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Abstract

We give a summary of results from our investigation into extending classical
descriptive set theory to the entire class of countably based $T_{0}$-spaces. Polish
spaces play a central role in the descriptive set theory of metrizable spaces, and
we suggest that countably based completely quasi-metrizable spaces, which we
refer to as quasi-Polish spaces, play the central role in the extended theory. The
class of quasi-Polish spaces is general enough to include both Polish spaces and
$\omega$-continuous domains, which have many applications in theoretical computer
science. We show that quasi-Polish spaces are a very natural generalization of
Polish spaces in terms of their topological characterizations and their complete-
ness properties. In particular, a metrizable space is quasi-Polish if and only if
it is Polish, and many classical theorems concerning Polish spaces, such as the
Hausdorff-Kuratowski theorem, generalize to all quasi-Polish spaces.

1. Introduction

Descriptive set theory has proven to be an invaluable tool for the study of
separable metrizable spaces, and the techniques and results have been applied
to many fields such as functional analysis, topological group theory, and math-
ematical logic. Separable completely metrizable spaces, called Polish spaces,
play a central role in classical descriptive set theory. These spaces include the
space of natural numbers with the discrete topology, the real numbers with the
Euclidean topology, as well as the separable Hilbert and Banach spaces.

Somewhat more recently, however, there has been growing interest in non-
metrizable spaces, in particular the continuous lattices and domains of domain
theory [5]. These spaces generally fail to satisfy even the $T_{1}$ -separation ax-
iom, but naturally occur in the general theory of computation, the analysis of
function spaces, as well as in algebra and logic. Continuous domains are also
characterized by a kind of completeness property, which at first glance seems
rather different than the completeness property of a metric.

Despite the great success of descriptive set theory with the analysis of metriz-
able spaces, the extension of this approach to more general spaces seems to have
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been largely overlooked by the mathematical community. Notable exceptions
are work by Dana Scott [14], A. Tang [19, 20], and Victor Selivanov (see [17]
for an overview) on the descriptive set theory of $\omega$-continuous domains.

In this paper, we will give a summary of results for a class of spaces, which
we call quasi-Polish spaces, which we propose as the proper generalization of
Polish spaces for extending descriptive set theory to all countably based $\tau_{0-}$

spaces. Quasi-Polish spaces are defined as the countably based spaces which
admit a (Smyth)-complete quasi-metric, and have many properties that are
natural generalizations of Polish spaces. For example, a subspace of a quasi-
Polish space is quasi-Polish if and only if it is a $\Pi_{2}^{0}$ subset, and quasi-Polish
spaces have a game-theoretic characterization in terms of a simple modification
of the strong Choquet game. The class of quasi-Polish spaces is general enough
to contain both the Polish spaces and the countably based locally compact sober
spaces, hence all $\omega$-continuous domains, but is not too general as demonstrated
by the fact that every quasi-Polish space is sober and every metrizable quasi-
Polish space is Polish.

The majority of this paper will be dedicated to showing the naturalness of
extending the descriptive set theory of Polish spaces to the class of quasi-Polish
spaces. We will see that many classical results on Polish spaces apply to all
quasi-Polish spaces. For example, quasi-Polish topologies can be extended to
finer quasi-Polish topologies in a manner similar to the case for Polish spaces,
and the Hausdorff-Kuratowski theorem extends to all quasi-Polish spaces. The
naturalness of quasi-Polish spaces will also be demonstrated by showing that
they are precisely the spaces that are homeomorphic to the subspace of non-
compact elements of an $\omega$-continuous domain, and that they are precisely the
countably based spaces that have a total admissible representation in the sense
of Type 2 Theory of Effectivity.

Our results show that the techniques and results of classical descriptive set
theory naturally generalize to all countably based $T_{0}$-spaces. This offers new op-
portunities for an exchange of results and ideas between the fields of descriptive
set theory, domain theory, and the theory of generalized metrics.

Definitions and background for classical descriptive set theory can be found
in [7]. Definitions and background for domain theory can be found in [5].

2. Borel Hierarchy

It is common for non-Hausdorff spaces to have open sets that are not $F_{\sigma}$

(i.e., countable unions of closed sets) and closed sets that are not $G_{\delta}$ (i.e.,
countable intersections of open sets). The Sierpsinski space, which has $\{\perp, T\}$

as an underlying set and the singleton $\{T\}$ open but not closed, is perhaps the
simplest example of this phenomenon. This implies that the classical definition
of the Borel hierarchy, which defines level $\Sigma_{2}^{0}$ as the $F_{\sigma}$-sets and $\Pi_{2}^{0}$ as the $G_{\delta}-$

sets, is not appropriate in the general setting. We can overcome this problem
by modifying the classical definition of the Borel hierachy as follows.
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Definition 1. Let $(X, \tau)$ be a topological space. For each ordinal $\alpha(1\leq\alpha<$

