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Introduction
Let us discuss, in this article, some observations about one very old theorem due to Paul
Erd\’os.

Let $\mathcal{H}$ be the set of all entire functions, that is to say, complex-valued functions which are
defined on the whole complex plane $\mathbb{C}$ and are holomorphic everywhere. Given $\mathcal{A}\subset \mathcal{H}$ and
$z\in \mathbb{C}$ , we put $\mathcal{A}(z)=\{f(z) : f\in \mathcal{A}\}$ .

Let us say $\mathcal{A}\subset \mathcal{H}$ has the property $P_{0}$ if and only if $\mathcal{A}(z)$ is countable for every $z\in \mathbb{C}$ .
Clearly every countable subset of $\mathcal{H}$ has property $P_{0}$ . Whether there is an uncountable set
which possesses property $P_{0}$ is independent of conventional axioms of set theory. In fact,
Erd\’os have shown

THEOREM $0$ . (Erd\’os, see [1]) There is an uncountable subset of $\mathcal{H}$ having the property $P_{0}$ if
and only if $CH$ (the Continuum Hypothesis) holds.

We review Erd\’os’ argument and give the following

THEOREM 1. There is no uncountable $\Sigma_{1}^{1}$ set with property $P_{0}$ .

THEOREM 2. If there is an uncountable $\Sigma_{2}^{1}$ set with property $P_{0}$ , then there is a real $r\subset\omega$

from which every real is constructible: $\mathbb{R}\subset L[r]$ .
THEOREM 3. If there is a real $r\subset\omega$ such that $\mathbb{R}\subset L[r]$ , then there is an uncountable $\Pi_{1}^{1}$ set
with property $P_{0}$ .

But before proving any of these, we should explain how to equip $\mathcal{H}$ as a Polish space. We
do this in the next section. Then in section 2 we give proof of our Theorems 1 and 2. In
section 3 we give a detailed review of “if” part of Erd\’os’ argument and show how to apply
Arnie Miller’s trick to derive Theorem 3.

This article is based on a seminar talk I gave at Kobe Univeristy in a meeting held on
February 21-23. I would like to thank all the participants.

1 Polish topology on the entire functions
For each non-negative integer $n$ put

$d_{n}(f,g)= \sup\{|f(z)-g(z)|:z\in \mathbb{C}, |z|\leq n\}$ $(f, g\in \mathcal{H})$ .
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By virtue of the uniqueness theorem of holomorphic functions ([4, Theorem 10.18]), $d_{n}$ is
a metric on $\mathcal{H}$ for each $n\geq 1$ . But none of these metrics is complete. Every $d_{n}$-Cauchy
sequence of members in $\mathcal{H}$ converges to a function which is continuous on the closed disk
$\overline{D}(0;n)=\{z\in \mathbb{C} : |z|\leq n\}$ and is holomorphic inside that disk. But the limit function may
fail to inherit the possibility of analytic continuation to the whole plane. In order to make
sure that the limit function is holomorphic everywhere, we need to require sequence to be
convergent in all $d_{n}’ s$ .

Now let us put

$d(f,g)= \sum_{n=0}^{\infty}\frac{d_{n}(f,g)}{2^{n+1}(1+d_{n}(f,g))}$ $(f, g\in \mathcal{H})$ .

Then $d$ is a complete metric which gives $\mathcal{H}$ the topology of uniform convergence on compact
sets. See [4, Theorem 10.28]. On the other hand, $\mathcal{H}$ is separable under this topology since
polynomials with rational coefficients form a countable dense set.

To summarize: $\mathcal{H}$ is a Polish space under the topology of uniform convergence on compact
sets.

