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Abstract

This note is devoted to discussing a variational formulation for non-
equilibrium systems. We first provide an introductory course on a
global variational method for gradient systems based on Weighted
Energy-Dissipation (WED) functionals. We then review recent re-
sults in [2, 3] for doubly nonlinear evolution equations.

This note is based on ajoint work with Ulisse Stefanelli (IMATI/CNR).

1 Evolution equations and variational principle
Let $X$ be a configuration space arid let $u$ be an X-valued function of time such that
$u(t)$ describes a state at time $t$ :

$u$ : $[0, \infty)$

$t$

$arrow$ $X$

$\mapsto$ $u(t)$

Now, ail evolution law of state is supposed to be given by an ordinary differential
equation in $X$ , which is called evolution equation, such as

$u’(t)=B(u(t))$ in $X$ , $0<t<\infty$ ,

where $u’=du/dt$ and $B$ is an operator in $X$ . In particular, time-evolutionary PDEs
(e.g., heat/Navier-Stokes/wave/Schr\"odinger equations) can be reduced to evolution
equations.

Dynamics of non-equilibrium states of irreversible processes (e.g., heat transfer)
might be mathematically formulated as gradient systems, where $B$ has a gradient
structure, i.e., $B=-\nabla\phi$ with some energy/entropy functional $\phi$ : $Harrow \mathbb{R}$ on a
Hilbert space $H$ ,

$u’(t)=-\nabla\phi(u(t))$ in $H$ , $0<t<\infty$ . (GS)

Here $\nabla\phi$ denotes a functional derivative of $\phi$ in a proper sense. Then the en-
ergy/entropy $\phi(u(t))$ is decreasing in time (i.e., (GS) enjoys a dissipative structure),
and hence, the state $u(t)$ evolves irreversibly.
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Morton E. Gurtin [9] proposed a fairly general description for non-equilibrium
systems by using the following genemlized gmdient system:

$\nabla\psi(u’(t))=-\nabla\phi(u(t))$ in $H$, $0<t<\infty$ (GSS)

with two functionals $\psi,$ $\phi$ in $H$ . In continuum thermomechanics, $\psi$ and $\phi$ are often
called dissipation functional and energy functional, respectively.

Thus the dynamics of non-equilibrium state is often described as a gradient sys-
tem. On the other hand, equilibrium states of such irreversible processes are often
formulated in a variational fashion. As for (GS), equilibria are critical points of the
energy functional $\phi$ , and hence, the corresponding Euler-Lagrange equation reads,

$\nabla\phi(u)=0$ .

In this note, we shall discuss variational formulations for non-equilibrium systems.
We start with the following two examples.

Example 1.1 (Implicit time-discretization of gradient systems). One can incremen-
tally obtain a next step $u_{n}$ from the previous step $u_{n-1}$ by solving the semi-discretized
problem for (GS),

$\frac{u_{n}-u_{n-1}}{h}=-\nabla\phi(u_{n})$ ,

which is an Euler-Lagrange equation of the functional

$I_{n}(w):= \frac{1}{2}|w|_{H}^{2}+h\phi(w)-(u_{n-1}, w)_{H}$ for $w\in H$ .

This variational formulation seems to be local in time. It also requires an approxi-
mation (precisely, time-discretization) of the target equation.

Example 1.2 ( $\cdot$ , variational principle [6, 7]). Let $\phi$ be a proper lower
semicontinuous convex functional on a Hilbert space $H$ . Then Br\’ezis arid Ekelarid
found the following relation,

$u’(t)+\partial\phi(u(t))\ni 0$ , $u(O)=u_{0}$ iff $J(u)= \inf J=0$ ,

where $J$ is a functional on $W^{1,2}(0, T;H)$ given by

$J(u):= \int_{0}^{T}(\phi(u(t))+\phi^{*}(-u’(t)))dt+\frac{1}{2}|u(T)|_{H}^{2}-\frac{1}{2}|\prime u_{0}|_{H}^{2}$

with the domain $D(J)$ $:=\{u\in W^{1,2}(0, T;H):u(O)=u_{0}\}$ , where $\phi^{*}$ is the convex
conjugate of $\phi$ . Br\’ezis-Ekelarid $s$ principle would be global in time and it requires no
approximation. On the other hand, the original Cauchy problem is not formulated
as an Euler-Lagrange equation of $J$ .
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The aim of this note is to propose a variational method meeting the following
requirements for generalized gradient systems (GGS):. (GGS) is formulated as a global (in time) minimization problem for an appro-

priate convex functional (cf. implicit time-discretization method).

$0$ Moreover, (GGS) can be reformulated as an Euler-Lagrange equation of the
functional (cf. Br\’ezis-Ekel $M1d$ ’s variatiollal principle).

On the other hand, we may allow of approximating (GGS) in compensation.
In this note, we shall propose a variational method using Weighted Energy-

Dissipation (WED) functionals for (GGS). In Section 2, we give a short guidance
on variational methods based on WED functionals for gradient systems. Section 3 is
concerned with an extension of the WED functional method to generalized gradient
systems. The main part of Sections 4 and 5 is devoted to reviewing recent results
of the author and Ulisse Stefanelli in [2, 3]. We shall provide slightly improved re-
sults compared to the original ones (see Remark 4.4). In Section 6, we give a couple
of remarks on applications to nonlinear PDEs, related variational issues and some
perspective of further possibilities of WED functional formalism.

