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ABSTRACT. I collect a number of proofs of the existence of large almost disjoint
and independent families on the natural numbers. This is mostly the outcome
of a discussion on mathoverflow.

1. INTRODUCTION

A family $\mathcal{F}\subseteq \mathcal{P}(\omega)$ is an independent family (over $\omega$ ) if for every pair $\mathcal{A},$ $\mathcal{B}$ of
disjoint finite subsets of $\mathcal{F}$ the set

$\cap \mathcal{A}\cap(\omega\backslash \cup \mathcal{B})$

is infinite. Fichtenholz and Kantorovich showed that there is an independent family
on $\omega$ of size continuum [3] (also see [6] or [8]). I collect several proofs of this
fundamental fact. A typical application of the existence of a large independent
family is the result that there are $2^{2^{\aleph_{0}}}$ ultrafilters on $\omega$ due to $Posp_{1}\mathfrak{X}i1[11]$ :

Given an independent family $(A_{\alpha})_{\alpha<2^{\aleph_{0}}}$ , for every function $f$ : $2^{\aleph_{0}}arrow 2$ there is
an ultrafilter $p_{f}$ on $\omega$ such that for all $\alpha<2^{\aleph_{0}}$ we have $A_{\alpha}\in p_{f}$ iff $f(\alpha)=1$ . Now
$(p_{f})_{f:2^{\aleph}0}arrow 2$ is a family of size $2^{2^{\aleph_{0}}}$ of pairwise distinct ultrafilters.

Independent families in some sense behave similarly to almost disjoint families.
Subsets $A$ and $B$ of $\omega$ are almost disjoint if $A\cap B$ is finite. A family $\mathcal{F}$ of infinite
subsets of $\mathcal{P}(\omega)$ is almost disjoint any two distinct elements $A,$ $B$ of $\mathcal{F}$ are almost
disjoint.

2. ALMOST DISJOINT FAMILIES

An easy diagonalisation shows that every countably infinite, almost disjoint fam-
ily can be extended.

Lemma 2.1. Let $(A_{n})_{n\in\omega}$ be a sequence ofpairwise almost disjoint, infinite subsets
of $\omega$ . Then there is an infinite set $A\subseteq\omega$ that is almost disjoint from all $A_{n},$ $n\in\omega$ .

Proof. First observe that since the $A_{n}$ are pairwise almost disjoint, for all $n\in\omega$

the set

$\omega\backslash \bigcup_{k<n}A_{k}$

is infinite. Hence we can choose a strictly increasing sequence $(a_{n})_{n\in\omega}$ of natural
numbers such that for al $n\in\omega,$ $a_{n} \in\omega\backslash \bigcup_{k<n}A_{k}$ . Clearly, if $k<n$ , then $a_{n}\not\in A_{k}$ .
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It follows that for every $k\in\omega$ the infinite set $A=\{a_{n}:n\in\omega\}$ is almost disjoint
ffom $A_{k}$ . $\square$

A straight forward application of Zorn’s Lemma gives the following:

Lemma 2.2. Every almost disjoint family of subsets $of\omega$ is contained in a maximal
almost disjoint family of subsets of $\omega$ .

Corollary 2.3. Every infinite, maximal almost disjoint family is uncountable. $In$

particular, there is an uncountable almost disjoint family of subsets of $\omega$ .

Proof. The uncountability of an infinite, maximal almost disjoint family follows
ffom Lemma 2.1. To show the existence of such a family, choose a partition $(A_{n})_{n\in\omega}$

of $\omega$ into pairwise disjoint, infinite sets. By Lemma 2.2, the almost disjoint fam-
ily $\{A_{n} : n\in\omega\}$ extends to a maximal almost disjoint family, which has to be
uncountable by our previous observation. $\square$

Unfortunately, this corollary only guarantees the existence of an almost disjoint

family of size $\aleph_{1}$ , not necessarily of size $2^{N_{0}}$ .

Theorem 2.4. There is an almost disjoint family of subsets of $\omega$ of size $2^{\aleph_{0}}$ .

All the following proofs of Theorem 2.4 have in common that instead of on $\omega$ , the
almost disjoint family is constructed as a family of subsets of some other countable
set that has a more suitable structure.

First proof. We define the almost disjoint family as a family of subsets of the
complete binary tree $2^{<\omega}$ of height $\omega$ rather than $\omega$ itself. For each $x\in 2^{\omega}$ let
$A_{x}=\{xrn:n\in\omega\}$ .