In our proof of Theorem 2, we need to think each entire function as a real. If you take
(as every textbook of set theory does) functions as sets of ordered pairs, the assertion $f$ is
constructible” doesn $t$ make sense unless the whole domain is constructible. But when we
say a holomorphic function $f$ to be constructible, we would like to mean it is defined using a
constructible set of informations, without implying that the whole $\mathbb{C}$ is contained in $L$ . So we
identify each function $f\in \mathcal{H}$ with its power-series expansion at the origin:

$f(z)=c_{0}+c_{1}z+c_{2}z^{2}+\cdots+c_{k}z^{k}+\cdots$ .
We say $f$ to be constructible when the sequence $\{c_{k}$ : $k\in\omega\rangle$ is constructible in the usual
sense. Thus we identify $f$ with a sequence of complex numbers when we talk about definability
aspect of numbers and functions.

2 Proof of Theorems 1 and 2
Our proof of Theorem 1 is just a straightforward absoluteness argument.

Suppose we are given a $\Sigma_{1}^{1}$ formula $\varphi(x)$ (possibly containing some reals as parameters)
which talks about an element $x$ of a fixed Polish space $X$ . We can form an assertion

$\Phi$ : “The set $\{x\in X : \varphi(x)\}$ is uncountable.”

Let us see that $\Phi$ is a $\Sigma_{2}^{1}$ sentence with the same parameters as $\phi(x)$ .
We can extract from $\varphi$ the definition of a continuous function $F$ of $\omega\omega$ onto $\{x\in X : \varphi(x)\}$ .

By tracing a proof of Suslin’s perfect set theorem, we know $\Phi$ holds if and only if there exists
a system $\{N_{s} : s\in<\omega 2\}$ of basic neighbourhoods in $\omega\omega\cross X$ such that

(1) $\overline{N_{s^{\wedge}(i)}}\subset N_{s}$ for $s\in<\omega 2$ and $i\in\{0,1\}$ ,
(2) the diameter of $N_{s}$ is less than or equal to $2^{-1ength(s)}$ ,
(3) the projections onto $X$ of $N_{s}-(0)$ and $N_{S}-(1)$ are disjoint, and
(4) the closed set determined by $\{N_{s} : s\in<\omega 2\}$ :

$C= \bigcup_{\sigma\in^{\omega}2}\bigcap_{n\in\omega}\overline{N_{\sigma|n}}$

is contained in the graph of the continuous function $F$ .
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The assertion of existence of such system $\{N_{s} : s\in<\omega 2\}$ of neighbourhoods is easily seen to
be $\Sigma_{2}^{1}$ uniformly in the formula $\varphi(x)^{*1}$

Now suppose we are given a $\Sigma_{1}^{1}$ set $\mathcal{A}\subset \mathcal{H}$ . Then two assertions,

$\Phi_{1}:\mathcal{A}$ is uncountable”

and
$\Phi_{2}$ : “there is $z\in \mathbb{C}$ at which the section $\mathcal{A}(z)$ is uncountable”

are both $\Sigma_{2}^{1}$ .
By Erd\’os’ theorem we know

$\neg CHarrow(\Phi_{1}arrow\Phi_{2})$ .

The statement $\Phi_{1}arrow\Phi_{2}$ is absolute for every generic extension since it is a Boolean combi-
nation of $\Sigma_{2}^{1}$ sentences (by the Shoenfield Absoluteness Theorem.) We also know that $\neg CH$

is forceable by the poset of finite partial functions from (a subset of) $\omega_{2}$ into $\omega$ . From this
it follows that $\Phi_{1}arrow\Phi_{2}$ holds in the universe $V$ . Therefore, each time we are given a $\Sigma_{1}^{1}$

subset $\mathcal{A}\subset \mathcal{H}$ , we have either that $\mathcal{A}$ is countable or else that $\mathcal{A}$ lacks the property $P_{0}$ . This
completes our proof of Theorem 1.

Let us note, as a corollary of Theorem 1, that a subset $\mathcal{H}$ with property $P_{0}$ can never has
a perfect subset.

Now, in order to prove Theorem 2, suppose we are given an uncountable $\Sigma_{2}^{1}$ set $\mathcal{A}\subset \mathcal{H}$

which has property $P_{0}$ . Suppose $\mathcal{A}$ is $\Sigma_{2}^{1}$ definable using, say, a parameter $r\subset\omega$ . Then we
show that every complex number $z\in \mathbb{C}$ is in $L[r]$ . We do this by recalling “only if” part of
Erd\’os’ argument.

