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High order asymptotic expansion for the heat equation
with a nonlinear boundary condition

KIRFFSZRE « 220 %ebt  JIl_ L= (Tatsuki Kawakami)

Department of Mathematical Sciences, Osaka Prefecture University

1 Introduction and Main Theorem

This is a survey article of the forthcoming paper [12].
We consider the heat equation in the half space of RV with a nonlinear boundary

condition,
Owu = Au in Qx (0, 00),
(1.1) Oyu = uP on 0Q x (0,00),
u(z,0) =p(z) >0 in Q
where Q = {z = (2/,zy) e RN : 2y > 0}, N > 2,0, =0/06t, 0, = —0/0zn, p > 1, and

(1.2) peXg:=L*°(Q) N {f e LYQ): /Q(l + |z X f(z)|dx < oo}

for some K > 0. The nonlinear boundary value problem (1.1) can be physically interpreted
as a nonlinear radiation law, and has been studied in many papers (see [1]-[5], [7], [10]-[13],
and references therein). For this problem, it is well known that if 1 < p < 1+ 1/N, then
the problem (1.1) does not have any positive global in time solutions, and if p > 1+1/N,
then, for some initial datum ¢, the problem (1.1) has a positive global in time solution
(see, for example, [3] and [5]). In particular, for the case where ¢ € X and p > 1+ 1/N,
in [10], the author of this paper proved that, if ||| L1(9)||go||f°(f(;21))“l is sufficiently small,
then the solution u of (1.1) exists globally in time, and satisfies

(13) sup (14 )09 [u(0) e + % fu(t) o] < 0
>

for any q € [1,00]. Furthermore he prove that, if the solution u satisfies (1.3), then the
solution u behaves like the Gauss kernel as t — oo, that is,

/ u(z,t)dz converges to a constant M as t — oo and
Q

Tim [lu(t) = 2MG(1 + 1) | za(@y/I|G(L + 1) | s(@y = 0 for any q € [1,00],



where
(1.4) G(z,t) = (4t)™ 7 exp (——lz) :

This result gives the first term of the asymptotic expansion of the solution u of (1.1)
satisfying (1.3). In general, the large time behavior of the solutions for nonlinear parabolic
problem like the problem (1.1) is influenced by the behavior of the initial datum at the
spatial infinity, and it is an interesting and important problem to study the relation
between the large time behavior of the solutions and the behavior of the initial datum.
For the problem (1.1) with p > 1+ 1/N and (N —2)p < N, the author of this paper and
Ishige in [7] gave a classification of the large time behaviors of the global solutions under
condition ¢ € L®(Q) N L2(£, el**/4dz). In particular, they studied the decay rate of the
L9(Q)-norm of the remainder term R(z,t) := u(z,t) — 2MG(z,1 + t), and proved that,
for any ¢ € [1, 00,

(15) t20 DR pr@ = O(¢71) + O 50~ )

as t — oo. Furthermore, applying the entropy dissipation method, the author of this
paper in [11] proved that, if ¢ € X, then, for any q € [1, o0],

—1 _E(p_l_L) . 3
16)  FODIRD) s = { IUA S &
O(t z(logt)z) if p=14++,
as t — 0o. By these estimates (1.5) and (1.6) it seems that if the initial datum ¢ belongs
to some suitable spaces like X, or L®(Q)NL2(£, el**/4dz), then we can obtain the precise
estimate on the difference between the solution and its asymptotic profiles. However we
can not obtain the relationship between the decay rate of ||R(t)||¢() and the decay rate
of the initial datum ¢ at the spatial infinity. Furthermore, as far as we know, there are
no results treating higher order asymptotic expansions of the solution of (1.1) even if
p € C5(Q).
In this paper, under conditions (1.2) and p > 1+1/N, we consider the initial-boundary
value problem