If $x,y\in 2^{\omega}$ are different and $x(n)\neq y(n)$ , then $A_{x}\cap A_{y}$ contains no sequence
of length $>n$ . It follows that $\{A_{x} : x\in 2^{\omega}\}$ is an almost disjoint family of size
continuum. $\square$

Similarly, one can consider for each $x\in[0,1]$ the set $B_{x}$ of finite initial segments
of the decimal expansion of $x$ . $\{B_{x} : x\in[0,1]\}$ is an almost disjoint family of size
$2^{N_{0}}$ of subsets of a fixed countable set.

Second proof. We again identify $\omega$ with another countable set, in this case the set $\mathbb{Q}$

of rational numbers. For each $r\in \mathbb{R}$ choose a sequence $(q_{n}^{r})_{n\in\omega}$ of rational numbers
that is not eventually constant and converges to $r$ . Now let $A_{r}=\{q_{n}^{r} : n\in\omega\}$ .

For $s,$ $r\in \mathbb{R}$ with $s\neq r$ choose $\epsilon>0$ so that

$(s-\epsilon, s+\epsilon)\cap(r-\epsilon, r+\epsilon)=\emptyset$ .

Now $A_{s}\cap(s-\epsilon, s+\epsilon)$ and $A_{r}\cap(r-\epsilon, r+\epsilon)$ are both cofinite and hence $A_{s}\cap A_{r}$

is finite. It follows that $\{A_{r} : r\in \mathbb{R}\}$ is an almost disjoint family of size $2^{\aleph_{0}}$ . $\square$

Third proof. We construct an almost disjoint family on the countable set $Z\cross$ Z.
For each angle $\alpha\in[0,2\pi)$ let $A_{\alpha}$ be the set of all elements of $Z\cross Z$ that have
distance $\leq 1$ to the line $L_{\alpha}=\{(x, y)\in \mathbb{R}^{2} : y=\tan(\alpha)\cdot x\}$ .
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For two distinct angles $\alpha$ and $\beta$ the set of points in $\mathbb{R}^{2}$ of distance $\leq 1$ to both
$L_{\alpha}$ and $L_{\beta}$ is compact. It follows that $A_{\alpha}\cap A_{\beta}$ is finite. Hence $\{A_{\alpha} : \alpha\in[0,2\pi)\}$

is an almost disjoint family of size continuum. $\square$

Fourth proof. We define a map $e$ : $[0,1]arrow\omega^{\omega}$ as follows: for each $x\in[0,1]$ and
$n\in\omega$ let $e(x)(n)$ be the integer part of $n\cdot x$ .

For every $x\in[0,1]$ let $A_{x}=\{(n, e(x)(n)) : n\in\omega\}$ . If $x<y$ , then for all
sufficiently large $n\in\omega,$ $e(x)(n)<e(y)(n)$ . It follows that $\{A_{x} : x\in[0,1]\}$ is an
almost disjoint family of subsets of $\omega\cross\omega$ .

Observe that $e$ is an embedding of $([0,1], \leq)$ into $(\omega^{\omega}, \leq^{*})$ , where $f\leq^{*}g$ if for
almost all $n\in\omega,$ $f(n)\leq g(n)$ . $\square$

3. INDEPENDENT FAMILlES

Independent families behave similarly to almost disjoint families. The following
results are analogs of the corresponding facts for almost disjoint families.

Lemma 3.1. Let $m$ be an ordinal $\leq\omega$ and let $(A_{n})_{n<m}$ be a sequence of infinite
subsets of $\omega$ such that for all pairs $S,$ $T$ of finite disjoint subsets of $m$ the set

$\bigcap_{n\in S}A_{n}\backslash (\bigcup_{n\in T}A_{n})$

is infinite. Then there is an infinite set $A\subseteq\omega$ that is independent over the family
$\{A_{n}:n<m\}$ in the sense that for all pairs $S,$ $T$ offinite disjoint subsets of $m$ both

$(A \cap\bigcap_{n\in S}A_{n})\backslash (\bigcup_{n\in T}A_{n})$

and

$\bigcap_{n\in S}A_{n}\backslash (A\cup\bigcup_{n\in T}A_{n})$

are infinite.

Proof. Let $(S_{n}, T_{n})_{n\in\omega}$ be an enumeration of all pairs of disjoint finite subsets of
$m$ such that every such pair appears infinitely often.