For $f,$ $g\in \mathcal{H}$ let $S(f, g)=\{z\in \mathbb{C} : f(z)=g(z)\}$ . If $f\neq g$ then by virtue of the uniqueness
theorem of holomorphic functions $S(f, g)$ does not have an accumlating point anywhere on $\mathbb{C}$ .
It follows that $S(f, g)$ is countable if $f\neq g$ .

If $\mathcal{A}\subset \mathcal{H}$ is uncountable and has property $P_{0}$ , then the mapping

$f\mapsto f(z)$

can never be one-to-one on $\mathcal{A}$ for any fixed $z\in \mathbb{C}$ . So for every $z\in \mathbb{C}$ there are $f,$ $g\in \mathcal{A}$

satifying $f\neq g$ and $f(z)=g(z)$ . For such $f$ and $g$ we have $z\in S(f, g)$ . As a consequence, we
obtain

(1) $\mathbb{C}=\cup\{S(f,g):f, g\in \mathcal{A}, f\neq g\}$

for every uncountable $\mathcal{A}\subset \mathcal{H}$ with property $P_{0}$ .
If there is an uncountable set with property $P_{0}$ , then there must be one with cardinality $\aleph_{1}$ ,

since every subset of a set with $P_{0}$ also has $P_{0}$ . So let $\mathcal{A}$ is a set of cardinality $\aleph_{1}$ which has
$P_{0}$ . Then (1) yields

$|\mathbb{C}|=|\cup\{S(f, g):f,g\in A, f\neq g\}|\leq|\mathcal{A}|\cdot\aleph_{0}=\aleph_{1}$

so that CH holds.

$*1$ A resort to recursion theoretic argument reveals that the statement $\Phi$ is $\Sigma_{1}^{1}$ in parameters. This obser-
vation however does not turn our proof easier.
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Recall the Mansfield-Solovay Theorem: Let $A\subset \mathbb{R}$ be $\Sigma_{2}^{1}$ in $r\subset\omega$ . Then either $A$ contains
a perfect subset or else $A\subset L[r]$ . Since our $\Sigma_{2}^{1}$ set $\mathcal{A}$ has property $P_{0}$ , it does not contain a
perfect subset. So $\mathcal{A}\subset L[r]$ . On the other hand, we also have (1) because $\mathcal{A}$ is uncountable.
From this it follows that every $z\in \mathbb{C}$ belongs to the set $S(f, g)$ for some pair $f,$ $g$ of distinct
functions in $L[r]$ . But then $S(f, g)$ is a countable set arithmetically definable from a pair of
”reals” in $L[r]$ . Again by the Mansfield-Solovay theorem we have $S(f, g)\subset L[r]$ and $z\in L[r]$ .
This is our proof of Theorem 2.

3 Proof of Theorem 3
In this section we prove Theorem 3 by applying Arnie Miller’s trick (see [2]) to Erd\’os’ con-
struction of uncountable set with property $P_{0}$ . This means we have now to review the “if”
part of Erd\’os’ argument, which is much more tedious than the other part.

Assume CH. The complex numbers are well-ordered into order type $\omega_{1}$ :

$\mathbb{C}=\{z_{0}, z_{1}, \ldots, z_{\alpha}, \ldots\}$ $(\alpha<\omega_{1})$ .

Fix a countable dense set $D\subset \mathbb{C}$ and enumerate its members as

$D=\{d_{0}, d_{1}, \ldots, d_{k}, \ldots\}$ .

By transifinite induction we are going to choose functions $f_{\alpha}\in \mathcal{H}$ such that

(2) $\beta<\alphaarrow f_{\beta}(z_{\beta})\neq f_{\alpha}(z_{\beta})\wedge f_{\alpha}(z_{\beta})\in D$.