2 A short guidance on WED functional method
The WED functional method has been developed as a new tool in order to possibly
reformulate dissipative evolution problems in a variational fashion. In particular,
minimizers of WED functionals taking a given initial value are expected to approx-
imate solutions of target systems. This perspective has recently attracted attention
and, particularly, the WED formalism has already been matter of consideration. At
first, the WED functional approach has been addressed by Mielke and Ortiz [14] in
the rate-independent case, namely for a positively l-homogeneous dissipation $\psi$ .

In this section, we give a short guidance on WED functional formalism to gradient
systems. Let us start with the initial-boundary value problem for the heat equation,

$\{\begin{array}{l}\partial_{t}’u-\Delta u= Oin Q:=fl\cross(O, T),u|_{\partial fl}=0, u(\cdot, 0)=u_{0}.\end{array}$ (Heat)

For each $\epsilon>0$ , let us define the WED functional $I_{\epsilon}$ for (Heat) as follows:

$I_{\epsilon}(u)$ $:= \int_{Q}e^{-t/\epsilon}(\frac{1}{2}|’\partial_{t}u|^{2}+\frac{1}{2\epsilon}|\nabla u|^{2})$ dxd$t$

for $u\in W^{1,2}(0, T;L^{2}(\zeta l))\cap L^{2}(0, T;H_{0}^{1}(\zeta\}))$ satisfying $u(\cdot, 0)=u_{0}$ . Then the Euler-
Lagrange equation of $I_{\epsilon}$ reads,

$\{\begin{array}{l}-\epsilon\prime\partial_{t}^{2}u+\partial_{t}’u-\triangle u=0 in Q,u|_{\partial tl}=0, u(\cdot, 0)=u_{0}, \partial_{t}’u(\cdot, T)=0.\end{array}$

Equation above can be regarded as an elliptic-in-time appro rimation of (Heat).
Elliptic-in-time regularizations of parabolic problems are classical in the linear case
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and some results can be found in the monograph by [13]. Then one can prove that
$u_{\epsilon}arrow u$ in $C([0, T];L^{2}(S2))$ as $6arrow 0$ and the limit $\prime u$ solves (Heat).

Now let us move on to an abstract gradient system (GS) in a Hilbert space $H$ ,

$u’(t)=-\nabla\phi(u(t))$ , $0<t<T$, $u(O)=u_{0}$ ,

where $\nabla\phi$ denotes a functional derivative of $\phi$ in a proper sense. Define a WED
functional $I_{\epsilon}$ by

$I_{\epsilon}(u):= \int_{0}^{t}e^{-t/\epsilon}(\frac{1}{2}|u’(t)|_{H}^{2}+\frac{1}{\epsilon}\phi(u(t)))dt$

for $u$ : $[0, T]arrow H$ satisfying the initial condition $u(O)=u_{0}$ . Then the Euler-Lagrange
equation of $I_{\epsilon}$ is given by

$\{\begin{array}{l}-\epsilon u’’(t)+u’(t)=-\nabla\phi(u(t)), 0<t<T,u(0)=u_{0}, u’(T)=0.\end{array}$

A variational scheme based on the WED functional $I_{\epsilon}$ for (GS) is stated as follows:

Mielke and Stefanelli [15] obtained an affirmative answer to this problem for the
gradient system,

$u’(t)+\partial\phi(u(t))\ni 0$ , $0<t<T$ , $u(O)=u_{0}$

in a Hilbert space $H$ with a subdifferential operator $\partial\phi:Harrow H$ of a lower semicon-
tinuous convex functional $\phi$ : $Harrow(-\infty, \infty]$ .

3 WED approach to generalized gradient systems
Let us go back to a generalized gradient system (GGS), which expresses a balance
between the system of conservative actions modeled by the gradient $\nabla\phi$ of the energy
$\phi$ and that of dissipative actions described by the gradient $\nabla\psi$ of the dissipation $\psi$ .
This in particular motivates the terminology WED as the energy $\phi$ and dissipation $\psi$
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will appear in WED functionals $I_{\epsilon}$ along with the parameter $1/\epsilon$ and the exponentially
decaying weight $t\mapsto\exp(-t/\epsilon)$ .

The doubly nonlinear dissipative relation (GGS) is extremely general and stands
as a paradigm for dissipative evolution. Indeed, let us remark that the formula-
tion (GGS) includes the case of gradient flows, $w1_{1}ich$ corresponds to the choice of
a quadratic dissipation $\psi$ . Consequently, the interest in providing a variational ap-
proach to (GGS) is evident, for it would pave the way to the application of general
methods of the Calculus of Variations to a variety of nonlinear dissipative evolution
problems.