Ou = Au in Qx(0,00),
(1.7) 8,u = klulP"'u on 99 x (0,0),
u(z,0) =p(z) in Q,
where k € R, which includes problem (1.1), and study the large time behavior of the

solutions satisfying (1.3). In particular, improving the arguments in [8] and [9], we give
higher order asymptotic expansion of the solution u of (1.7). Throughout this paper



we write A, := N(p — 1)/2 for simplicity. We recall that A4, > 1/2 under condition
p>1+1/N.
We first introduce some notation. Let Ng = N U {0}. For any k € R, let [k] be an

integer such that k — 1 < [k] < k. For any multi-index a = (a1,-+- ,an_;) € N)'™! and
A € Ny, we put
N-1 N-1 -1 a|a|
la| = Zlail, al = H ol, z%:= H i, 0% = FrN
i= =1 i=1
J(a) = {p= (pl,”' apN—l) EIN‘(J)V_I\{O‘} Ry <o for all 7 = 1, ’ —1},
(_1)[al+2z\

ga,2)\(-7:, t) = W( ",82" G)(:E 1 +t)

where G(z,t) is the function given in (1.4). In particular, we write g(z,t) = goo(z, ) for
simplicity. We denote by d,, the Dirac delta distribution with respect to zy-direction.
Furthermore we denote by S(¢)¢ the unique bounded solution of the heat equation on £
with the homogeneous Neumann boundary condition and the initial datum ¢, that is,

(18) (S(t)p)() = / Iz, 4, t)o(y)dy

Here I' = I'(z, y, t) is the Green function for the heat equation on Q with the homogeneous
Neumann boundary condition, that is,

(1.9) I'(z,y,t) = G(z — y,t) + G(z — vu, 1), 2z,y€Q, t>0,

where y, = (v, —yn) for y = (', y~n) € Q. For any two nonnegative functions f; and f,
defined in a subset D of [0, 00), we say fi(t) < f2(t) for all ¢ € D if there exists a positive
constant C such that fi(t) < Cfa(t) for all ¢t € D. For any m > 0, we denote by L., the
function spaces L'(Q, (1 + |z|)™dz). In what follows, we write

I-lla=10-lzay - lllm =1l - 221412 mdz)s
- llgo0 =1l - 2200, - Hlmoe = || - llz1 60,1+l do)»

for simplicity, where g € [1,00] and m > 0.
Let £ € Ny and ¢ > 0. Then, modifying [6] and [9], we introduce a linear operator
Py(t) on Li by

(110) [Pk( ) ](ZL‘) = f Z MaZ/\ f’t)gaZ/\(x t)

|| +22<k

where f € L;. Here My x(f,t) is a constant defined inductively (in o and \) by

(1.11)  Myon(f,t) == /Q(x/)a 2 f(x)dx — 2ZZMPZ“U t)/(x )*2% gp2u(, t)dz,

j=1 J;
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where J; = {p € J(a),p < A}, o ={p=a,p < A}, and J3 = {p € J(a),u = A}.
Especially, if |a| + 2\ < 1, then

(1.12) Moo(f,t) = /Qf(a:)d.z', M,o(f,t) == /Q(x')af(x)dw with |a| =1.
It is easy to see that the operator Pi(t) satisfies

(1.13) / (@) Pt fl(@)dz =0,  |a] +2) <k,

for all ¢ > 0. This operator is key of our proof, in particular (1.13) is crucial property in
our analysis. Furthermore, if ¢ € Xx with K > 0, then we have

My ax(St)p,t) = My ox(p,0), t>0,

for all || + 2\ < K (see Lemma 2.4). This together with (1.13) yields

ot~%) if K =IK],

(114) 7D u) -2 Y Mazr(p,0)gan(®) ={O(t—%‘- if K> [K]

la|+2A<K q

as t — oo, for any ¢ € [1, 0], which gives higher order asymptotic expansion of S(t)e
(See also [12, Proposition 2.1J).

Next we give the definition of the solution of (1.7).