Then all $f_{\alpha}$ are distinct and for every $\beta<\omega_{1}$ we have

$\{f_{\alpha}(z_{\beta}):\alpha<\omega_{1}\}\subset\{f_{\alpha}(z_{\beta}):\alpha\leq\beta\}\cup D$.

Put then $\mathcal{A}=\{f_{\alpha} : \alpha<\omega_{1}\}$ . This will be an uncountable set which has property $P_{0}$ .
Let us explain how we can choose such $f_{\alpha}$ that meets the requirement (2). Suppose we have

already given $f_{\beta}$ for $\beta<\alpha$ . Re-order $\alpha$ into order type $\omega$ :

$\alpha=\{\beta_{0}, \beta_{1}, \ldots, \beta_{n}, \ldots\}$ .

Our function $f_{\alpha}(z)$ will have the form

$f_{\alpha}(z)=a_{0}+a_{1}(z-z_{\beta_{0}})+a_{2}(z-z_{\beta_{0}})(z-z_{\beta_{1}})+\cdots$

(3)
$= \sum_{n=0}^{\infty}(\beta_{j}\cdot$

From this we have

$f_{\alpha}(z_{\beta_{0}})=a_{0}$ ,
$f_{\alpha}(z_{\beta_{1}})=a_{0}+a_{1}(z_{\beta_{1}}-z_{\beta_{0}})$ ,

.
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and further choice of $a_{2},$ $a_{3}$ , etc. does not affect the values $f_{\alpha}(z_{\beta_{0}})$ and $f_{\alpha}(z_{\beta_{1}})$ . So we can
successively choose $a_{0},$ $a_{1},$ $a_{2},$ $\ldots$ so that

$f_{\beta_{0}}(z_{\beta_{0}})\neq a_{0}\in D$ ,
$f_{\beta_{1}}(z_{\beta_{1}})\neq a_{0}+a_{1}(z_{\beta_{1}}-z_{\beta_{0}})\in D$ ,

$f_{\beta_{2}}(z_{\beta_{2}})\neq a_{0}+a_{1}(z_{\beta_{2}}-z_{\beta_{0}})+a_{2}(z_{\beta_{2}}-z_{\beta_{0}})(z_{\beta_{2}}-z_{\beta_{1}})\in D$,

.

in order to meet the requirement (2).

Along with choosing $a_{n}$ in such a way, we have to take care of magnitude of $a_{n}$ in order
that the series (3) converges and gives a holomorphic function of $z$ .

Let $S_{j}^{n}(X_{0}, \ldots, X_{n-1})$ $($where $0\leq j\leq n<\omega)$ denote the elementary symmetric polynomial
of order $j$ in $n$ variables $X_{0},\ldots,X_{n-1}$ (for $j=0$ , just put $S_{0}^{n}\equiv 1.$ ) If $d\in \mathbb{C}$ we have

(4) $\prod_{0\leq j<n}(z-z_{\beta_{j}})=\sum_{j=0}^{n}S_{j}^{n}(d-z_{\beta_{0}}, \ldots, d-z_{\beta_{n-1}})(z-d)^{n-j}$ .

So if we put for each $n\in\omega$

(5) $R_{m}= \max\{|S_{j}^{n}(d_{k}-z_{\beta_{0}}, \ldots, d_{k}-z_{\beta_{n-1}})| : k,j\leq n\}$

(recall that $D=\{d_{k}$ : $k\in\omega\}$ is a countable dense subset of $\mathbb{C}$), $n\geq k$ and $|z-d_{k}|\leq 1/2$

implies

$| \prod_{0\leq j<n}(z-z_{\beta_{j}})|\leq\sum_{j=0}^{n}|S_{j}^{n}(d_{k}-z_{\beta_{0}}, \ldots, d_{k}-z_{\beta_{n-1}})(z-d_{k})^{n-j}|$

(6)
$\leq R_{n}\cdot\sum_{j=0}^{n}2^{-(n-j)}$

$\leq 2R_{n}$ .