Let $V$ be a uniformly convex Banach space. Let $\psi$ : $Varrow[0$ , oo $)$ be convex and
$Ga^{\hat{\prime}}teaux$ differentiable arld let $\phi$ : $Varrow$ [$0$ , oo] be convex and lower semicontinuous.
We are concerned with the following target system,

$d_{V}\psi(u’(t))+\acute{(})_{V}\phi(u(t))\ni 0$ , $0<t<T$ , $u(O)=u_{0}$ , (TS)

where $d_{V}\psi$ : $Varrow V^{*}$ and $\acute{(}k\phi$ : $Varrow V^{*}$ stand for a gradient operator and a
subdifferential operator of $\psi$ and $\phi$ , respectively.

Here the subdifferential opemtor $\acute{(}k\phi:Varrow V^{*}$ is defiried by

$!^{i}k\phi(u):=\{\xi\in V^{*}:\phi(v)-\phi(u)\geq\{\xi, v-u\rangle_{V}\forall v\in V\}$ for $u\in D(\phi)$ ,

where $D(\phi)$ $:=\{u\in V:\phi(u)<\infty\}$ is the effective domain of $\phi$ , with the domain
$D((\prime k\phi)$ $:=\{u\in D(\phi):(\prime k\phi(u)\neq\emptyset\}$ . It is well known that every subdifferential oper-
ator is maximal monotone, and moreover, a standard theory was already established
in $1970s$ (see, e.g., [4]). A functional $\psi$ : $Varrow \mathbb{R}$ is said to be G\^ateau.$x$ differentiable
at $u$ (respectively, in $V$), if there exists $\xi\in V^{*}$ such that

$\lim_{harrow 0}\frac{\psi(u+f\iota e)-\psi(\tau\iota)}{h}=\{\xi, e\}_{V}$ for all $e\in V$

at $u$ (respectively, for all $u\in E$). Then $\xi$ is called the G\^ateaux derivative of $\psi$ at $u$

and denoted by $d_{V}\psi(u)$ . Here we note that $\psi$ is G\^ateaux differentiable if it is Fr\’echet
differeritiable. The gradient opemtor $d_{V}\psi$ : $Varrow V^{*}$ of a G\^ateaux differeritiable
functional $\psi$ maps $u$ to $\xi=d_{V}\psi(u)$ . When $\psi$ is convex and G\^ateaux differeritiable,
the subdifferential operator $\acute{c}k\phi$ coincides with the gradient operator $d_{V}\psi$ , and in
particular, $(’)_{V}\psi(=d_{V}\psi)$ is single-valued.

Remark 3.1 (Model problem). The abstract setting mentioned above is also moti-
vated by the following iriitial-bouridary value problem: Let S2 be a bounded domain
of $\mathbb{R}^{N}$ with smooth boundary $\partial fl$ and corisider

$\{\begin{array}{l}\alpha(\partial_{t}’u)-\triangle_{m}u=0 in Q:=\zeta l\cross(O, T),u|_{\partial Jl}=0, u(\cdot, 0)=u_{0} iri fl,\end{array}$ (MP)

where $\alpha(s)=|s|^{p-2}s$ with $1<p<\infty$ arid $\Delta_{m}$ is a modified Laplacian (rn-Laplacian)
given by

$\Delta_{m}u:=\nabla\cdot(|\nabla u|^{m-2}\nabla u)$ , $1<m<\infty$ .
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Set $V=If(f1),$ $X=W_{0}^{1,m}(\zeta l)$ and define fUnctionals $\psi,$ $\phi:Varrow[0, \infty]$ by

$\psi(u):=\frac{1}{p}\int_{Jl}|u(x)|^{p}dx$ , $\phi(u):=\{\begin{array}{ll}\frac{1}{m}\int_{fl}|\nabla u(x)|^{m}dx if u\in X,\infty else.\end{array}$

Then one can check that $d_{V}\psi(u)=\alpha(u)$ and $\acute{c})_{V}\phi(u)=-\triangle_{m}u$ equipped with $u|_{\partial 1l}=$

$0$ . Moreover, (MP) is reduced to the abstract Cauchy problem,

$d_{V}\psi(u’(t))+(\prime k\phi(u(t))=0,$ $u(O)=u_{0}$ .

Furthermore, it follows that. $Xarrow V$ compactly, provided that $p<m^{*}:= \frac{Nm}{(N-m)_{+}}$ .

$o\psi\in C^{1}(V)$ and $\phi_{X}$ $:=\phi|_{X}\in C^{1}(X)$ .. Since $\psi(u)=(1/p)|u|_{V}^{p},$ $\phi(u)=(1/m)|u|_{X}^{m}$ , they are coercive in $V$ and $X$ ,
respectively.. Moreover, $|d_{V}\psi(u)|_{V^{\wedge}}^{p’}=|u|_{V}^{p}$ for all $u\in V$ and $|d_{X}\phi_{X}(u)|_{X}^{m’}$. $=|u|_{X}^{m}$ for all
$u\in X$ .