Definition 1.1 Let ¢ € X,. Then the function u € C(Q x (0,00)) N L®(0, 00 : L®(Q))
is said to be a solution of (1.7) if

wet) = [ M@ tedy+r [ [ 1@t 9l )P uly, doyds

holds for all (z,t) € Q x (0,00). Here T is the Green function given by (1.9) and doy is
the (N — 1)-dimensional Lebesgue measure on 0§t = RV~

It is known that, under the above definition, for any nontrivial initial datum ¢ € X, the

problem (1.7) has a unique classical solution (see, for example, [7]). By using approximate
solutions of (1.7) we have

(115) sup (1407 ([l + @) lloa) < o0

for any I € [0, K]. Therefore, for any |a| + 2\ < K, we can define My 25 (u(t),t) for all
¢t > 0 (see (1.11) and (1.12)). For any n = 1,2, ..., modifying [8] and [9], we introduce



the function U, = U,(z,t) defined inductively by

(116)  Uo(mt):=2 > Maoa(ult),t)gapa(z,t),

la|+22<K

(1.17) Un(z,t) .= Up(z,t) + /t S(t — 8)[Pk(8)Fn-1(8)0zp]ds, n=1,2,...,

where F;,_y(z,t) = k|Up—1(z, )P Up-1(z, t).
Now we are ready to state the main theorem of this note.

Theorem 1.1 Consider the initial-boundary value problem (1.7) under conditions A, >
1/2 and (1.2) for some K > 0. Let u be a unique solution of (1.7) satisfying (1.3), and
letn=0,1,2,.... Then there holds the following:

(i) The function U, defined by (1.16) and (1.17) satisfies
(118) sup (1-+ 1) 5470 [ U(0) g + ¢34 Ur(t)om] < oo,
(119) sup (141) 7 (|1 Ol + E1Un®)lhon] < oo,

for any g € [1,00] and l € [0, K];
(ii) For any q € [1,00],

(1.20) £50-3) [Ilu(t) — Un(®)ll, + % Jlu(t) — Un(t)”q,an]
- { (141)"% 4+ (1+8)" D=0 f (n+1)(24,— 1) #K,
Tl @48 Flog(2+1) if (n+1)(24,-1) =K,

forallt > 0;
(iii) If (n +1)(24, — 1) > K, then, for any q € [1,0],

ot %) if K=|[K],

(1.21) $30-D [“u(t) — Un(®)ll, + % Jlut) — Un(t)llq,an] = { ot=%) if K> |[K]

ast — oo,
(iv) For any l € [0, K] and o > 0,

(122)  (1+¢)7 [HIU(t) — Un@)|le + 22| [u(t) - Un(t)lllz,an]
< (14872 + (148 DA-2) 5,

By Theorem 1.1 we see that the functions Uy and {U,}2, give a linear approximation
and nonlinear approximation to the solution u, respectively.
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Remark 1.1 (i) Uy is represented as a linear combination of {ga2x(2,t)}al+22<k, and
plays a role of projection of the solution onto the space spanned by {ga22(%,t) Haj+2r<k -
(ii) If (n + 1)(24, — 1) > K, then the decay estimate of ||u(t) — Un(t)llq as t — oo in
(1.21) is the same as in (1.14).

(iii) U, (n=1,2,...) gives the ([K]+ 2)-th order asymptotic expansion of the solution u
and is determined systematically by the function Up.

Our method of this paper is based on the arguments in [6], [8], and [9). The arguments
of these papers are useful and applied to the large class of the nonlinear parabolic equations
in the whole space. However, since we consider the problem (1.7) in the half space of RY
which has a nonlinearity on the boundary 652, we can not apply these argument directly.
Therefore, modifying [6] and [9], we introduce the key operator P;(t) given in (1.10),
which has not same form but same nice properties. Furthermore, by using the property of
the half space and the representation formula of the solution (see Definition 1.1), we can
establish the method of obtaining higher order asymptotic expansions of the solution of
(1.7), and give decay estimates of the difference between the solution and its asymptotic
expansions.

The rest of this paper is organized as follows. In Section 2 we give some properties of
S(t)e and P;(t). Section 3 is devoted to the proof of theorem.