By the assumptions on $(A_{n})_{n\in\omega}$ , we can choose a strictly increasing sequence
$(a_{n})_{n\in\omega}$ such that for all $n\in\omega$ ,

$a_{2n},$ $a_{2n+1} \in\bigcap_{k\in S_{n}}A_{k}\backslash (\bigcup_{k\in T_{n}}A_{k})$ .

Now the set $A=\{a_{2n} : n\in\omega\}$ is independent over $\{A_{n} : n<m\}$ . Namely, let
$S,$ $T$ be disjoint finite subsets of $m$ . Let $n\in\omega$ be such that $S=S_{n}$ and $T=T_{n}$ .
Now by the choice of $a_{2n}$ ,

$a_{2n} \in(A\cap\bigcap_{k\in S_{n}}A_{k})\backslash (\bigcup_{k\in T_{n}}A_{k})$ .
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On the other hand,

$a_{2n+1} \in\bigcap_{k\in S_{n}}A_{k}\backslash (A\cup\bigcup_{k\in T_{n}}A_{k})$ .

Since there are infinitely many $n\in\omega$ with $(S, T)=(S_{n}, T_{n})$ , it follows that the
sets

$(A \cap\bigcap_{k\in S_{n}}A_{k})\backslash (\bigcup_{k\in T_{n}}A_{k})$

and
$\bigcap_{k\in S_{n}}A_{k}\backslash (A\cup\bigcup_{k\in T_{n}}A_{k})$

are both infinite. $\square$

Another straight forward application of Zorn’s Lemma yields:

Lemma 3.2. Every independent family of subsets of $\omega$ is contained in a maximal
independent family of subsets of $\omega$ .

Corollary 3.3. Every infinite maximal independent family is uncountable. In par-
ticular, there is an uncountable independent family of subsets of $\omega$ .

Proof. By Lemma 3.2, there is a maximal independent family. By Lemma 3.1 such
a family cannot be finite or countably infinite. $\square$

As in the case of almost disjoint families, this corollary only guarantees the
existence of independent families of size $\aleph_{1}$ . But Fichtenholz and Kantorovich
showed that there are independent families on $\omega$ of size continuum.

Theorem 3.4. There is an independent family of subsets of $\omega$ of size $2^{\aleph_{0}}$ .

In the following proofs of this theorem, we will replace the countable set $\omega$ by
other countable sets with a more suitable structure. Let us start with the original
proof by Fichtenholz and Kantorovich [3] that was brought to my attention by
Andreas Blass.

First proof. Let $C$ be the countable set of all finite subsets of $\mathbb{Q}$ . For each $r\in \mathbb{R}$

let
$A_{r}=\{a\in C$ : $a\cap(-\infty,r]$ is even$\}$ .

Now the family $\{A_{r} : r\in \mathbb{R}\}$ is an independent family of subsets of $C$ .
Let $S$ and $T$ be finite disjoint subsets of $\mathbb{R}$ . A set $a\in C$ is an element of

$\bigcap_{r\in S}A_{r}\backslash (C\backslash \bigcup_{r\in T}A_{r})$

if for all $r\in S,$ $a\cap(-\infty, r]$ is odd and for all $r\in T,$ $a\cap(-\infty, r]$ is even. But it
is easy to see that there are infinitely many finite sets $a$ of rational numbers that
satisfy these requirements. $\square$
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The following proof is due to Hausdorff and generalizes to higher cardinals [4].
We will discuss this generalization in Section 4.

Second proof. Let
$I=\{(n, A) : n\in\omega\wedge A\subseteq \mathcal{P}(n)\}$

For all $X\subseteq\omega$ let $X’=\{(n, A)\in I:X\cap n\in A\}$ . We show that $\{X’ : X\in \mathcal{P}(\omega)\}$

is an independent family of subsets of $I$ .
Let $S$ and $T$ be finite disjoint subsets of $\mathcal{P}(\omega)$ . A pair $(n, A)\in I$ is in

$\bigcap_{X\in S}X’\cap(I\backslash \bigcup_{X\in T}X’)$

if for all $X\in S,$ $X\cap n\in A$ and for all $X\in T,$ $X\cap n\not\in A$ . Since $S$ and $T$ are finite,

there is $n\in\omega$ such that for any two distinct $X,$ $Y\in S\cup T,$ $X\cap n\neq Y\cap n$ . Let
$A=\{X\cap n:X\in S\}$ . Now

$(n, A) \in\bigcap_{X\in S}X’\cap(I\backslash \bigcup_{X\in T}X’)$ .