We are now in position to state our basic assumptions. Let us first recall that $V$

and $V^{*}$ are a uniformly convex Banach space and its dual space with norms . $|_{V}$ and
$|\cdot|_{V}\cdot$ , respectively, and a duality pairing $\{\cdot,$ $\cdot\rangle_{V}$ . Let $X$ be a reflexive Bariach space
with a norm $|\cdot|_{X}$ and a duality pairing $\{\cdot,$ $\cdot\rangle_{X}$ such that

$Xarrow V$ and $V^{*}arrow X^{*}$

with derrsely defined compact canoriical injections. We also recall that $\psi$ : $Varrow[0, \infty)$

is G\^ateaux differerltiable arld corzvex, and moreover, $\phi$ : $Varrow[0, \infty]$ is proper, lower
semicontinuous and convex. Let $p\in(1, \infty)$ and $m\in(1, \infty)$ be fixed and introduce
our basic assumptions:

(Al) $C_{1}|u|_{V}^{p}\leq\psi(u)+C_{2}$ $\forall u\in V$ .

(A2) $|d_{V}\psi(u)|_{V^{*}}^{p’}\leq C_{3}|u|_{V}^{p}+C_{4}$ $\forall u\in V$ .

(A3) $|u|_{X}^{m}\leq\ell_{1}(|u|_{V})(\phi(u)+1)$ $\forall u\in D(\phi)$ .

(A4) $|\eta|_{X}^{m’}$. $\leq\ell_{2}(|u|_{V})(|u|_{X}^{m}+1)$ $\forall[u, \eta]\in \mathfrak{c}’)_{X}\phi$,

where Ci $(i=1,2,3,4)$ are constants and $p_{1},\ell_{2}$ are nondecreasing functions in $\mathbb{R}$ .

Remark 3.2. Here we also remark the following for later use.

(i) Condition (Al) implies

(Al)’ $C_{1}|u|_{V}^{p}\leq\{d_{V}\psi(u),$ $u\rangle_{V}+C_{2}^{v;}$ for all $u\in V$
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with $C_{2}’$ $:=C_{2}^{Y}+\psi(0)\geq 0$ .

(ii) In general, G\^ateaux differentiable functions might be discontinuous. However,
by (Al) and the mean value theorem, $\psi$ is continuous in $V$ .

Note that the existence of global solutions for (TS) was proved by [8] in our
functional setting and it is hence out of question here. Instead, we concentrate on
the possibility of recovering solutions to (TS) via the minimization of the WED
functionals $I_{\epsilon}$ and the causal limit as $\epsilonarrow 0$ .

For (TS), we define a WED functional $I_{\epsilon}$ : $L^{p}(0,T;V)arrow[0, \infty]$ by

$I_{\epsilon}(u):= \int_{0}^{T}e^{-t/\epsilon}(\psi(u’(t))+\frac{1}{\epsilon}\phi(u(t)))dt=:D_{\epsilon}(u)+\mathcal{E}_{\epsilon}(u)$ ,

where D. and $\mathcal{E}_{\epsilon}$ are given by

$D_{\epsilon}(u):= \int_{0}^{T}e^{-t/\epsilon}\psi(u’(t))dt$ , $\mathcal{E}_{\epsilon}(u):=\int_{0}^{T}\frac{e^{-t/\epsilon}}{\epsilon}\phi(u(t))dt$.

Moreover, the effective domain of $I_{\epsilon}$ is given by

$D(I_{\epsilon}):=\{u\in W^{1,p}(0, T;V):\psi(u’(\cdot)), \phi(u(\cdot))\in L^{1}(0, T), u(O)=u_{0}\}$.

Then by assumptions (Al)$-(A4)$ , one can write

$D(I_{\epsilon})=\{u\in L^{m}(0, T;X)\cap W^{1,p}(0, T;V):u(O)=u_{0}\}$ .

Now our main issues for setting up a WED approach to (TS) are as follows:

$0$ Formulate an Euler-Lagrange equation (EL) for the WED functional $I_{\epsilon}$ and
prove the solvability of (EL).. Prove that every solution of (EL) minimizes I. and every minimizer of I. solves
(EL).. Justify the causal limit: solutions $u_{\epsilon}$ of (EL) converge to a solution $u$ of (TS)
as $\epsilonarrow 0$ .

By accomplishing these tasks, the following variational scheme will be valid for (TS):
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4 Euler-Lagrange equations and their solvability

4.1 Euler-Lagrange equations
For the WED functional $I_{\epsilon}$ , one can immediately obtain an Euler-Lagrange equation,

$\acute{(}hI_{\epsilon}(u_{\epsilon})\ni 0$ (1)

with $V$ $:=L^{\rho}(0, T;V)$ . However, it would be difficult to prove the convergence of
$u_{\epsilon}$ as $\epsilonarrow 0$ for (1). Indeed, $I_{\epsilon}$ is not G\^ateaux differentiable due to the initial
constraint $u(O)=u_{0}$ , and the sum rule $\partial(\varphi_{1}+\varphi_{2})=\partial\varphi_{1}+\partial\varphi_{2}$ is not valid in
general for subdifferentials. Then one could not obtain arry representation sufficient
for establisfiing specific energy estirnates.

Here we propose the following Cauchy problem as an Euler-Lagrange equation for
$I_{\epsilon}$ instead of (1):

$\{\begin{array}{l}-\epsilon:\frac{d}{dt}(d_{V}\psi(u_{\epsilon}’(t)))+d_{V}\psi(u_{\epsilon}’(t))+\partial_{X}\phi_{X}(u_{\epsilon}(t))\ni 0, 0<t<T,u_{\epsilon}(O)=u_{0}, d_{V}\psi(u_{\epsilon}’(T))=0,\end{array}$ (EL)

where $\phi_{X}$ stands for the restriction of $\phi$ on $X(arrow V)$ .