$\omega_{1})$ we define $\Sigma_{\alpha}^{0}(X, \tau)$ inductively as follows.
1. $\Sigma_{1}^{0}(X, \tau)=\tau$ .
2. For $\alpha>1,$ $\Sigma_{\alpha}^{0}(X, \tau)$ is the set of all subsets A $ofX$ which can be expressed

in the form
$A= \bigcup_{i\in\omega}B_{i}\backslash B_{i}’$

,

where for each $i,$ $B_{i}$ and $B_{i}’$ are in $\Sigma_{\beta_{i}}^{0}(X, \tau)$ for some $\beta_{i}<\alpha$ .

We define $\Pi_{\alpha}^{0}(X, \tau)=\{X\backslash A|A\in\Sigma_{\alpha}^{0}(X, \tau)\}$ and $\Delta_{\alpha}^{0}(X, \tau)=\Sigma_{\alpha}^{0}(X, \tau)\cap$

$\Pi_{\alpha}^{0}(X, \tau)$ . Finally, we define $B(X, \tau)=\bigcup_{\alpha<\omega_{1}}\Sigma_{\alpha}^{0}(X, \tau)$ to be the Borel
$subsets\square$

of $(X, \tau)$ .

When the topology is clear from context, we will usually write $\Sigma_{\alpha}^{0}(X)$ instead
of $\Sigma_{\alpha}^{0}(X, \tau)$ .

The definition above is equivalent to the classical definition of the Borel
hierarchy on metrizable spaces, but differs in general. The above hierarchy has
been investigated by D. Scott [14] and A. Tang [19] for $X=\mathcal{P}(\omega)$ , and much
more generally by V. Selivanov (see [17] for an overview of results).

In general, singleton subsets and the diagonal of countably based $T_{0}$-spaces
are not closed. However, the following two propositions show that they are
always $\Pi_{2}^{0}$ in the Borel hierarchy.

Proposition 2. If $X$ is a countably based $T_{0}$ -space then every singleton
$set\square$

$\{x\}\subseteq X$ is in $\Pi_{2}^{0}(X)$ .

Proposition 3. If $X$ is a countably based $T_{0}$ -space then the diagonal of $X(i.e.\square$

$\{\langle x, y\rangle\in X\cross X|x=y\})$ is in $\Pi_{2}^{0}(X\cross X)$ .

3. Quasi-metric spaces

Quasi-metrics are a generalization of metrics where the axiom of symmetry
is dropped. These provide a useful way to generalize results from the theory of
metric spaces to more general topological spaces.

Definition 4. $A$ quasi-metric on a set $X$ is a function $d:X\cross Xarrow[0, \infty)$ such
that for all $x,$ $y,$ $z\in X$ :

1. $x=y\Leftrightarrow d(x, y)=d(y,x)=0$

2. $d(x, z)\leq d(x, y)+d(y, z)$ .
$A$ quasi-metric space is a pair $(X, d)$ where $d$ is a quasi-metric on $X$ . $\square$

A quasi-metric $d$ on $X$ induces a $T_{0}$ topology $\tau_{d}$ on $X$ generated by basic
open balls of the form $B_{d}(x, \epsilon)=\{y\in X|d(x, y)<\epsilon\}$ for $x\in X$ and real
number $\epsilon>0$ .

If $(X, d)$ is a quasi-metric space, then (X, $\hat{d)}$ is a metric space, where $\hat{d}$ is
defined as $\hat{d}(x, y)=\max\{d(x,y), d(y, x)\}$ . The metric topology induced by $\hat{d}$

will be denoted $\tau_{d}$へ．
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Proposition 5 (H.-P. A. Ktinzi [8]). A quasi-metric space $(X, d)$ is count-
ably based if and only if (X, $\hat{d)}$ is separable. $\square$

Theorem 6. If (X, d) is a countably based quasi-metric space, then the metric
topology $\tau_{d}$

へ is a subset of $\Sigma_{2}^{0}(X, \tau_{d})$ . In particular,
$\Sigma_{\alpha}^{0}(X, \tau_{d})=\Sigma_{\alpha}^{0}(X,\tau_{\hat{d}})for\square$

all $\alpha\geq\omega$ , and $B(X, \tau_{d})=B(X, \tau_{\hat{d}})$ .

