_{t})$

$=- \frac{c_{1}}{\lambda_{1}}E_{t}z_{t+1}-\frac{c_{1}}{\lambda_{1}^{2}}E_{t}z_{t+2}-\ldots-\lim_{Tarrow\infty}\frac{c_{1}}{\lambda_{1}^{T}}E_{t}z_{t+T}$

$=- \frac{\lambda_{1}c_{1}}{\lambda_{1}-\rho_{z}}z_{t}$,

and therefore
$\hat{C}_{t}=-\frac{v_{12}}{v_{11}}\hat{K}_{t}-\frac{\lambda_{1}c_{1}}{v_{11}(\lambda_{1}-\rho_{z})}z_{t}$. (2)

$\bullet$ The second row is

$v_{21}E_{t}\hat{C}_{t+1}+v_{22}\hat{K}_{t+1}=\lambda_{2}(v_{21}\hat{C}_{t}+v_{22}\hat{K}_{t})+d_{2}z_{t}$.

$\bullet$ If
$|\lambda_{2}|<1$ , (3)

$\hat{K}_{t+1}=\omega_{2}\hat{K}_{t}+\frac{v_{11}d_{2}-v_{21}\lambda_{2}c_{1}}{v_{11}v_{22}-v_{21}v_{12}}z_{t}$ . (4)

$\bullet$ Equations (2) and (4) are solutions. Conditions (1) and (3) are usually
satisfied thanks to $\beta<1$ .

$\bullet$ Parameters can be estimated by applying Kalman filter for the state
space model consisting of equations (2) and (4).
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2.3 Implications to Finance
$\bullet$ There exist several exceptions such as Fern$\mathfrak{W}deZ$-Villaverde and Rubio-

Ram\’irez (2005), but standard models for positive analysis do not con-
sider higher order terms.

$\bullet$ Therefore, certainty equivalence holds and no risk premium is consid-
ered in the model.

$\bullet$ Unconditional expected returns for any asset must be equated.

$\bullet$ Several new challenges are made recently with increasing importance
of understanding risk premium.

3 Equity Premium Puzzle
$\bullet$ Mehra and Prescott (1985) argue a particular empirical problem of the

RBC model.

$\bullet$ According to Kocherlakota (1996), “Over the last one hundred years,
the average real return to stocks in the United States has been about
six percent per year higher that on Reasury bills. At the same time,
the average real return on treasury bills has been about one percent
per year.”

$\bullet$ Returns on assets can be different depending on the equity premium,
namely the degree to which each asset retum covaries with the con-
sumption.

$\bullet$ Yet, the size of the observed equity premium is only justified when risk
aversion is set incredibly high.

Risk Free Rate Puzzle

$\bullet$ Weil (1989) shows that this fact also implies the second puzzle.

$\bullet$ According to Kocherlakota (1996), “although Treasury bills offer only
a low rate of return, individuals defer consumption at a sufficiently
fast rate to generate average per capita consumption growth of around
two percent per year... although individual like consumption to be
very smooth, and although the risk free rate is very low, they still save
enough that per capita consumption grows rapidly.”
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3.1 CRRA Preference
$\bullet$ Under CRRA preference, which has been intensively used in macroeco-

nomics,
$u(C_{t})= \frac{C_{t}^{1-\alpha}}{1-\alpha}$ ,

where $\alpha$ is the coefficient of relative risk aversion.

$\bullet$ Then, we maximize the life-time welfare:

$E_{0}\sum_{t=0}^{\infty}\beta^{t}u(C_{t})$ ,

subject to the budget constraint:

$C_{t}+s_{t}+B_{t}\leq R_{\tau}^{s}S_{t-1}+$ 瑠 $B_{t-1}+Y_{t}$ .

$\bullet$ Then, we can derive the optimality (absence of arbitrage) conditions
for bond and stock holdings are expressed

$E_{t}[(\frac{C_{t+1}}{C_{t}})^{-\alpha}(R_{\iota+1}^{s}-R_{t+1}^{b})]=0$ , (5)

and

$E_{t}\beta[(\frac{C_{t+1}}{C_{t}})^{-\alpha}R_{t+1}^{b}]=1$ , (6)

where the pricing kernel or stochastic discount factor is defined as

$M_{t,t+1}= E_{t}\beta(\frac{C_{t+1}}{C_{t}})^{-\alpha}$ .