From this it follows that if we choose $a_{n}$ so that

(7) $|a_{n}| \leq\frac{1}{2^{n}R_{n}}$ ,

then under the condition $|z-d_{k}|\leq 1/2$ , we have

$\sum_{n=k}^{\infty}|a_{n}\cdot\prod_{0\leq j<n}(z-z_{\beta_{j}})|\leq\sum_{n=k}^{\infty}2^{-n+1}=2^{-k+2}$

by (6) and (7). So the series (3) converges uniformly on the closed disk

$\overline{D}(d_{k};\frac{1}{2})=\{z:|z-d_{k}|\leq 1/2\}$

for every $k\in\omega$ . But since $D=\{d_{k} : k\in\omega\}$ is dense every $z\in \mathbb{C}$ has a neighborhood of the
form

$D(d_{k}; \frac{1}{2})=\{z:|z-d_{k}|<1/2\}$ .
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That is to say, the series (3) converges uniformly on a neighborhood of each $z$ . Therefore
the sum $f_{\alpha}(z)$ is a holomorphic function of $z$ . This completes Erd\’os’ proof that CH implies
existence of an uncountable set with property $P_{0}$ .

Suppose now that $\mathbb{R}$ , and hence also $\mathbb{C}$ are contained in $L[r]$ with some $r\subset\omega$ . We are to
explain how we can find such $\mathcal{A}$ among $\Pi_{1}^{1}$ sets. In order to simplify notation, let us assume
$r=\emptyset$ and suppress mentioning it.

We know the wellordering relation $<L$ of $L$ restricted to $\mathbb{C}$ has order type $\omega_{1}$ . So we may
assume our wellordering

$\mathbb{C}=\{z_{0}, z_{1}, \ldots, z_{\alpha}, \ldots\}$ $(\alpha<\omega_{1})$

agrees with $<L$ . Assume also the enumeration of our countable dense set

$D=\{d_{0}, d_{1}, \ldots, d_{n}, \ldots\}$

is arithmetically definable. Let us also choose the re-ordering

$\alpha=\{\beta_{0}, \beta_{1}, \ldots, \beta_{n}, \ldots\}$

to be the $<L$ -minimum such enumeration. Under these conditions we construct $f_{\alpha}$ just as
Erd\’os did but with one extra tweek.

Note that when we choose $a_{n}$ which meet the requirements (2) and (7), we still have infinitely
many possibility of the value of $a_{n}$ that suits. Using this freedom of choice, we can let the
function $f_{\alpha}$ code a prescribed infinite sequence of zeros and ones. It follows that our $f_{\alpha}$ can
code any prescribed countable set of information.

We let $f_{\alpha}$ code all ingredients of our construction of itself: the ordinal $\alpha$ , its enumeration
$\langle\beta_{n}$ : $n\in\omega\}$ , the sequence of numbers $\langle z\beta$ : $\beta\leq\alpha\}$ , previously chosen functions $\langle f_{\beta}$ : $\beta<$

$\alpha\}$ , and so on. Then it follows that $f_{\alpha}$ “knows“ how it has been constructed. We also make
sure that $f_{\alpha}$ is the $<L$-minimum function which meets all these conditions we have put so far.
Then a function $f\in \mathcal{H}$ is one of such $f_{\alpha}$ if and only if there are parameters in $L_{\omega_{1}^{CK}(f)}[f]$ (the
smallest admissible set containing f) which define $f$ in such and such way and $f$ is the $<L^{-}$

minimum function in $L_{\omega_{1}^{CK}(f)}[f]$ which meet such and such conditions. As long as the “such
and such“ parts are written aritmetically, this gives a $\Pi_{1}^{1}$ description of the set $\{f_{\alpha} : \alpha<\omega_{1}\}$

because the equivalence gives a $\Sigma_{1}$ formula $\psi(v)$ such that

$\exists\alpha<\omega_{1}(f=f_{\alpha})rightarrow L_{\omega_{1}^{CK}}[f]\models\psi(f)$ .

It follows that the set $\mathcal{A}=\{f_{\alpha} : \alpha<\omega_{1}\}$ is an uncountable $\Pi_{1}^{1}$ set which have property $P_{0}$ .
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