The power set of the natural numbers, denoted $\mathcal{P}(\omega)$ , with the Scott-topology
has a compatible quasi-metric $d$ defined as

$d(X, Y)=\sup\{2^{-n}|n\in X\backslash Y\}$

for $X,$ $Y\subseteq\omega$ , where we define the supremum of the empty set to be zero. In
other words, $d(X, Y)=2^{-n}$ where $n$ is the least element in $X$ and not in $Y$ if
such an element exists, and $d(X, Y)=0$ if $X$ is a subset of Y. Then $\hat{d}$ is the
usual complete metric on $2^{\omega}$ if we identify elements of $\mathcal{P}(\omega)$ with their char-
acteristic function. Selivanov [17] has shown that in this case $\Sigma_{n}^{0}(\mathcal{P}(\omega), \tau_{d})\not\subset$

$\Pi_{n}^{0}(\mathcal{P}(\omega), \tau_{\hat{d}})$ and $\Pi_{n}^{0}(\mathcal{P}(\omega), \tau_{d}^{\text{へ}})\not\subset\Sigma_{n+1}^{0}(\mathcal{P}(\omega), \tau_{d})$ for all $n<\omega$ .

4. Complete quasi-metric spaces

In the literature on quasi-metric spaces there are many competing defini-
tions of ”Cauchy sequence” and ”completeness“. The definition of “Cauchy“
that we will adopt is sometimes called “left K-Cauchy“ and our definition of
completeness is sometimes called “Smyth-complete“ (see [9]). The main goal of
this section is to characterize the countably based spaces which have topologies
induced by a complete quasi-metric.

Definition 7. A sequence $(x_{n})_{n\in\omega}$ in a quasi-metric space (X, d) is Cauchy if
and only if for each real number $\epsilon>0$ there exists $n_{0}\in\omega$ such that $d(x_{n},x_{m})<$

$\epsilon$ for all $m\geq n\geq n_{0}$ . $(X, d)$ is $a$ complete quasi-metric space if and only if
every Cauchy sequence in $X$ converges with respect to the metric topology

$\tau_{d}\text{へ_{}\square }$

We will say that a topological space $(X, \tau)$ is completely quasi-metrizable if
and only if there is a complete quasi-metric $d$ on $X$ such that $\tau=\tau_{d}$ .

Definition 8. A topological space is quasi-Polish if and only if it is countably
based and completely quasi-metrizable. $\square$

If $(X, d)$ is a countably based complete quasi-metric space, then $(X,\hat{d)}$ is
separable by Proposition 5 and $\hat{d}$ is complete because any sequence that is
Cauchy with respect to $\hat{d}$ is Cauchy with respect to $d$ . Therefore, $(X, d)$ has a
Polish topology. We can immediately use this connection between quasi-Polish
spaces and Polish spaces to make a few simple observations.

Proposition 9. Every uncountable quasi-Polish space has cardinality $2^{N_{O}}$ . $\square$
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We can also show that the fact that the Borel hierarchy on uncountable
Polish spaces does not collapse (see, for example, Theorem 22.4 in [7]) generalizes
to uncountable quasi-Polish spaces.

Theorem 10. If $X$ is an uncountable quasi-Polish space, then the Borel hier-
archy on $X$ does not collapse. $\square$

V. Selivanov [17] has shown that the Borel hierarchy does not collapse for
some uncountable $\omega$-continuous domains, including $P(\omega)$ . We will see later that
every $\omega$-continuous domain is quasi-Polish, so the hierarchy does not collapse
on any uncountable $\omega$-continuous domain.

Quasi-Polish subspaces of quasi-Polish spaces have the following simple char-
acterization.

Theorem 11. A subspace of a quasi-Polish space is quasi-Polish if and only
$\square if$

it is $\Pi_{2}^{0}$ .

$\mathcal{P}(\omega)$ is complete with respect to the quasi-metric $d$ in the previous section.
Since every countably based space can be embedded into $\mathcal{P}(\omega)$ , we obtain the
following.

Corollary 12. A space is quasi-Polish if and only if it is homeomorphic to
$\square a$

$\Pi_{2}^{0}$ -subset of $\mathcal{P}(\omega)$ .

Finally, we mention that the class of quasi-Polish spaces is closed under
retracts. Recall that a topological space $X$ is a retmct of $Y$ if and only if there
exist continuous functions $s:Xarrow Y$ and $r:Yarrow X$ such that $ros$ is the
identity on $X$ .

Corollary 13. Any retract of a quasi-Polish space is quasi-Polish. $\square$

Similar results concerning retracts can be found in [14] and [19]. Retracts
also play an important role in V. Selivanov‘s [17] development of descriptive set
theory for domains.

5. Open continuous surjections from quasi-Polish spaces

In this section we characterize quasi-Polish spaces as precisely the images of
Polish spaces under continuous open functions. Recall that a function is open
if and only if the image of every open set is open.