$\bullet$ Test results on equations (5) and (6) are shown as below.
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$\bullet$ Correlation between consumption growth and equity returns observed

from the data is too small for the sizable equity premium.

$\bullet$ There have been several attempts to solve equity premium puzzle.

1. Preference Modification
2. Low Requency Event

3. Incomplete Market

3.2 Preference Modification
$\bullet$ Habit Formation

$\bullet$ Epstein-Zin Preference

Habit

$\bullet$ What happens if we become more risk averse when the level of con-
sumption decreases in a recession?

$\bullet$ A model of time varying risk aversion, where the risk aversion depends
on the level of consumption, may resolve the equity premium and the
risk free rate puzzles.
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$\bullet$ Abel (1990) and Gali (1994) propose a preference with habit formation
as

$U_{t}= \frac{c_{t}^{1-\alpha}C_{t}^{\gamma}C_{t-1}^{\lambda}}{1-\alpha}$ ,

where $C_{t}$ is the aggregate consumption and taken as given when opti-
mizing. We assume that agents tend to be jealous and $\gamma,$

$\lambda<0$ . There-
fore, this preference reflects the idea by Duesenberry (1949), “keeping
up with Joneses.”

$\bullet$ Under this preference, optimality conditions for bond as well as stock
holdings in equations (5) and (6) are now rewritten as

$E_{t}[(\frac{C_{t+1}}{C_{t}}I^{\gamma-\sigma}(\frac{C_{t}}{C_{t-1}})^{\lambda}(R_{t+1}^{s}-R_{t+1}^{b})]=0$,

and

$E_{t}\beta[(\frac{C_{t+1}}{C_{t}})^{\gamma-\sigma}(\frac{C_{t}}{C_{t-1}})^{\lambda}R_{t+1}^{b}]=1$ .

$\bullet$ With reasonable parameters, the model solves the equity premium puz-
zle but not the risk free rate puzzle.

$\bullet$ When $\gamma$ , which is supposed to be negative, is large in absolute value,
marginal utility of own consumption is highly sensitive to fluctuations
in per capita consumption and therefore strongly negatively correlated
to stock returns.

3.3 Epstein-Zin Preference
$\bullet$ With the standard CRRA preference, the risk aversion is the reciprocal

of the IES.

$\bullet$ Epstein and Zin (1989, 1991) propose a preference which disentangles
the risk aversion $\gamma$ and the IES $\psi$ :

$U_{t}=\{C_{t}^{1-\frac{1}{\psi}}+\beta[E_{t}(U_{t+1}^{1-\gamma})]^{\frac{1-\varpi 1}{1-\gamma}}\}^{\frac{1}{1_{\phi}^{1}-}}$ .

$\bullet$ When the risk aversion $\gamma$ equals the reciprocal of the IES $\frac{1}{\psi}$ , this col-
lapses to the CRRA utility function.
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$\bullet$ High risk aversion toghether with high IES is possible. This is a good
news for risk free rate puzzle.

$\bullet$ Optimality conditions for bond and stock holdings in equations (5) and
(6) are now

$E_{t}[U_{t1}^{\frac{1}{\psi+}-\gamma}(\frac{C_{t+1}}{C_{t}})^{-\frac{1}{\psi}}(R_{t+1}^{s}-R_{t+1}^{b})]=0$ ,

and
$E_{t}\beta[(E_{t}U_{t+1}^{1-\gamma})^{\frac{\gamma-\not\simeq}{1-\gamma}}U_{t+1}^{\frac{1}{\psi}-\gamma}(\frac{C_{t+1}}{C_{t}})^{-\frac{1}{\psi}}R_{t+1}^{b}]=1$ .

$\bullet$ The existence of the unobservable expected utility may solve both puz-
zles.

$\bullet$ Kocherlakota (1996), however, claims that if consumption growth is
not predictable, equations (5) and (6) hold again under unconditional
expectation.

3.4 Low Frequency Event
$\bullet$ Long-Run Risk

$\bullet$ Disaster Shock

Long-Run Risk: Bansal and Yaron (2004)

$\bullet$ Consider again Epstein-Zin Preference

$U_{t}=\{C_{t}^{\frac{1-\gamma}{\theta}}+\beta[E_{t}(U_{t+1}^{1-\gamma})]^{\frac{1}{\theta}}\}^{\frac{\theta}{1-\gamma}}$ ,

where
$\theta=\frac{1-\gamma}{1-\frac{1}{\psi}}$ .