Remark 4.1 (Euler-Lagrange equation). We emphasize that the functional $\phi$ of
the original WED functional $I_{\epsilon}$ is replaced in (EL) by its restriction $\phi_{X}$ on $X$ , and
this replacement will be required to prove the solvability of (EL). Moreover, this
formulation of an Euler-Lagrange equation for $I_{\epsilon}$ is weaker than (EL) with $\partial_{X}\phi_{X}$

replaced by $(’)_{V}\phi$ .

We are concerned with strong solutions of (EL) defined by

Definition 4.2 (Strong solution of (EL)). A function $u:[0, T]arrow V$ is said to be a
strong solution of (EL), if the following $(i)-(iv)$ are all satisfied:

(i) $u\in L^{m}(0, T;X)\cap W^{1,p}(0, T;V)$ ,

(ii) $\xi(\cdot)$ $:=d_{V}\psi(u’(\cdot))\in L^{P’}(0, T;V^{*})$ and $\xi’\in L^{m’}(0, T;X^{*})+If’(O, T;V^{*})$,

(iii) There exists $\eta\in L^{m’}(0, T;X^{*})$ such that $\eta(t)\in\partial_{X}\phi_{X}(u(t))and-\epsilon\xi’(t)+\xi(t)+$

$\eta(t)=0$ for $a.a$ . $t\in(0, T)$ ,

(iv) $u(O)=u_{0}$ and $\xi(T)=0$ .

Our main result here is devoted to the solvability of (EL).

Theorem 4.3 (Solvability for (EL)). Assume that (Al)$-(A4)$ hold. Then for every
$u_{0}\in D(\phi)$ , the Euler-Lagmnge equation (EL) admits at least one strong solution $u_{\epsilon}$
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satisfying the following energy inequalities:

$\int_{0}^{T}|u_{\epsilon}’(t)|_{V}^{p}dt\leq\frac{1}{C_{1}}(\phi(u_{0})+C+\epsilon\psi(0))$ ,

$\int_{0}^{T}\phi(u_{\epsilon}(t))dt\leq(\phi(u_{0})+C+\epsilon\psi(0))T+\epsilon\int_{0}^{T}\{\xi_{\epsilon}(t),$ $u_{\epsilon}’(t)\rangle_{V}dt$ ,

$\int_{0}^{T}\{\eta_{\epsilon}(t), u_{\epsilon}(t)\}_{X}dt\leq-\langle\epsilon\xi_{\epsilon}(0),$ $u_{0} \}_{X}-\int_{0}^{T}\{\epsilon\xi_{\epsilon}(t),$ $u_{\epsilon}’(t) \rangle_{V}dt-\int_{0}^{T}\{\xi_{\epsilon}(t),$ $u_{\epsilon}(t)\rangle_{V}dt$ ,

$\int_{0}^{T}\{\xi_{\epsilon}(t), u_{\epsilon}’(t)\}_{V}dt\leq-\phi(u_{\epsilon}(T))+\phi(\prime u_{0})+\epsilon\psi(0)$,

where $r_{\epsilon}\in\partial_{X}\phi_{X}(u_{\epsilon}(\cdot))$ and $\xi_{\epsilon}=d_{V}\psi(u_{\epsilon}’(\cdot))$ , with some constant $C\geq 0$ .

Remark 4.4 (Improvement of results in [2]). We note that Theorem 4.3 slightly
improves the original result in [2], where $p$ was assumed to be not less than 2. In [2],
Condition $p\geq 2$ is used only to construct approximate solutions, particularly, to prove
regularized WED functionals $I_{\epsilon,\lambda}$ (see below) are finite in the whole of $L^{p}(0, T;V)$ ,
since the Moreau-Yosida regularization $\phi_{\lambda}$ of $\phi$ is bounded by $|\cdot|_{V}^{2}$ from above (see
the next subsection for more details). Besides, Theorems 5.1 and 5.2 will be also
proved without assuming $p\geq 2$ in the next section.

4.2 Sketch of proof for Theorem 4.3
Approximation. We first approximate (EL) as follows:

$(EL)_{\lambda}\{\begin{array}{l}-\epsilon\xi_{\epsilon,\lambda}’(t)+\xi_{\epsilon,\lambda}(t)+r\prime_{\epsilon,\lambda}(t)=0, 0<t<T,\xi_{\epsilon,\lambda}(t)=d_{V}\psi(u_{\epsilon,\lambda}’(t)), r\prime_{\epsilon,\lambda}(t)=d_{V}\phi_{\lambda}(u_{\epsilon,\lambda}(t)),u_{\epsilon,\lambda}(0)=u_{0}, \xi_{\epsilon,\lambda}(T)=0.\end{array}$

Here $\phi_{\lambda}$ denotes the Moreau-Yosida regularization of $\phi$ given by