Theorem 14. A non-empty $T_{0}$ -space $X$ is quasi-Polish if and only if there
exists a continuous open surjection from $\omega^{\omega}$ to $X$ . $\square$

Theorem 15. If $X$ is quasi-Polish, $Y$ is a $T_{0}$ -space, and $f:Xarrow Y$ is an open
continuous surjection, then $Y$ is quasi-Polish. $\square$
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It is well known (see, for example, Theorem 8.19 in [7]) that if $X$ is Polish, $Y$

is a separable metrizable space, and $f:Xarrow Y$ is a continuous open surjection,
then $Y$ is Polish.

Corollary 16. A metrizable space is quasi-Polish if and only if it is Polish. $\square$

The next corollary follows by taking products (or disjoint unions) of suitable
continuous open surjections.

Corollary 17. Every countable product of quasi-Polish spaces is $quasi-Poli_{j}sh$,
and every countable disjoint union of quasi-Polish spaces is quasi-Polish. $\square$

6. Countably based locally compact sober spaces

In this section we show that every countably based locally compact sober
space is quasi-Polish. This implies, in particular, that every $\omega$-continuous do-
main is quasi-Polish.

A closed set is irreducible if it is not the union of two proper closed subsets.
A space is sober if and only if every irreducible closed set equals the closure of
a unique point.

Theorem 18. Every quasi-Polish space is sober. $\square$

A topological space $X$ is locally compact if and only if for every $x\in X$

and open $U$ containing $x$ , there is an open set $V$ and compact set $K$ such that
$x\in V\subseteq K\subseteq U$ . Given open sets $U$ and $V$ of a topological space $X$ , we write
$V\ll U$ to denote that $V$ is relatively compact in $U$ (i.e., every open cover of
$U$ admits a finite subcover of $V$ ). As shown in [6], a sober space $X$ is locally
compact if and only if for every $x\in X$ and open $U$ containing $x$ , there is open $V$

such that $x\in V\ll U$ . Equivalently, a sober space is locally compact if and only
if every open set is equal to the union of its relatively compact open subsets.

Theorem 19. Every countably based locally compact sober space is
$quasi-Polis_{\square }h$

.

Every continuous domain is locally compact and sober (see Proposition III-
3.7 in [5] $)$ . Therefore, we immediately obtain the following.

Corollary 20. Every $\omega$ -continuous domain is quasi-Polish. $\square$

7. Admissible representations of quasi-Polish spaces

In this section we characterize quasi-Polish spaces as precisely the countably
based spaces that have an admissible representation with Polish domain. Equiv-
alently, quasi-Polish spaces are precisely the countably based spaces with total
admissible representations defined on all of $\omega^{\omega}$ . Admissible representations of
topological spaces are fundamental to the development of computable analysis
under the Type 2 Theory of Effectivity (see [22]).
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Definition 21 (K. Weihrauch [22], M. Schr\"oder [16]). A partial contin-
uous function $\rho:\subseteq\omega^{\omega}arrow X$ is an admissible representation of $X$ if and only
if for every partial continuous $f:\subseteq\omega^{\omega}arrow X$ there exists a partial

$continuous\square$
$g:\subseteq\omega^{\omega}arrow\omega^{\omega}$ such that $f=\rho\circ g$ .

A characterization of the topological spaces which have admissible represen-
tations has been given by M. Schr\"oder [16]. Every space which has an admissible
representation satisfies the $T_{0}$-axiom.

The major importance of admissible representations is due to the following
fact. If $X$ and $Y$ are countably based spacesl, and $\rho x:\subseteq\omega^{\omega}arrow X$ and $\rho_{Y}:\subseteq$

$\omega^{\omega}arrow Y$ are admissible representations, then a function $f:Xarrow Y$ is continuous
if and only if there exists a continuous partial function $g$ : $\subseteq\omega^{\omega}arrow\omega^{\omega}$ such
that $fo\rho_{X}=\rho_{Y}og$ . This reduces the analysis of continuous functions between
represented spaces to the analysis of (partial) continuous functions on $\omega^{\omega}$ , which
are usually better understood and carry a natural definition of computability.

The next theorem shows that quasi-Polish spaces have an important role in
the theory of admissible representations.

Theorem 22. A countably based space $X$ is quasi-Polish if and only if there is
an admissible representation $\rho:\subseteq\omega^{\omega}arrow X$ of $X$ such that $dom(\rho)$ is Polish.

$\square$

V. Brattka has shown (Corollary 4.4.12 in [2]) that every Polish space $X$ has
a total admissible representation $\rho:\omega^{\omega}arrow X$ . By composing representations we
obtain the following corollary.