$\bullet$ When $\theta=1$ , the agent is indifferent to the timing of the resolution of
the uncertainty of the consumption path.

$\bullet$ When $\theta<1$ , namely risk aversion $\gamma$ is larger than the reciprocal of the
IES $1/\psi$ , the agent prefers early resolution.

$\bullet$ When $\theta>1$ , namely risk aversion $\gamma$ is smaller than the reciprocal of
the IES $1/\psi$ , the agent prefers late resolution.
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$\bullet$ The logarithm of the stochastic discount factor for the $\log$ utility: $U_{t}=$

$\log(C_{t})$ , is
$m_{t,t+1}=\log(\beta)+\triangle c_{t+1}$ .

$\bullet$ On the other hand, that of Epstein-Zin preference is expressed as

$m_{t,t+1}$ (7)
$=$ $\log(\beta)+\triangle c_{t}$

$-( \gamma-1)\sum_{i=0}^{\infty}(E_{t+1}-E_{t})\triangle c_{t+j+1}$

$- \frac{1}{2}(\gamma-1)’ var_{t}[\sum_{i=0}^{\infty}\beta^{j}(E_{t+1}-E_{t})\Delta c_{t+j+1}]$ .

$\bullet$ Bansal and Yaron (2004) suppose that the agent prefers early resolution
in their model and specify the long-run risks, that is the shocks to the
long-run component of consumption, and time varying risk.

$\bullet$ This long-run model can resolve both the equity premium and risk
free rate puzzles thanks to the effects from expected growth rate of
consumption and time varying risks on the stochastic discount factor
in equation (7).

$\bullet$ Question is whether we can statistically distinguish stochastic specffi-
cation with long-run risk from one without it.

Disaster Shock: Rietz (1988)

$\bullet$ Mehra and Prescott (1985) assume that consumption growth rates are
symmetric about their mean and they fall above their mean as often as
they fall below.

$\bullet$ Rietz (1988) supposes a situation when consumption fall drastically and
equity returns are far below average by incorporating a low-probability,
depression-like state as an additional state in the Markov chain.

$\bullet$ Introduction of disaster risk has now become more interested than be-
fore due to the recent financial crisis.

$\bullet$ Robert Barro and his coauthors now estimate the disaster risk from
historical data.
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3.5 Incomplete Market
$\bullet$ When individual cannot write contracts against any contingency, indi-

vidual consumption growth can be more covary with stock returns than
per capita consumption growth. This may solve the equity premium
puzzle.

$\bullet$ Under such situation, precautionary saving motive stemming from self-
insurance may result in lower natural rate of interest. This may solve
the risk free rate puzzle.

$\bullet$ Previous studies, however, report that incomplete market qualitatively
alleviate these puzzles but not solve them quantitatively.

$\bullet$ Huggett (1993) and Heaton and Lucas (1995) show that under realistic
calibration, the difference between the incomplete markets interest rate
and the complete markets interest rate is small. Most individuals are
sufficiently far from the debt ceiling.

$\bullet$ Constantinides and Duffie (1995) show analytical solution under incom-
plete market by assuming that the idiosyncratic shocks are permanent.
This could reduce equilibrium real interest rates and increase equity
premium.

$\bullet$ Heaton and Lucas (1995), however, find again with the model calibrated
to match the data that difference in interest rates between complete and
incomplete markets is small.

$\bullet$ Marcet and Singleton (1991), Telmer (1993), Lucas (1994), den Haan
(1994), and Heaton and Lucas (1995) show that allocations under in-
complete markets are almost the same as those under complete markets.

$\bullet$ Krueger and Lustig (2010) provide various examples of economies in
which uninsurable income shocks do not matter for the equity premium.

3.6 Rich Households
$\bullet$ According to Ait-Sahalia, Parker and Yogo (2004), “The risk aversion

implied by the consumption of luxury goods is more than an order of
magnitude less than that implied by national accounts data. For the
very rich, the equity premium is much less of a puzzle.”
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$\bullet$ Parker and Vissing-Jorgensen (2009) document that the consumption
of rich households is over five times more volatile than aggregate con-
sumption, which may help to explain average premiums in financial
markets.

$\bullet$ Chien, Cole, and Lustig (2009) build a model in which a large fraction
of households do not rebalance their portfolios in response to aggregate
shocks. As a consequence, households who do rebalance need to sell
more stocks in good times and buy more stocks in bad times. This
mechanism generates time variation in risk premiums.