2 Preliminaries

Im this section, modifying [6] and [9], we give some preliminary results on the behavior
of S(t)p given in (1.8) and the operator Py(t) defined by (1.10).
For any o € Nf)v ~1and A € Ny, let ga,2x be the function given in Section 1. Then there

exists a constant C; such that

el +2 2
_N+t|a|+ T T
10202, Gz, 1)] < Crt 5 @+G%ﬂ m4ig)

for all (z,t) € Q x (0,00). This inequality yields the inequalities

% _N(_1)_leltr
IGax(®)llg + 12 [|[Gan(®)llgon <t 722

(2.1) o
/ |z|™6%:82, G(z, t)|dz + / 26828 G(z, t)|do < t775=,
@ £
and
% _N(1-1)_lalizr
(22) 902l + (1 + )% gar(@)lgon < (1 -+ F0-D-'52,
2.2

m m—|a|—A-1
/ |Z™|ge 20 (2, )| dz + / |Z["|ga2a(z, )ldo 2 (1 +8) =,
Q an



for all t > 0 and any ¢ € [1,00] and m > 0. Then, since
I'(z,y,t) = G(x — y,t) + G(z — y., t),
by (1.8) and (2.1) we see that there exists a constant Cs such that, forany 1 < p < ¢ < o0,
_N(i_1 N1y 1
(2.3) 1S@)¢lly < Cot™ 2 Dlplly,  1S@)pllasa < Cot ™22 % ]|y,
for all t > 0. Furthermore we give the following lemmas on the estimates of S(t)¢p.

Lemma 2.1 Let ¢ € X}, with k > 0. Then, for any € > 0 and |l € [0,k|, there ezists a
constant C' such that

(2.4) 1S@elll + 21118 @elllen < A+ @lllelll + CA +t2) ol
for allt > 0.
Lemma 2.2 Let ¢ € L, with k > 0 and assume

/(x Yerko(z)dz = 0, la| + 22 < m,

for some integer m € {0, ..., [k]}. Then there holds the following:
(i) fo<m< [k] -1, for any l € [0,k — m — 1], there exists a constant Cy such that

/Q 2 [(S(t)) ()| de
<t | [ e iot@lds +4% [ o™ o)l

for allt > 0;
(ii) If m = [k], for any | € [0,k — [k]], there exists a constant Cy such that

/ l2l! [(S(2)) («)] dax < Cot~F* / jal*lo()ldz
Q Q

for all't > 0. In particular, if k = [k], then limy_o0 t3||S(t)y|l; = O.

Next we give the two lemmas on the operator Py(t) (see also [6, Lemma 2.3] and [9,
Lemma 2.3)).

Lemma 2.3 Let k > 0 and f = f(x,t) € C(Q x (0,00)) be a bounded function such that

sup (17l + 17 lesn] < o0



for allt > 0. Then there holds the following:
(i) Assume that there exists a constant -y > 0 such that

sup (1+8) 4|1 f D)l han < 00
>
for alll € [0,k]. Then, for any |a| +2X < k, there exists a constant Cy such that
|Maor(f(£)0an, )] < Ci(1 +8) 5773
for allt > 0. Furthermore
sup (1 +1) 7783 || Pre(®) £ (0)3anlllls < o0
>
for any l € [0, K] and g € [1,00];
(ii) If there ezists a constant v > 0 such that

sup [¢30=47 V5| £ (1) lan + (14 )57 31 D)lllon) < o0
foralll € [0, K] and q € [1,00], then
t
| 8= 9P(s)(5)oculds
0

+7(1-9)

t
<t 7 / (1+s)7 757 2ds
q 0
for allt > 0. Furthermore, for any q € [1,00],

| " S(t = 5)Prc(s) ()5 )ds

N 1 1
t21-ts

t
jt‘g/(l-}-s)g_"s_%ds
a0 0

g
for allt > 0.

Lemma 2.4 Assume the same conditions as in Lemma 2.3. Let u be a solution of the
initial-boundary value problem

Ou=Au in Q% (0,00), 0Ou= f(z,t) on N x (0,00), u(z,0)=p(z) in Q,

where ¢ € Xi. Then there holds the following:
(i) The function v = [Pe(t)u(t)](z) satisfies

at'v =Av —2 Z Ma,ZA(f(t)‘szN’ t)ga,2)\(x’t) in X (Oa OO),

lo+2X<k
ov = f(z,t) on 09 x (0, 00),
v(z,0) = (Pr(0)u(0))(z) in Q;
(ii) For any |a| +2X <k,
d

EMa,g)\(’u(t), t) = Ma,2A(f(t)5zNat)

forallt > 0.