Corollary 23. A countably based space $X$ is quasi-Polish if and only if there
is a total admissible representation $\rho:\omega^{\omega}arrow X$ of $X$ . $\square$

The requirement that $X$ be countably based in the above theorem and corol-
lary can not be dropped. In Example 3 of [16], an admissible representation is
constructed for a countable Hausdorff space which is not first-countable (hence
not quasi-metrizable). It is easy to see that the domain of the representation in
this example is Polish, which implies that the space has a total admissible repre-
sentation. An interesting question is whether or not the completeness properties
of quasi-Polish spaces generalizes in some way to all spaces with total admissible
representations.

8. A game theoretic characterization of quasi-Polish spaces

In this section we give a game theoretic characterization of quasi-Polish
spaces by a simple modification of the strong Choquet game (see [7]).

lThe statement still holds for non-countably based $X$ and $Y$ if we either require $X$ and $Y$

to be sequential spaces or we relax the continuity requirement of $f$ to sequential continuity
(see [16] for details).
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Definition 24. Given a non-empty topological space $(X, \tau)$ , the game $\mathcal{G}(X, \tau)$

is defined as follows.
Player $I$: $x_{0},$ $U_{0}$ $x_{1},$ $U_{1}$ . . .
Player $\Pi$: $V_{0}$ $V_{1}$ . . .

Players I and $\Pi$ take turns playing non-empty open subsets of $X$ such that
$U_{0}\supseteq V_{0}\supseteq U_{1}\supseteq\ldots$ , but additionally Player I is required to play any point
$x_{n}\in U_{n}$ and $\Pi$ must then play $V_{n}\subseteq U_{n}$ with $x_{n}\in V_{n}$ .

Player $\Pi$ wins the game $\mathcal{G}(X, \tau)$ if and only if $\{V |i\in\omega\}$ is a neighborhood
basis of some $x\in X(i.e.$ , for any open $U\subseteq X$ containing $x$ , there is $i\in\omega$ such
that $x\in V_{i}\subseteq U$). Equivalently, Player $\Pi$ wins if and only if $\{U_{i}|i\in\omega\}$ is a
neighborhood basis of some $x\in X$ . $\square$

If the topology of $X$ is clear $hom$ context, then we write $\mathcal{G}(X)$ instead of
$\mathcal{G}(X, \tau)$ . The strong Choquet game for a topological space $X$ is played with the
same rules as $\mathcal{G}(X)$ , but with the exception that Player II wins if and only if
$\bigcap_{n\in\omega}U_{n}$ is non-empty. A topological space $X$ is a strong Choquet space if and
only if Player II has a winning strategy2 for the strong Choquet game on $X$ . It
immediately follows that if Player II has a winning strategy in the game $\mathcal{G}(X)$ ,
then $X$ is a strong Choquet space.

Theorem 25. If $X$ is a non-empty countably based $T_{0}$ -space, then Player $\Pi$

$spacehasa$

.
winning stmtegy in the game $\mathcal{G}(X)$ if and only if $X$ is a

$quasi-Polish\square$

It follows that every quasi-Polish space is strong Choquet. Also, every strong
Choquet space is a Baire space (i.e., countable intersections of dense open sets
are dense), thus we obtain the following.

Corollary 26. Every quasi-Polish space is a Baire space. $\square$

9. Embedding quasi-Polish spaces into $\omega$-continuous domains

In this section we give a domain-theoretic characterization of quasi-Polish
spaces. We then show some applications to modeling spaces as the maximal
elements of a domain.

Theorem 27. The following are equivalent for a topological space $X$ :

1. $X$ is a quasi-Polish space,
2. $X$ is homeomorphic to the set of non-compact elements of some $\omega$ -continuous

domain,
3. $X$ is homeomorphic to the set of non-compact elements of some $\omega$ -algebmic

domain.

2A precise definition for the term “winning strategy” can be found in [7].
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$\square$

Given a topological space $X$ , let ${\rm Max}(X)$ denote the set of maximal elements
of $X$ with respect to the specialization order. Every quasi-Polish space is a dcpo
with respect to the specialization order by virtue of being sober, hence ${\rm Max}(X)$

is non-empty when $X$ is a non-empty quasi-Polish space.
Recently there has been interest in characterizing the spaces that are homeo-

morphic to the set of maximal elements of some continuous domain (see [5]). An
$\omega$-ideal domain [11] is defined as an $\omega$-algebraic domain in which every element
is compact or maximal with respect to the specialization order. Ifurthermore,
an $\omega$-ideal model of a topological space $X$ is defined to be an $\omega$-ideal domain
$D$ in which $X$ is homeomorphic to ${\rm Max}(D)$ . The spaces with $\omega$-ideal models
have the following simple characterization, which is a corollary of the proof of
Theorem 27.