Since there are infinitely many $n$ such that for any two distinct $X,$ $Y\in S\cup T$ ,
$X\cap n\neq Y\cap n$ , this shows that

$\bigcap_{X\in S}X’\cap(I\backslash \bigcup_{X\in T}X’)$

is infinite. $\square$

A combinatorially simple, topological proof of the existence of large independent
families can be obtained using the Hewitt-Marczewski-Pondiczery theorem which
says that the product space $2^{R}$ is separable ([5, 9, 10], also see [2]). This is the first
topological proof.

Third proof. For each $r\in R$ let $B_{r}=\{f\in 2^{R}:f(r)=0\}$ . Now whenever $S$ and $T$

are finite disjoint subsets of $\mathbb{R}$ ,

$\bigcap_{r\in S}B_{r}\cap(2^{R}\backslash \bigcup_{r\in T}B_{r})$

is a nonempty clopen subset of $2^{R}$ .
The family $(B_{r})_{r\in R}$ is the prototypical example of an independent family of size

continuum on any set. A striking fact about the space $2^{R}$ is that it is separable.
Namely, let $D$ denote the collection of all functions $f$ : $\mathbb{R}arrow 2$ such that there are
rational numbers $q_{0}<q_{1}<\cdots<q_{2n-1}$ such that for all $x\in \mathbb{R}$ ,

$f(x)=1$ $\Leftrightarrow$

$x \in\bigcup_{i<n}(q_{2i}, q_{2i+1})$
.

$D$ is a countable dense subset of $2^{R}$ .
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For each $r\in \mathbb{R}$ let $A_{r}=B_{r}\cap D$ . Now for all pairs $S,$ $T$ of finite disjoint subsets
of $\mathbb{R}$ ,

$\bigcap_{r\in S}A_{r}\cap(D\backslash \bigcup_{r\in T}A_{r})=D\cap\bigcap_{r\in S}B_{r}\cap(2^{R}\backslash \bigcup_{r\in T}B_{r})$

is infinite, being the intersection of a dense subset with a nonempty open subset of a
topological space without isolated points. It follows that $(A_{r})_{r\in \mathbb{R}}$ is an independent
family of size continuum on the countable set D. $\square$

The second topological proof of Theorem 3.4 was pointed out by Ramiro de la
Vega.

Fourth proof. Let $\mathcal{B}$ be a countable base for the topology on $\mathbb{R}$ that is closed under
finite unions. Now for each $r\in \mathbb{R}$ consider the set $A_{r}=\{B\in \mathcal{B} : r\in B\}$ . Then
$(A_{r})_{r\in R}$ is an independent family of subsets of the countable $\mathcal{B}$ .

Namely, let $S$ and $T$ be disjoint finite subsets of $\mathbb{R}$ . The set $\mathbb{R}\backslash T$ is open and
hence there are open sets $U_{s}\in \mathcal{B},$ $s\in S$ , such that each $U_{s}$ contains $s$ and is disjoint
$homT$. Since $\mathcal{B}$ is closed under finite unions, $U= \bigcup_{s\in S}U_{s}\in \mathcal{B}$. Clearly, there
are actually infinitely many possible choices of a set $U\in \mathcal{B}$ such that $S\subseteq U$ and
$T\cap U=\emptyset$ . This shows that $\bigcap_{r\in S}A_{r}\backslash (\bigcup_{r\in T}A_{r})$ is infinite. $\square$

A variant of the Hewitt-Marczewski-Pondiczery argument was mentioned by
Martin Goldstem who claims to have heard it $hom$ Menachem Kojman.

Fifth proof. Let $P$ be the set of all polynomials with rational coefficients. For each
$r\in \mathbb{R}$ let $A_{r}=\{p\in P : p(r)>0\}$ . If $S,$ $T\subseteq \mathbb{R}$ are finite and disjoint, then there
is a polynomial in $P$ such that $p(r)>0$ for all $r\in A$ and $p(r)\leq 0$ for all $r\in T$ .
All positive multiples of $p$ satisfy the same inequalities. It follows that $(A_{r})_{r\in \mathbb{R}}$ is
an independent family of size $2^{\aleph_{0}}$ over the countable set P. $\square$

The next proof was pointed out by Tim Gowers. This is the dynamical proof.

Sixth proof. Let $X$ be a set of irrationals that is linearly independent over $\mathbb{Q}$ . Kro-
necker’s theorem states that for every finite set $\{r_{1}, \ldots, r_{k}\}\subseteq X$ with pairwise
distinct $r_{i}$ , the closure of the set $\{(nr_{1}, \ldots, nr_{k}) : n\in Z\}$ is all of the k-dimensional
torus $\mathbb{R}^{k}/Z^{k}$ ([7], also see [1]).