3 Proof of Main Theorem

In this section we prove Theorem 1.1. We first prove assertions (i), (ii), and (iv) of
Theorem 1.1.

Proof of assertions (i), (ii), and (iv) of Theorem 1.1. By (1.15) we can apply
Lemma 2.3 (i) with v = 0 to the function Uy (see (1.16)), and obtain

lex|+22
Uo(@, )1 <2 D [Maga(u(®),)llgaar(@t)] 2 Y (14877 |gama(s,t)]
laj+2A<K la]+2A<K

for all (z,t) € Q x (0,00). This inequality together with (2.2) yield (1.18) and (1.19) for
the case n = 0, and assertion (i) follows for the case n = 0.

Let n = —1,0,1,2,.... We assume, without loss of generality, that o € (0, 4, — 1/2).
Put

o=l O if n(24,-1) > K, —A—l—E—o
"=\ (K/2)—n(4,-1/2) if n(24,—1) <K, =L Ty T O

Let U_; = 0 in Q x (0,00). Then (1.17) holds for n = 0,1,2,.... Furthermore, since the
solution u satisfies (1.3) and (1.15), assertions (i), (ii), and (iv) hold with n = —1 and
o = 0yg.

Assume that there exists a number n, € {—1,0,1,2,---} such that assertions (i), (i),
and (iv) hold with n = n, and o = 0,,,;;. We first prove assertion (i) for n = n, + 1.
Since assertion (i) holds with n = n, and F,(z,t) = &|U,(z, t)|P~ U, (z,t), we obtain

N1y L ~i,1
(1) sup (Lo [tFODEE, ()]lg0n + (1 + ) EHI|F ()lllsn] < o,
>

for any g € [1,00] and ! € [0, K]. This together with Lemma 2.3 (i) implies that

l

(3:2) sup (1 + )54 ||| Py () [Fr. (£)3en ]l < 00
>

for any [ € [0, K]. Since A, > 1/2, by (1.17), (1.19) with n = 0, (2.4), and (3.2) we have

(3.3) 1Vnsa (@)l < mwnm”( JE L IORE |
<Lty / 1 Px (5)[Fp. ()52, s
; /Ot(l+(t—s)%)||PK(s)[Fm(s>6zN]||1ds

t t
5(1+t)%+/(1+s)-Av+%s-%ds+/(1+(t—s)é)(1+s)-Aps—%dsj (1+1)2
0 0
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for all t > 0. Furthermore, applying similar argument as above, we obtain

(3.4) ||| Unoicr®)lon = (1 +18)7

for all t > 0. On the other hand, by (1.19) with n = 0, (2.2), (3.1), and Lemma 2.3 (i)
we have

85 @D @0 +2 T [ Moas(Fo (s )dslgaas(s:1)

la|+2A<K

+

t
/ D@, 9t — 5)Fo. (4, 5)doyds
0 onN

t
] Z t'mﬁﬂ/(1+s)ﬁ%ﬂ“4"s"%ds
la|+2A<K 0

w|2

=t

t

t/2
+ / (t = )% || Fou(5)]l1,00ds + / (t — 8)7% || Fr. (5)l|oo,00ds
0 t/2

¢/2 t
<t (1 + 1+ s)'APs“%ds + / (t— s)“%(l + s)‘APds) <t %
0 t/2

for all (z,t) € Q x [1,00). Furthermore, applying same argument as above, we obtain

sup sup |Un,+1(z,t)| < oo.
0<t<1 e

This together with (3.3)—(3.5) implies that assertion (i) holds with n = n, + 1.