Corollary 28. A topological space has an $\omega$ -ideal model if and only if it is
quasi-Polish and satisfies the $T_{1}$ -sepamtion axiom. $\square$

To characterize the complexity of ${\rm Max}(X)$ for arbitrary quasi-Polish $X$ , we
begin with a lemma. Below we let $\pi_{X}$ denote the projection from $X\cross Y$ onto
X.

Lemma 29. The following are equivalent for a subset $A$ of a quasi-Polish space
$X$ ;

1. $A=\pi_{X}(F)$ for some $n_{2}^{0}$ subset $F\subseteq X\cross\omega^{\omega}$ .
2. $A=\pi_{X}(F)$ for some quasi-Polish $Y$ and $\Pi_{2}^{0}$ subset $F\subseteq X\cross$ Y.
3. $A=\pi_{X}(B)$ for some quasi-Polish $Y$ and Borel subset $B\subseteq X\cross Y$ .
4. $A=f(\omega^{\omega})$ for some continuous $f:\omega^{\omega}arrow$ Y.
5. $A=f(Y)$ for some quasi-Polish $Y$ and continuous $f:Yarrow X$ .

$\square$

This equivalence allows us to extend the definition of analytic sets to quasi-
Polish spaces.

Definition 30. Let $X$ be quasi-Polish. A subset $A\subseteq X$ is called analytic if
and only if it satisfies one of the equivalent conditions of Lemma 29. A subset is
co-analytic if and only if its complement is analytic. A subset is bi-analytic if
and only if it is both analytic and co-analytic. The analytic, co-analytic, and bi-
analytic subsets of $X$ will be denoted $\Sigma_{1}^{1}(X),$ $\Pi_{1}^{1}(X)$ , and $\Delta_{1}^{1}(X),$

$respectively\square$

If $(X, d)$ is a countably based complete quasi-metric space, then $(X, \hat{d})$ is
Polish and $B(X, \tau_{d})=B(\tau_{d})$ . Therefore, most of the known properties of
analytic sets in Polish spaces carry directly over to quasi-Polish spaces. For
example, we have the following generalization of Souslin‘s Theorem.

Theorem 31. If $X$ is quasi-Polish, then $B(X)=\Delta_{1}^{1}(X)$ . $\square$
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The above observation has already been made by D. Scott and V. Selivanov
for the case of $\mathcal{P}(\omega)$ .

We now give an upper bound on the complexity of the maximal elements of
a quasi-Polish space.

Theorem 32. If $X$ is quasi-Polish then ${\rm Max}(X)\in II_{1}^{1}(X)$ . $\square$

It turns out that this is the best lower bound possible in general. C. Mum-
mert has shown (Theorem 2.8 in [12]) that any co-analytic subset of $\omega^{\omega}$ can
be embedded into a relatively closed subset of the maximal elements of an $\omega-$

continuous domain. If we choose a co-analytic set that is not analytic, then
the maximal elements of such a domain can not be Borel. C. Mummert and F.
Stephan [13] have shown that the spaces that are homeomorphic to the maximal
elements of some $\omega$-continuous domain are precisely the countably based strong
Choquet spaces that satisfy the $T_{1}$ -separation axiom (K. Martin had previously
shown that the maximal elements are strong Choquet).

Corollary 33. A topological space $Xi_{j}s$ homeomorphic to ${\rm Max}(Y)$ for some
quasi-Polish space $Y$ if and only if $X$ is a countably based strong Choquet space
satisfying the $T_{1}$ -axiom. $\square$

10. Scattered spaces

In this section we show that scattered countably based $T_{0}$-spaces are quasi-
Polish, which extends the known result that scattered metrizable spaces are
Polish. Non-metrizable countably based scattered spaces naturally occur in the
field of inductive inference as precisely those spaces that can be identified in the
limit (relative to some oracle) with an ordinal mind change bound [10, 4].

Definition 34. A point $x$ of a topological space is isolated if and only if $\{x\}$

is open. If $x$ is not isolated, then it is $a$ limit point. A space is perfect if all of
its points are limit points. $\square$

Definition 35. A topological space $X$ is scattered if and only if every subspace
of $X$ contains an isolated point. $\square$

It is not difficult to see that if $X$ is countably based and scattered then $X$

has at most countably many points.
The following is a separation axiom proposed by C. E. Aull and W. J. Thron

[1] that is strictly between the $T_{0}$ and $T_{1}$ axioms. Recall that a subset of a
topological space is locally closed if and only if it is equal to the intersection of
an open set and a closed set.

Definition 36. A topological space $X$ satisfies the $T_{D}$ -sepamtion axiom if and
only if $\{x\}$ is locally closed for every $x\in X$ . $\square$

Clearly, every scattered space satisfies the $T_{D}$-axiom, although the converse
does not hold in general.
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Theorem 37. A countably based space is scattered if and only if it is a countable
quasi-Polish space satisfying the $T_{D}$ -axiom. $\square$

Corollary 38. Every non-empty perfect quasi-Polish space satisfying the $T_{D}-$

axiom has cardinality $2^{\aleph_{0}}$ .