For each $r\in X$ let $A_{r}$ be the set of $aUn\in Z$ such that the integer part of $n\cdot r$ is
even. Then $\{A_{r} : r\in X\}$ is an independent family of size continuum. To see this,

let $S,T\subseteq X$ be finite and disjoint. By Kronecker‘s theorem there are infinitely
many $n\in Z$ such that for all $r\in S$ , the integer part of $n\cdot r$ is even and for all
$r\in T$ , the integer part of $n\cdot r$ is odd. For all such $n$ ,

$n \in\bigcap_{r\in S}A_{r}\cap\bigcap_{r\in T}Z\backslash A_{r}$
.

$\square$

The following proof was mentioned by KP Hart. Let us call it the almost disjoint
proof.
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Seventh proof. Let $\mathcal{F}$ be an almost disjoint family on $\omega$ of size continuum. To each
$A\in \mathcal{F}$ we assign the collection $A’$ of all finite subsets of $\omega$ that intersect $A$ . Now
$\{A’ : A\in \mathcal{F}\}$ is an independent family of size continuum.

Given disjoint finite sets $S,$ $T\subseteq \mathcal{F}$ , by the almost disjointness of $\mathcal{F}$ , each $A\in S$

is almost disjoint from $\cup T$ . It follows that there are infinitely many finite subsets
of $\omega$ that intersect all $A\in S$ but do not intersect any $A\in T$ . Hence

$\bigcap_{A\in S}A’\cap(\omega\backslash \bigcup_{A\in T}A’)$

is infinite. $\square$

The last proof was communicated by Peter Komj\’ath. This is the proof by finite
approximation.

Eighth proof. First observe that for all $n\in\omega$ there is a family $(X_{k})_{k<n}$ of subsets
of $2^{n}$ such that for any two disjoint sets $S,$ $T\subseteq n$ ,

$\bigcap_{k\in S}X_{k}^{n}\cap(2^{n}\backslash \bigcup_{k\in T}X_{k})$

is nonempty. Namely, let $X_{k}=\{f\in 2^{n} : f(k)=0\}$ .
Now choose, for every $n\in\omega$ , a family $(X_{s}^{n})_{s\in 2^{n}}$ of subsets of a finite set $Y_{n}$ such

that for disjoint sets $S,$ $T\subseteq 2^{n}$ ,

$\bigcap_{s\in S}X_{s}^{n}\cap(2^{n}\backslash \bigcup_{s\in T}X_{s}^{n})$

is nonempty. We may assume that the $Y_{n},$ $n\in\omega$ , are pairwise disjoint.
For each $\sigma\in 2^{\omega}$ let $X_{\sigma}= \bigcup_{n\in\omega}X_{\sigma[n}^{n}$ . Now $\{X_{\sigma} : \sigma\in 2^{\omega}\}$ is an independent

family of size $2^{\aleph_{0}}$ on the countable set $\bigcup_{n\in\omega}Y_{n}$ . $\square$

4. INDEPENDENT FAMILIES ON LARGER SETS

We briefly point out that for every cardinal $\kappa$ there is an independent family
of size $2^{\kappa}$ of subsets of $\kappa$ . We start with a corollary of the Hewitt-Marczewski-
Pondiczery Theorem higher cardinalities.

Lemma 4.1. Let $\kappa$ be an infinite cardinal. Then $2^{2^{\kappa}}$ has a dense subset $D$ such
that for every nonempty clopen subset $A$ of $2^{2^{\kappa}},$ $D\cap A$ is of size $\kappa$ . In particular,

$2^{2^{\kappa}}$ has a dense subset of size $\kappa$ .

Proof. For each finite partial function $s$ from $\kappa$ to 2let $[s]$ denote the set $\{f\in 2^{\kappa}$ :
$s\subseteq f\}$ . The product topology on $2^{!\sigma}$ is generated by all sets of the form $[s]$ . Every
clopen subset of $2^{\kappa}$ is compact and therefore the union of finitely many sets of the
form $[s]$ . It follows that $2^{\kappa}$ has exactly $\kappa$ clopen subsets. The continuous functions
$hom2^{\kappa}$ to 2 are just the characteristic functions of clopen sets. Hence there are
only $\kappa$ continous functions $hom2^{\kappa}$ to 2. Let $D$ denote the set of all continuous
functions $hom2^{\kappa}$ to 2.
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Sinoe finitely many points in $2^{\kappa}$ can be separated simultaneously by pairwise
disjoint clopen sets, every finite partial function ffom $2^{\kappa}$ to 2 extends to a continuous
functions defined on all of $2^{\kappa}$ . It follows that $D$ is a dense subset of $2^{2^{\kappa}}$ of size $\kappa$ .