Next we prove that assertions (ii) and (iv) hold with n = n, + 1 and ¢ = 0y, 42. Since
the solution u satisfies (1.3) and (1.15), due to assertion (i) with n = n, + 1, it suffices
to prove that (1.20) and (1.22) hold with n = n, + 1 and 0 = 0y, 42 for all sufficiently
large t. Put 2(t) := u(t) — Uy, +1(t). Then, by (1.10) and (1.17) we have

z(z,t) = Pg(t)u(t) — /Ot S(t — 8) Pk (8)[Fn.(8)0z,]ds.
Then, by (1.11) and Lemma 2.4 (i) we obtain

Oz=02-2 Y Muar((F(t) = Fu.(t))bon:t)ga2r(z,) in Qx (0,00),

lal+2A<K
Oz = F(z,t) — Fp,,(x,t) on 99 x (0,00),
z(z,0) = (Px(0)u(0))(x) in Q,

This implies that

(3.6) 2(t) = S(t — to)2(to) + / S(t — 5)Px(8)[(F(5) = F.(5))bey lds
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for all t > ¢ > 0. Let ¢ € [1,0]. By (2.3) we have
N1 N1
(3.7) t70D|S(0)2(0) g = £207D1S(t/2)S(2/2)2(0) l, < 15(2/2)2(0) s
for all ¢t > 0. Similarly we have
(38) O |S(0)2(0)aon = tTOTH|S(/2)5(/2)2(0)lqon 2 ISE/2)20)]
for all £ > 0. Furthermore, since it follows from (1.13) that
/( Ner®z(z,0)dz = /(:r )* 23N (Pr (0)u(0))(z)dz = 0, la| +2) < K,
we can apply Lemma 2.2 (ii) to have
IS(t/2)2(0) ), < ¢=%
for all ¢ > 0. This together with (3.7) and (3.8) implies
Ni_1 1 -
(39) FOD (IS02(0)l + £ S(D)2(0)qon) = ¢
for all ¢ > 0. On the other hand, by (1.3) and (1.18) with n = n, we have
(3.10) |F(z,t) — Fo,(z,8)] <X (1+t)"*|u(z,t) — U,.(z,t)|

for all (z,t) € @ x (0,00). Then, since assertions (ii) and (iv) hold with n = n, and
0 = Op,+1, by (3.10) we obtain

©fx

B1) s DA FY) — F @)llgon

+sup (1 + t)" 24113 |||F(2) — Fp. (8)]| 160 < 00
t>0
for any g € [1,00] and ! € [0, K]. This together with Lemma 2.3 (i) implies that
(3.12) sup (1 + &)™ 57413 || P (6) [(F() — Fr. (£))8ar]||li < 00
t>0

for any [ € [0, K]. Furthermore, by (3.11) we can apply Lemma 2.3 (ii) with ' = 7,1,
and obtain

(13 e U / S(t — ) Pr()[(F(s) — Fo ()5, )ds

t ¢
<t % / (1+5)Fmtis™ids = =% / (14 ) Artomstig=igs
0 0

-k if (n.+2)(24, - 1) > K,
5 logt if (ne+2)(24,-1)=K
==+ i (n, +2)(24, — 1) < K,

LA
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for all sufficiently large ¢t. Similarly, we have

(3.14) £7 (=3t

/0 " S(t — 5)Prc(5)[(F(s) = F. (5))bn]ds

. if (ne+2)(24,-1) > K,
% logt if (n.+2)(24,-1)=K,
(et D(o=3) if (n, +2)(24, — 1) < K,

q,0Q
K
2

IA

for all sufficiently large t. Therefore we apply (3.9), (3.13), and (3.14) to (3.6) with ¢, = 0,
and obtain inequality (1.20) with n = n,+1 for any sufficiently large ¢. Thus assertion (ii)
holds with n = n, + 1.