The $T_{D}$-axiom is necessary in the above corollary, because the ordinal $\omega+1$

with the Scott-topology is a countable perfect quasi-Polish space which does not
satisfy the $T_{D}$-axiom.

11. Generalized Hausdorff-Kuratowski Theorem

In this section, we show that all levels of the difference hierarchy on countably
based $T_{0}$-spaces are preserved under admissible representations. This result is
then used to prove a generalization of the Hausdorff-Kuratowski Theorem for
quasi-Polish spaces. The difference hierarchy on Polish spaces is well understood
[7], and recently V. Selivanov [18] has extended many of these results to $\omega-$

continuous domains.

Definition 39. Any ordinal $\alpha$ can be expressed as $\alpha=\beta+n$ , where $\beta$ is a
limit ordinal or $0$ , and $n<\omega$ . We say that $\alpha$ is even if $n$ is even, and odd,
otherwise. For any ordinal $\alpha$ , let $r(\alpha)=0$ if $\alpha$ is even, and $r(\alpha)=1$ , otherwise.
For any ordinal $\alpha$ , define

$D_{\alpha}( \{A_{\beta}\}_{\beta<\alpha})=\cup\{A_{\beta}\backslash \bigcup_{\gamma<\beta}A_{\gamma}|\beta<\alpha, r(\beta)\neq r(\alpha)\}$
,

where $\{A_{\beta}\}_{\beta<\alpha}$ is a sequence of sets such that $A_{\gamma}\subseteq A_{\beta}$ for all $\gamma<\beta<\alpha$ .
For any topological space $X$ and countable ordinals $\alpha$ and $\beta$ , define $D_{\alpha}(\Sigma_{\beta}^{0}(X))$

to be the class of all sets $D_{\alpha}(\{A_{\gamma}\}_{\gamma<\alpha})$ , where $\{A_{\gamma}\}_{\gamma<\alpha}$ is an increasing se-
quence of elements of $\Sigma_{\beta}^{0}(X)$ . $\square$

The proof of the following theorem depends on a result by J. Saint Raymond
(Lemma 17 in [15]) that is closely related to the Vaught transform [21].

Theorem 40. Let $X$ be a countably based $T_{0}$ space and $\rho$ : $\subseteq\omega^{\omega}arrow X$ an
admissible representation. For any countable ordinals $\alpha,$ $\theta>0$ and $S\subseteq X$ ,

$S\in D_{\alpha}(\Sigma_{\theta}^{0}(X))\Leftrightarrow\rho^{-1}(S)\in D_{\alpha}(\Sigma_{\theta}^{0}(dom(\rho)))$ .
$\square$

Since $D_{1}(\Sigma_{\alpha}^{0}(X))=\Sigma_{\alpha}^{0}(X)$ , we obtain the following result from [3].

Corollary 41. Let $X$ be a countably based $T_{0}$ -space and $\rho$ : $\subseteq\omega^{\omega}arrow X$ an
admissible representation. For any $S\subseteq X$ and $1\leq\alpha<\omega_{1},$ $S\in\Sigma_{\alpha}^{0}(X)$ if and
only if $\rho^{-1}(S)\in\Sigma_{\alpha}^{0}(dom(\rho))$ . $\square$

26



The following is a generalization of the Hausdorff-Kuratowski Theorem. The
case for $\theta=1$ was proven by V. Selivanov [18] for all $\omega$-continuous domains,
but $\theta>1$ was left open.

Theorem 42. If $X$ is a quasi-Polish space and $1\leq\theta<\omega_{1}$ , then

$\Delta_{\theta+1}^{0}(X)=\bigcup_{1\leq\alpha<\omega_{1}}D_{\alpha}(\Sigma_{\theta}^{0}(X))$
.

$\square$

12. Extending quasi-Polish topologies

In this section we show that classic results concerning the extension of Polish
topologies naturally generalize to the quasi-Polish case. An important new
result is that any (separable) metrizable extension of a quasi-Polish topology by
$\Sigma_{2}^{0}$-sets results in a Polish topology. As corollaries, we obtain that the metric
topology induced by an arbitrary (compatible) quasi-metric on a quasi-Polish
space is Polish, and that the Lawson topology on an $\omega$-continuous domain is
Polish.