4 Macro-Finance
$\bullet$ Macro-finance research has examined the relationship between the term

structure of interest rates and the macro-economy in an interdiscipli-
nary fashion.

$\bullet$ Belows are only selective survey of this field:

1. Structural VAR Models
2. Affine Term Structure Models

3. DSGE Models

4. Nelson-Siegel Models

4.1 Structural VAR Model
$\bullet$ Evans and Marshall (1988) estimate a structural VAR model as

$(\begin{array}{ll}a 0c 1\end{array})(\begin{array}{l}Z_{t}R_{j,t}\end{array})$ $=$ $(\begin{array}{ll}A(L) 0C(L) D(L)\end{array})(\begin{array}{l}Z_{t}R_{j,t}\end{array})$

$+\sigma(\begin{array}{l}\epsilon_{t}^{Z}d_{t}\end{array})$

$\bullet$ $Z_{t}$ is a vector of endogenous variables including policy interest rates.
$R_{j,t}$ is a bond yield for maturity $j$ . Variables in $Z_{t}$ are determined in-
dependently from $R_{j,t}$ based on the idenfiticaitons imposed by previous
studies.

$\bullet$ They assume that yields should be linearly estimated by macroeco-
nomic variables.
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4.2 Affine Term Structure Model
$\bullet$ Since Vasicek (1977), various extensions have been made to affine term

structure model to better explain the data.

$\bullet$ Multi unobserved factor model proposed by Duffie and Kan (1996) is
widely used with high explanatory power of the yield curve.

$\bullet$ Ang and Piazzessi (2003) incorporate macroeconomic variables in ad-
dition to unobserved factors and show that fit is improved.

$\bullet$ Ichiue and Ueno (2006) extend Black (1995) and propose a term struc-
ture model with explicit considerations to the zero bound constraint.

Duffie and Kan (1996)

$\bullet$ Assume that spot risk free rate is expressed as the affine function of
state variables:

$r_{t}=\delta_{0}+\delta_{1}’X_{t}$ . (8)

$\bullet$ Assume that state variables under both $P$ and $Q$ measures follows such
Gaussian processes as

$X_{t+1}=K^{Q}X_{t}+\Sigma_{X}\epsilon_{t+1}^{Q}$ ,

and
$X_{t+1}=a^{P}+K^{P}X_{t}+\Sigma_{X}\epsilon_{t+1}^{P}$ . (9)

$\bullet$ By modeling the market price of risk also as the affine function:

$\Lambda_{t}=\lambda_{0}+\Lambda_{1}X_{t}$ ,

we have
$a^{P}=\Sigma_{X}\lambda_{0},$ $K^{P}=K^{Q}+\Sigma_{X}\Lambda_{1}$ ,

since the market price of risk should satisfy

$\epsilon_{t}^{P}=\epsilon_{t}^{Q}-\Lambda_{t}dt$ .

$\bullet$ The Bond prices are also expressed as the affine function:

$p_{t}^{(m)}=\exp(A_{m}+B_{m}’X_{t})$ ,

and therefore, the yields are

$y_{t}^{(m)}=- \frac{A_{m}}{m}-\frac{B_{m}’X_{t}}{m}$ .
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where
$B_{0}=0$ ,

$B_{m}=-\delta_{1}’+K’B_{m-1}$ ,
$A_{0}=0$ ,

and
$A_{m}=A_{m-1}- \delta_{0}+\frac{1}{2}B_{m}’\Sigma_{X}\Sigma_{X}’B_{m}$ .

$\bullet$ Note that we can compute term premium because we have yields under
both $P$ and $Q$ measures.

Kalman Filter
$\bullet$ Observation equation is defined as

$y_{t}=A+B’X_{t}+\eta_{t}$ .

$\bullet$ For simplicity, when we aim at fitting 10 and 20 year zero coupon yields
with two unobserved factors, although five factor model is popular,

$(\begin{array}{l}y_{t}^{(10)}y_{t}^{(20)}\end{array})$ $=$ $-( \frac A_{240}\frac{1}{24018^{0}}A_{120})$

$-( \frac B_{240}\frac{1}{2401201}B_{120}’)(x_{t}^{2}x_{t}^{1})+\eta_{t}$ .