On the other hand, for any [ € [0, K], we have

L L
(1 +077% (=) + 2 1l12llan)
1 _K 1
< 2@l + Bzl + @+ 075 (@l + 1z xcon)
for all £ > 0. Then, by (1.20) with ¢ =1 and n = n, + 1 we see that, if there holds (1.22)

with [ = K, then we have (1.22) for | € [0, K]. Thus it suffices to prove (1.22) with [ = K,
n=mn,+1, and 0 = o,,,2. Put Z(¢t) = ||[2(t)|||x. By (3.6) we have

2t
B.15)  Z(2t) < [[[S®)2(®)lllx + ) 115(2t — 8) Pk (5)[(F(5) — Fn.(8))0an]ll xds

for all ¢ > 0. Let § > 0. Then, by (2.4) and (1.20) with n = n, + 1 we have

(3.16) [IS@®z()llx < (1 +)llz@)lllx + Cr(1 +7)l|z() 11 < (1 +8)Z(2) + Cat™

for all t > 1/2, where Cy and Cy constants. Furthermore, by (2.4) and (3.12) we have
1) [5G~ P - Fn (il
< [T IPCEE = Fo )5l
b [ [+ 2= 98| 1Pe(o)F(6) — Fu oDyl

2t ot
= / (1 + 8)%‘—’7n.+13_%d3 + / [1 + (2t - 3)%] (1 + 3)—’Yn.+1s—%ds
t t

< o Mnat1+g = = (Ap—3)HOnitl < ponat2
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for all ¢ > 1/2. Therefore, by (3.15)—(3.17) we can find a constant C; satisfying
(3.18) Z(2t) < (1+6)Z(t) + Csto+2, £ >1/2.

Furthermore, since it follows from (1.15) and (1.19) with n = n, + 1 that supy,«; Z(t) <
00, applying the same argument as in the proof of Lemma 3.2 in [6] with the inequality
(3.18), we obtain

(3.19) Z(t) =t
for all ¢ > 1. On the other hand, by (2.4), (1.20) with n = n, + 1, and (3.19) we have
(3.20) £2|S(®)2(t)||k00 = Z(E) + (1 +12)||2(2) |1 < 72

for all t > 1. Furthermore, applying similar argument as in (3.17), we obtain

2t
3 /t [11S(2t — s) P (3)[(F(8) — Fr.(8))0zy]ll|x,00ds = tTm+2

for all t > 1. This together with (3.6) and (3.20) implies that
(321) |10l |00 = o2

forallt > 1. By (3.19) and (3.21) we have inequality (1.22) with n = n,+1 with 0 = 0y, 42
for any sufficiently large ¢. Therefore assertions (ii) and (iv) hold with n = n. + 1 for all
t > 0. Thus, by induction we see that (1.19), (1.20) and (1.22) hold with ¢ = 0,1 for all
n=0,1,2,..., and assertions (i), (ii), and (iv) of Theorem 1.1 follow. O

We complete the proof of Theorem 1.1.

Proof of Theorem 1.1. It suffices to prove assertion (iii) of Theorem 1.1. Since there
holds (1.21) for the case K > [K| by Theorem 1.1 (ii), it suffices to prove (1.21) for the
case K = [K]. Let K = [K]. Let n € {0,1,2,...} be such that

(n+1)(24,-1) > K.
Then we can take a positive constant o so that
(3.22) K —n(24,-1) <20 <24, -1

Put F,_1(t) = F(t) — Fo_i(t), Un—1(t) = u(t) — Up_1(t), and 2¢ := 24, — 1 — 20 > 0.
Then, by (3.22) we apply Theorem 1.1 (ii) and (iv) to obtain

(323)  tFCDVE)E, (#)]lgen + 1+ )55 Fass (B)] |00
< (1+1)4 {t%“-%“% Ora(®)]| | +(1+ t)“%t%lllﬁn-l(t)lllz,m}
q,

< (148 [(1+ )21 + (1 + ¢)4r—2)]
S (L4t 5 (14475757, ¢>0,




where g € [1,00] and [ € [0, K]. Furthermore, by (3.23) and Lemma 2.3 (i) we have
(3.29 (L4 &) 3| P Fr()an]llle X (1 8) 547t

for all t > 0. Put 2,(t) = u(t) — U,(t). By (3.6), for any L > 0, we have

(325)  zn(t) = S(t)2n(0) + /0 S(t — 8)Pe(s)[Fa_1(5)0., ]ds

t t/2 L .
= S(t)2a(0) + ( /t/2+ /L + /0 )S(t—s)PK(s)[Fn_l(s)dzN]ds

=: S(t)2,(0) + L,(t) + L(t) + I3(2)
for ¢t > 2L. Since z,(0) = Px(0)u(0), by (1.13) we have