Theorem 43. Let $X$ be a quasi-Polish space and $A_{n}\in\Delta_{2}^{0}(X)$ for $n\in\omega$ . Then
the topology on $X$ genemted by adding $\{A_{n}\}_{n\in\omega}$ as open sets is quasi-Polish. $\square$

If $X$ is Polish and $B\subseteq X$ is closed, then the topology on $X$ generated
by adding $B$ as an open set is also Polish (see Lemma 13.2 in [7]). However, if
$B\in\Delta_{2}^{0}(X)$ is not closed then the resulting topology might fail to be metrizable.
For a simple example, let $\mathbb{R}$ be the real numbers with the usual topology, $K=$
$\{1/n|n\in\omega, n\geq 1\}$ , and $B=\mathbb{R}\backslash K$ . Then $K\in\Delta_{2}^{0}(\mathbb{R})$ because it is countable
and Polish, hence $B\in\Delta_{2}^{0}(\mathbb{R})$ . The topology on $\mathbb{R}$ generated by adding $B$ as an
open set, sometimes called the K-topology on $\mathbb{R}$ , is quasi-Polish by Theorem 43
and clearly Hausdorff, but it is not regular, hence not Polish, because $0$ and the
closed set $K$ do not have disjoint neighborhoods.

We also easily obtain the following generalization of a theorem by K. Kura-
towski (see Theorem 22.18 in [7]).

Theorem 44. Let $(X, \tau)$ be quasi-Polish and $A_{n}\in\Sigma_{\alpha}^{0}(X, \tau)$ for $n\in\omega$ . Then
there is a quasi-Polish topology $\tau’\subseteq\Sigma_{\alpha}^{0}(X, \tau)$ extending $\tau$ such that $A_{n}$ is

$open\square$in $(X, \tau’)$ for all $n\in\omega$ .

We conclude with an important result concerning metrizable extensions of
quasi-Polish topologies.

Theorem 45. Let $\tau$ and $\tau’$ be topologies on $X$ such that $(X, \tau)$ is quasi-Polish,
$(X, \tau^{l})$

is sepamble metrizable, and $\tau\subseteq\tau^{l}\subseteq\Sigma_{2}^{0}(X, \tau)$ . Then $(X, \tau’)$ is
$Polish.\square$
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Corollary 46. If $X$ is quasi-Polish and $d$ is any quasi-metric compatible with
the topology on $X$ , then (X, $\hat{d)}$ is Polish. $\square$

Note that the above corollary does not claim that $(X,\hat{d)}$ is a complete metric
space, which is false in general. It only means that the topology on (X, $\hat{d)}$ is
compatible with some complete metric, possibly different than $d$ .

For another simple application of Theorem 45, let $X$ be an $\omega$-continuous
domain and let $\tau$ be the Scott-topology on $X$ . Let $\{B_{i}\}_{i\in\omega}$ be an enumeration
of all subsets of $X$ of the form $\uparrow b_{0}\backslash (\uparrow b_{1}\cup\cdots\cup\uparrow b_{n})$ , where $b_{0},$ $b_{1},$

$\ldots,$
$b_{n}$ are

elements of some fixed countable basis (in the domain theoretic sense) for $X$ .
The topology $\lambda$ generated by $\{B_{i}\}_{i\in\omega}$ is called the Lawson topology on $X$ , and is
known to be separable and metrizable for $\omega$-continuous domains (see Theorem
III-4.5 and Corollary III-4.6 in [5] $)$ . Since $tb$ is open and $\uparrow b$ is $G_{\delta}$ with respect
to the Scott-topology, it is clear that $\tau\subseteq\lambda\subseteq\Sigma_{2}^{0}(X, \tau)$ . Theorem 45 therefore
provides an alternative proof of the known fact that the Lawson topology on an
$\omega$-continuous domain is Polish (compare with the proof of Proposition V-5.17
in [5] $)$ .

13. Conclusions

We have seen that the quasi-Polish spaces provide a nice common ground
for the development of descriptive set theory for both Polish spaces and $\omega-$

continuous domains. Our results also suggest that much can be gained by a
further integration of the fields of descriptive set theory, domain theory, and
generalized metrics.

Theorem 40 and Corollary 41 show that the Borel complexity of a subset of
an admissibly represented countably based space is precisely the Borel complex-
ity (relative to the domain of the representation) of the set of elements of $\omega^{\omega}$

representing the subset. This provides additional evidence that the modification
of the Borel hierarchy that we have adopted in this paper is the “correct“ def-
inition for generalizing descriptive set theory to all countably based $T_{0}$-spaces.
This equivalence between the complexity of subsets and their representations
can serve as a basic guideline for further extending the techniques of descrip-
tive set theory to the entire class of admissibly represented spaces. This is
an important task because the admissibly represented spaces form a cartesian
closed category [16], whereas the countably based spaces do not. An important
first step in this direction is to determine whether or not Corollary 41 can be
extended in a natural way to all admissibly represented spaces.
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