$\phi_{\lambda}(u):=\inf_{v\in V}(\frac{1}{2\lambda}|u-v|_{V}^{2}+\phi(v))=\frac{1}{2\lambda}|u-J_{\lambda}u|_{V}^{2}+\phi(J_{\lambda}u)$ for $u\in V$,

where $J_{\lambda}$ is the resolvent for $\acute{c})_{V}\phi$ (see [4] for more details). Then $\phi_{\lambda}$ is G\^ateaux

differentiable and convex in $V$ . For each $\epsilon>0$ , one can obtain a strong solution $u_{\epsilon,\lambda}$

of $($EL$)_{\lambda}$ as a minimizer of the regularized WED functional,

$I_{\epsilon,\lambda}(u):= \int_{0}^{T}e^{-t/\epsilon}(\psi(u’(t))+\frac{1}{\epsilon}\phi_{\lambda}(u(t)))dt=:D_{\epsilon}(u)+\mathcal{E}_{\epsilon,\lambda}(u)$

with a domain similar to that of $I_{\epsilon}$ . Indeed, $I_{\epsilon,\lambda}$ admits a minimizer $u_{\epsilon,\lambda}$ , since $I_{\epsilon,\lambda}$ is
convex, coercive and lower semicontinuous on $V:=L^{\sigma}(0, T;V)$ with $\sigma$ $:= \max\{2,p\}$ .
Since $\mathcal{E}_{\epsilon,\lambda}$ is finite over $V$ , one can apply the sum rule of subdifferentials (see [4]) to
get

$\acute{(}hI_{\epsilon,\lambda}(u)=\acute{c}hD_{\epsilon}(u)+\acute{c}*\epsilon_{\epsilon,\lambda}(u)$ .
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Moreover, one can check $(\prime h\mathcal{E}_{\epsilon,\lambda}(u)(t)=(e^{-t/\epsilon}/\epsilon)d_{V}\phi_{\lambda}(u(t))$ .
As for the representation of $\acute{c}*D_{\epsilon}$ , we define the operator $\mathcal{A}:Varrow V^{*}$ by

$\mathcal{A}(u)(t)=-\frac{d}{dt}(e^{-t/\epsilon}d_{V}\psi(u’(t)))$ for $u\in D(\mathcal{A})$

with the domain

$D(A)=\{u\in W^{1,p}(0, T;V):\mathcal{A}(u)\in L^{\sigma’}(0, T;V^{*})$ ,

$d_{V}\psi(u’(T))=0$ and $u(O)=u_{0}\}$ .

Then the following proposition can be proved as in [3].

Proposition 4.5 $($Representation of $\acute{c})_{\mathcal{V}}D_{\epsilon})$ . If $\psi$ is G\^ateaux differentiable and convex
in $V_{f}$ then $(\prime hD_{\epsilon}=\mathcal{A}$ .

Therefore for each $\epsilon>0$ every critical point $u_{\epsilon,\lambda}$ of $I_{\epsilon,\lambda}$ (i.e., $(\prime hI_{\epsilon,\lambda}(u_{\epsilon,\lambda})\ni 0)$

solves $($EL$)_{\lambda}$ . Besides, since $d_{V}\phi_{\lambda}$ is bounded from $V$ into $V^{*}$ and $u_{\epsilon,\lambda}$ belongs to
$L^{\infty}(0, T;V)$ , it follows that $\eta_{\epsilon,\lambda}=d_{V}\phi_{\lambda}(u_{\epsilon,\lambda}(\cdot))\in L^{\infty}(0, T;V^{*})$ , which together with
$($EL $)_{\lambda}$ implies that

$\xi_{\epsilon,\lambda}\in W^{1,p’}(0, T;V^{*})$ .

Here we also used the fact that $\xi_{\epsilon,\lambda}\in L^{P’}(0, T;V^{*})$ by (A2) with $u_{\epsilon,\lambda}’\in L^{p}(0, T;V)$ .

A priori estimates. For simplicity, we omit the subscript $\epsilon$ . Multiplying the ap-
proximate equation by $u_{\lambda}’(t)$ , we have

$-\epsilon\{\xi_{\lambda}’(t), u_{\lambda}’(t)\}_{V}+\langle\xi_{\lambda}(t),$ $u_{\lambda}’(t) \}_{V}+\frac{d}{dt}\phi_{\lambda}(u_{\lambda}(t))=0$ .

By the integration over $(0, T)$ ,

$- \epsilon\int_{0}^{T}\{\xi_{\lambda}’(t), u_{\lambda}’(t)\}_{V}dt+\int_{0}^{T}\{\xi_{\lambda}(t), u_{\lambda}’(t)\}_{V}dt+\phi_{\lambda}(u_{\lambda}(T))-\phi_{\lambda}(u_{0})=0$.