$\bullet$ This altogether with the state equation (9) are jointly estimated via
maximum likelihood.

Ang and Piazzessi (2003)
$\bullet$ Short-rate is one of the most important driver of yield curves but re-

flects macroeconomic variables such as output and inflation via mone-
tary policy rule.

$\bullet$ Equation (8) is now rewritten as
$r_{t}=\delta_{0}+\delta_{1}’X_{t}^{o}+\delta_{2}’X_{t}^{u}$ .

$\bullet$ The short rate dynamics of the term structure model can be interpreted
as a version of the Taylor rule with the errors as unobserved factors.
In other words, the pricing kernel is driven by shocks to both observed
macro factors and (uncorrelated) unobserved factors.

$\bullet$ “Macro factors primarily explain movements at the short end and mid-
dle of the yield curve while unobservable factors still account for most
of the movement at the longend of the yield curve.”
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4.3 DSGE Models for Bond Pricing
$\bullet$ DSGE Models for Bond Pricing is still a very much on-going project.

$\bullet$ H\"ordahl, TYistani and Vestin (2006) combines the DSGE model with
the affine term structure model.

$\bullet$ Rudebusch and Swanson (2008, 2009) and Binsbergen, $Fern\mathfrak{W}dez$-Villaverde,
Koijen, and Rubio-Ramfrez (2010) aim to explain interrelationship be
tween macroeconomy and term premium in theoretically consistent
manner.

$\bullet$ De Graeve, Emiris and Wouters (2009) claim that if the DSGE model
is rich enough to explain the data, first order approximated model can
explain the yield curve without relying on the term premium.

H\"ordahl, $Rtani$ and Vestin (2006)

$\bullet$ H\"ordahl, Tkistani and Vestin (2006) combine the affine term structure
model with the new Keynesian model.

$\bullet$ They suppose that the macroeconomy is depicted by a standard new
Keynesian model with lags:

$\pi_{t}=\frac{\mu_{\pi}}{12}\sum_{i=1}^{12}E_{t}\pi_{t+i}+(1-\mu_{\pi})\sum_{i=1}^{3}\delta_{\pi i}\pi_{t-i}+\delta_{x}x_{t}+\epsilon_{t}^{\pi}$ ,

12

$X_{t}$ $=$ $\frac{\mu_{x}}{12}\sum E_{t}x_{t+i}$

$i=1$

3

$+(1- \mu_{x})\sum_{i=1}\zeta_{xi^{X_{t-i}}}+\zeta_{r}(r_{t}-E_{t}\pi_{t+11})+\epsilon_{t}^{x}$ ,

and
$r_{t}=(1-\rho)[\beta E_{t}\pi_{t+11}-\pi_{t}^{*}+\gamma x_{t}]+\rho r_{t-1}+\eta_{t}$.

$\bullet$ It is also assumed unobserved inflation target:

$\pi_{t}^{*}=\phi_{\pi}\pi_{t-1}^{*}+u_{\pi,t}$ .

$\bullet$ This system can be solved as in equations (2) and (4). Therefore, the
short-rate can be expressed by the state variables obtained from the
new Keynesian model:

$r_{t}=\delta_{0}+\delta_{1}’Z_{t}$ . (10)
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$\bullet$ Hordahl, Tristani and Vestin (2006) jointly estimate the new Keyne-
sian model and the affine term structure model based on equation (10)
together.

4.4 Rudebusch and Swanson (2008)
$\bullet$ Models explained above and below separate the determination of macro-

economic variables and the term premium. Macroeconomic variables
are determined irrespective of term premium.

$\bullet$ Only consumption based model approach can theoretically explain the
joint determination of premium and macroeconomic variables.

$\bullet$ Rudebusch and Swanson (2008) simulate a new Keynesian model with
internal habit formation with higher order approximation based on per-
turbation method.

$\bullet$ They conclude that “standard DSGE models, even with nominal rigidi-
ties, labor market frictions, and consumption habits, appear to fall
short of being able to price nominal bonds.”

$\bullet$ Yet, Rudebusch and Swanson (2009) report that if Epstein-Zin pref-
erence is employed, “the DSGE model is able to fit the asset pricing
facts without compromising its ability to fit the macroeconomic data.

$\bullet$ Binsbergen, Fern\’andez-Villaverde, Koijen, and Rubio-Ram\’irez (2010)
extends this analysis with endogenous capital etc.