/ z%2,(0)dz = 0, o] < [K]=K
RN

and by (2.3) and Lemma 2.2 (ii) we obtain

(3.26) lim 50D F ()2 (0) o < Jim £71S(t/2)20(0)]12 = 0.
(327) lim ¢ 3024545 |S (1) 20(0) laon < lim ¢5IS(2/2)za(0)]]2 = 0.

We first give the estimate for I;(t). By (3.23) and Lemma 2.3 (i) we obtain

K_1

(3.28) | Mazr(Fre1 ()02, 8)] = (14 1) 55375473
for all t > 0. Since S(t — $)ga,22(S) = ga,22(t) for t > s > 0, by (1.10) we see that

L(z,t) = /t/zf I(z,y,t — s)F, _l(y,s)dayds

—2gq2x(2,1) Ma,gk(ﬁ’n_l(s)&m, s)ds
t/2 |a|+2,\<K

for all (z,t) € Q x (0, 00). Therefore, by (2.2), (3.23), and (3.28) we have
N N [t 1, =
i 01 =2 t¥ | (= st
t/2

N
+t2 IMa 2A(Fn 1(t)5zmt)”|9a 2/\”ood5
|a|+2A<K t/2
K_1 ¢
<t z7z"¢ (t — s)‘fds + t__'-e = t___e
t/2
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for all (z,t) € Q x (0,00). This implies that

(3.29) £% (I(t)lloo + [ [loo) = 0(t™ %)

as t — oo. Furthermore, by (2.3) and (3.24) with [ = 0 we obtain

t

t
(3.30) L) < / | Prc(8) [Fr1 (8) 8z ] [11ds =< / §TF 717 ds <75 = o(t™ %)
t/2 t/2

as t — oo. Similarly we have
3] L(#)l|1.om = o(t™%)
as t — co. This together with (3.29) and (3.30) yields
(3:31) t3070 (JL@)l + 51 LE)lgon) = olt™%) as t— oo

Next we give the estimates for I5(t) and I5(t). By Lemma 2.2 (ii), (2.3) and (3.24) we
have

332 50D (1), + 1O l)
< /L s (t y S) Pr(8)[Ft(5)50, ]

¢/2 B i e )
< [t = ) FIPe P (g lllacds < % [ s7as <% 1
L L

1

for all sufficiently large ¢. Similarly, by (2.3) we obtain

2

(3.33) $2(=2) (”Ig(t)”q +t2—16”13(t)]|q,59> = AL S (t —_ S) Prc(8)[Frp_1(5)0zy] 1 ds

for all £ > 0. On the other hand, by Lemma 2.2 (ii), (1.13), and (3.24) we have

(3.34) hm te

t—o0

2

s (t . ) Prc(9)For ()]

1

= fim(e =% |5 (152) P Frns(9y

(335) “ ( >PK 5)[Fn 1(8)6w ] .
=< (t — 8)" 5 ||| Pa(s)[Faca ()b llllx <t F573, ¢ >2L,

1

15
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for all s € (0,L). By (3.34) and (3.35) we apply the Lebesgue dominated convergence
theorem to (3.33), and obtain ,

(3.36) t3 09| I(e)ll, = o(t~%)
as t — o0o. Therefore, combining (3.25)—(3.27), (3.31), (3.32), and (3.36), we see that
there exists a constant Cy4 such that

N

timsupt ¥4 F ((lzu(i)ll + % 12(t)lgon) < CaL~

t—o0

Then, since L is arbitrary, we have

lim ¢504F (|2 (t)llg + %122 llgon) = 0.

t—oo

Thus we have (1.21) for the case K = [K], and the proof of Theorem 1.1 is complete. O
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