Recalling $\xi_{\lambda}(T)=0$ and $\xi_{\lambda}(t)=d_{V}\psi(u_{\lambda}’(t))$ , one can formally obtain

$\int_{0}^{T}\langle\xi_{\lambda}’(t),$ $u_{\lambda}’(t)\}_{V}dt=-\langle\xi_{\lambda}(0),$ $u_{\lambda}’(0) \rangle_{V}-\int_{0}^{T}\langle\xi_{\lambda}(t),$ $u_{\lambda}’’(t)\}_{V}dt$

$\leq\psi(0)-\psi(u_{\lambda}’(0))-\psi(u_{\lambda}’(T))+\psi(u_{\lambda}’(O))$

$=\psi(0)-\psi(u_{\lambda}’(T))\leq\psi(0)$

(see [3] for a rigorous derivation). Therefore it follows that

$\int_{0}^{T}\langle\xi_{\lambda}(t),$ $u_{\lambda}’(t)\rangle_{V}dt+\phi_{\lambda}(u_{\lambda}(T))\leq\phi(\prime u_{0})+\epsilon\psi(0)$ .

Here we also used the fact that $\phi_{\lambda}(u)\leq\phi(u)$ for any $u\in V$ (see [4]). Moreover, (Al)’
entails

$C_{1}^{\gamma} \int_{0}^{T}|u_{\lambda}’(t)|_{V}^{p}dt-C_{2}’\leq\int_{0}^{T}\langle\xi_{\lambda}(t),$ $u_{\lambda}’(t)\rangle_{V}dt$ .
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Hence by (A2), $d_{V}\psi(u_{\lambda}’(\cdot))$ is bounded in $II(0,T;V^{*})$ for any $\lambda>0$ .
Repeating the same argument with $T$ replaced by $t$ , we have

$\int_{0}^{t}\langle\xi_{\lambda}(\tau),$ $u_{\lambda}’(\tau)\}_{V}d\tau+\phi_{\lambda}(u_{\lambda}(t))\leq\phi(u_{0})+\epsilon\langle\xi_{\lambda}(t),$ $u_{\lambda}’(t)\}_{V}+\epsilon\psi(0)$ .

Integrating this over $(0, T)$ again, we have

$\int_{0}^{T}\phi_{\lambda}(u_{\lambda}(t))dt\leq(\phi(u_{0})+C+\epsilon\psi(0))T+\epsilon\int_{0}^{T}\{\xi_{\lambda}(t),$ $u_{\lambda}’(t)\rangle_{V}dt$ .

By (A3) and (A4) together with the fact that $\phi(J_{\lambda}u)\leq\phi_{\lambda}(u)$ for all $u\in V$ (see [4]),
it holds that

$\int_{0}^{T}|J_{\lambda}u_{\lambda}(t)|_{X}^{m}dt\leq C$, $\int_{0}^{T}|\eta_{\lambda}(t)|_{X}^{m’}.dt\leq C$,

where $J_{\lambda}$ is the resolvent of $(\prime k\phi$ and $\eta_{\lambda}(t)=d_{V}\phi_{\lambda}(u_{\lambda}(t))$ . By comparison of both sides
of the approximate equation, one can deduce that $(\epsilon\xi_{\lambda}’)$ is bounded in $If’(0, T;V^{*})+$

$L^{m’}(0, T;X^{*})$ .

Convergence as $\lambdaarrow 0$ . From the preceding uniform estimates, one can derive

$u_{\lambda}arrow u$ weakly in $W^{1,p}(0, T;V)$ ,
$J_{\lambda}u_{\lambda}arrow v$ weakly in $L^{m}(0, T;X)$ ,

$\xi_{\lambda}arrow\xi$ weakly in $L^{p’}(0, T;V^{*})$ ,

$\eta_{\lambda}arrow\eta$ weakly in $L^{m’}(0,T;X^{*})$ ,

$\xi_{\lambda}’arrow\xi’$ weakly in $L^{m’}(0, T;X^{*})+L^{p’}(0, T;V^{*})$ .

$Then-\epsilon\xi’+\xi+\eta=0$ (it still remains to check $\eta(t)\in\partial_{X}\phi_{X}(u(t)),$ $\xi(t)=d_{V}\psi(u’(t))$

arid iritial$/fir$l$d1$ conditions).
Since $(u_{\lambda}(\cdot))$ is equicontinuous in $C([0, T];V),$ frolil the definition of $d_{V}\phi_{\lambda}$ and

the uniform convexity of $V$ (equivalently, locally uniform monotonicity of the duality
mapping $F:Varrow V^{*}$ ), we derive the equicontinuity of $(J_{\lambda}u_{\lambda}(\cdot))$ as well. Besides, let
us recall that $(J_{\lambda}u_{\lambda}(\cdot))$ is bounded in $L^{m}(0,T;X)$ and $X$ is compactly embedded in
V. Hence by the Aubin-Lions compactness lemma (see [16]), we conclude that

$J_{\lambda}u_{\lambda}arrow u$ strongly in $C([0, T];V)$ ,

which also implies $u(O)=u_{0}$ and $u_{\lambda}arrow u$ strongly in $L^{q}(0, T;V)$ for any $q<\infty$ .
Furthermore, since $V^{*}arrow X^{*}$ compactly, we also obtain

$\xi_{\lambda}arrow\xi$ strongly in $C([0,T];X^{*})$ and $\xi(T)=0$ .