De Graeve, Emiris and Wouters (2009)

$\bullet$ De Graeve, Emiris and Wouters (2009) estimate the standard DSGE
model based on Christiano, Eichenbaum and Evans (2005) or Smets and
Wouters (2003), which incorporates nominal price and wage rigidities,
consumption habit, investment growth adjustment cost, endogenous
capacity utilization and structurally decompose the US yield curves.

$\bullet$ They conclude that contrary to the previous studies, the US yield curve
is consistent with the expectations hypothesis under the rational ex-
pectation of the standard DSGE models.
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4.5 Nelson-Siegel Model
$\bullet$ Yield curves based on Nelson and Siegel (1987) model show remarkable

fit.

$\bullet$ Recent paper by Christensen, Diebold and Rudebusch (2009) construct
the Arbitrage.Free Nelson-Siegel model. With this model, we can un-
derstand the underlying factor in the context of “level,” “slope,” and
“curvature.”

Litterman and Sheinkman (1991)

$\bullet$ Litterman and Sheinkman (1991) show with the principle component
analysis that most of the variations in the Treasury yields are explained
by only three factors.

$\bullet$ They are interpreted as “level,” “slope,” and “curvature.”

4.6 Nelson and Siegel (1987)
$\bullet$ Nelson and Siegel (1987) propose an yield curve model as

$y(m)=L+S( \frac{1-e^{-m\lambda}}{m\lambda})+C(\frac{1-e^{-m\lambda}}{m\lambda}-e^{-m\lambda})$ .

$\bullet$ The factor loading for the first term is constant, that for the second
term starts at 1 and decays monotonically to $0$ and that for the third
term starts at $0$ , increases and decreases to $0$ . Therefore, these terms
are considered to represent “level,” “slope,” and “curvature.”

$\bullet$ We can estimate four parameters, $L,$ $S,$ $C$ and $\lambda$ for each period.

Diebold and Li (2006)

$\bullet$ Diebold and Li (2006) propose a dynamic Nelson-Siegel model:

$y_{t}(m)=L_{t}+S_{t}( \frac{1-e^{-m\lambda}}{m\lambda})+C_{t}(\frac{1-e^{-m\lambda}}{m\lambda}-e^{-m\lambda})$ ,

where factors, $L_{t},$ $S_{t}$ and $C_{t}$ , are assumed to follow autoregressive
processes.
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4.7 Christensen, Diebold and Rudebusch (2009)
$\bullet$ Above models based on Nelson and Siegel (1987) are not from theory

just from mere fitting.

$\bullet$ Christensen, Diebold and Rudebusch (2009) combine Nelson-Siegel
model with theory, namely no arbitrage.

$\bullet$ We can understand how such factors as “level,” “slope,” and “curva-
ture” affect yields in a theoretically consistent manner.

$\bullet$ Christensen, Diebold and Rudebusch (2009) assume that yields are
explained by three factors, $L_{t},$ $S_{t}$ and $C_{t}$ .

$\bullet$ Instantaneous risk-free rate is given by

$r_{t}=L_{t}+S_{t}$ ,

while state equations are defined under $Q$ measure as

$(\begin{array}{l}dL_{t}dS_{t}dC_{t}\end{array})$ $=$ $(\begin{array}{lll}0 0 00 -\lambda \lambda 0 0 -\lambda\end{array})(\begin{array}{l}L_{t}S_{t}C_{t}\end{array})dt$

$-(\begin{array}{lll}\sigma_{L} 0 00 \sigma_{S} 00 0 \sigma_{C}\end{array})(\begin{array}{l}dW_{t}^{Q,L}dW_{t}^{Q,S}dW_{t}^{Q,C}\end{array})$ .

$\bullet$ Under these settings, yields can be expressed as Nelson-Siegel model:

$y_{t}(m)$ $=$ $L_{t}+S_{t}( \frac{1-e^{-m\lambda}}{m\lambda})$

$+C_{t}( \frac{1-e^{-m\lambda}}{m\lambda}-e^{-m\lambda})$

$+ \frac{A(m)}{m}$ ,

where $A(m)$ is a yield adjustment factor, which is time-invariant but
depends only on the maturity.

5 Summary
$\bullet$ Puzzles in the financial markets have not been solved completely.
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$\bullet$ A model with a preference disentangling risk aversion and intertem-
poral substitution together with the low frequency events seem to be
promising in solving puzzles in financial markets.
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