Now, if $A$ is a nonempty clopen subset of $2^{2^{\kappa}}$ , then there is a finite partial function
$s$ from $2^{\kappa}$ to 2 such that $[s]\subseteq A$ . Cleary, the number of continuous extensions of $s$

to all of $2^{\kappa}$ is $\kappa$ . Hence $D\cap A$ is of size $\kappa$ . $\square$

As in the case of independent families on $\omega$ , ffom the previous lemma we can
derive the existence of large independent families of subsets of $\kappa$ .

Theorem 4.2. For every infinite cardinal cardinal $\kappa$ , there is a family $\mathcal{F}$ of size
$2^{\kappa}$ such that for all disjoint finite sets $\mathcal{A},$ $\mathcal{B}\subseteq \mathcal{F}$ , the set

$(\cap \mathcal{A})\backslash \cup \mathcal{B}$

is of size $\kappa$ .

First proof. Let $D\subseteq 2^{2^{\kappa}}$ be as in Lemma 4.1. For each $x\in 2^{\kappa}$ let $B_{x}=\{f\in 2^{2^{\kappa}}$ :
$f(x)=0\}$ and $A_{x}=D\cap B_{x}$ . Whenever $S$ and $T$ are disjoint finite subsets of $2^{\kappa}$ ,

then
$( \bigcap_{x\in S}B_{x})\backslash \bigcup_{x\in T}B_{x}$

is a nonempty clopen subset of $2^{2^{\kappa}}$ . It follows that

$( \bigcap_{x\in S}A_{x})\backslash \bigcup_{x\in T}A_{x}=D\cap((\bigcap_{x\in S}B_{x})\backslash \bigcup_{x\in T}B_{x})$

is of size $\kappa$ . It follows that $\mathcal{F}=\{A_{x} : x\in 2^{\kappa}\}$ is as desired. $\square$

We can translate this topological proof into combinatorics as follows:
The continuous functions $hom2^{\kappa}$ to 2 are just characteristic functions of clopen

sets. The basic clopen sets are of the form $[s]$ , where $s$ is a finite partial function
ffom $\kappa$ to 2. All clopen sets are finite unions of sets of the form $[s]$ . Hence we can
code clopen subsets of $2^{\kappa}$ in a natural way by finite sets of finite partial functions
$hom\kappa$ to 2. We formulate the previous proof in this combinatorial setting. The
following proof is just a generalization of our second proof of Theorem 3.4. This is
essentially Hausdorff $s$ proof of the existence large independent families in higher
cardinalities.

Second proof. Let $D$ be the collection of all finite sets of finite partial functions
$hom\kappa$ to 2. For each $f$ : $2^{\kappa}arrow 2$ let $A_{f}$ be the collection of all $a\in D$ such that for
all $s\in a$ and all $x:\kappaarrow 2$ with $s\subseteq x$ we have $f(x)=1$ .

Claim 4.3. For any two disjoint finite sets $S,$ $T\subseteq 2^{\kappa}$ the set

$( \bigcap_{x\in S}A_{x})\backslash \bigcup_{x\in T}A_{x}$

is of size $\kappa$ .
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For all $x\in S$ and all $y\in T$ there is $\alpha\in\kappa$ such that $x(\alpha)\neq y(\alpha)$ . It follows that
for every $x\in S$ there is a finite partial function $s$ from $\kappa$ to 2 such that $s\subseteq x$ and
for all $y\in T,$ $s\not\subset T$ . Hence there is a finite set $a$ of finite partial functions from
$\kappa$ to 2 such that all $x\in S$ are extensions of some $s\in a$ and no $y\in T$ extends any
$s\in a$ . Now $a \in(\bigcap_{x\in S}A_{x})\backslash \bigcup_{x\in T}A_{x}$ . But for every $\alpha<\kappa$ we can build the set $a$

in such a way that $\alpha$ is in the domain of some $s\in a$ . It follows that there are in
fact $\kappa$ many distinct sets $a \in(\bigcap_{x\in S}A_{x})\backslash \bigcup_{x\in T}A_{x}$ . $\square$
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