By using Fatou’s lemma, for a.a. $t\in(0, T)$ , one can take a subsequence (non rela-
belled) $\lambdaarrow 0$ such that

$\langle\xi_{\lambda}(t),$ $u_{\lambda}(t)\rangle_{V}arrow\langle\xi(t),$ $u(t)\rangle_{V}$

(see [3] for more details).
To prove $\eta(t)\in\partial_{X}\phi_{X}(u(t))$ and $\xi(t)=d_{V}\psi(u’(t))$ , we shall employ
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Proposition 4.6 (Integration by parts, [3]). Let $rr’,,p\in(1, \infty)$ and let $u\in L^{m}(0, T;X)\cap$

$W^{1,p}(0, T;V)$ and $\xi\in L^{p’}(0, T;V^{*})$ be such that

$\xi’\in L^{m’}(0, T;X^{*})+L^{p’}(0, T;V^{*})$ .

Let $t_{1},$ $t_{2}\in(0, T)$ be Lebesgue points of the function $t\mapsto\{\xi(t), u(t)\}_{V}$ . Then it holds
that

$\langle\langle\xi’,$
$u\rangle\rangle_{L_{X}^{m}\cap L_{V}^{p}(t_{1},t_{2})}=\langle\xi(t_{2}),$ $u(t_{2})\rangle_{V}-\langle\xi(t_{1}),$ $u(t_{1}) \}_{V}-\int_{t_{1}}^{t_{2}}\langle\xi(t),$ $u’(t))_{V}dt$ ,

where $\{\langle\cdot, \cdot\rangle\}_{L_{X}^{m}\cap L_{V}^{p}(t_{1},t_{2})}$ denotes a duality pairing between $L^{m}(t_{1}, t_{2};X)\cap L^{p}(t_{1}, t_{2};V)$

and its dual space.

Let $0<t_{1}<t_{2}<T$ be Lebesgue points of the function $t\mapsto\langle\xi(t),$ $u(t)\rangle_{V}$ such
that $\{\xi_{\lambda}(t),$ $u_{\lambda}(t)\rangle_{V}$ is convergent at $t=t_{1},$ $t_{2}$ . Then by a formal calculation together
with Proposition 4.6,

$\int_{t_{1}}^{t_{2}}\langle\eta_{\lambda}(t),$ $J_{\lambda}u_{\lambda}(t) \}_{X}dt\leq\int_{t_{1}}^{t_{2}}\langle\eta_{\lambda}(t),$ $u_{\lambda}(t)\rangle_{V}dt$

$=\epsilon\langle\xi_{\lambda}(t_{2}),$ $u_{\lambda}(t_{2})\}_{V}-\epsilon\langle\xi_{\lambda}(t_{1}),$ $u_{\lambda}(t_{1})\rangle_{V}$

$- \int_{t_{1}}^{t_{2}}\langle\epsilon\xi_{\lambda}(t),$ $u_{\lambda}’(t) \rangle_{V}dt-\int_{t_{1}}^{t_{2}}\langle\xi_{\lambda}(t),$ $u_{\lambda}(t)\rangle_{V}dt$

$arrow\epsilon\{\xi(t_{2}),$ $u(t_{2})\rangle_{V}-\epsilon\{\xi(t_{1}),$ $u(t_{1})\rangle_{V}$

$- \int_{t_{1}}^{t_{2}}\langle\epsilon\xi(t),$ $u’(t) \rangle_{V}dt-\int_{t_{1}}^{t_{2}}\{\xi(t),$ $u(t)\rangle_{V}dt$

$=\langle\langle\epsilon\xi’,$ $u \rangle\rangle_{L_{X}^{m}\cap L_{V}^{p}(t_{1},t_{2})}-\int_{t_{1}}^{t_{2}}\langle\xi(t),$ $u(t)\}_{V}dt$

$= \int_{t_{1}}^{t_{2}}\{\eta(t),$ $u(t)\rangle_{X}dt$ ,

which implies

$\lim_{\lambdaarrow}\sup_{0}\int_{t_{1}}^{t_{2}}\langle\eta_{\lambda}(t),$ $J_{\lambda}u_{\lambda}(t) \rangle_{X}dt\leq\int_{t_{1}}^{t_{2}}\langle\eta(t),$ $u(t)\}_{X}dt$ .

From the demiclosedness of $\partial_{X}\phi_{X}$ (see [4]) and Proposition 1.1 of [11], it follows that

$\eta(t)\in\partial_{X}\phi_{X}(u(t))$ for a.a. $t\in(t_{1}, t_{2})$ .

Moreover, we have

$\lambdaarrow 01\int_{t_{1}}^{t_{2}}\langle\eta_{\lambda}(t),$ $J_{\lambda}u_{\lambda}(t) \rangle_{X}dt=\int_{t_{1}}^{t_{2}}\langle 7,(t),$ $u(t)\}_{X}dt$ .
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As for the limit of $\xi_{\lambda}$ , it follows that

$\int_{t_{1}}^{t_{2}}\{\epsilon\xi_{\lambda}(t),$
$u_{\lambda}’(t) \rangle_{V}dt\leq\epsilon\{\xi_{\lambda}(t_{2}), u_{\lambda}(t_{2})\}_{V}-\epsilon\{\xi_{\lambda}(t_{1}), u_{\lambda}(t_{1})\}_{V}-\int_{t_{1}}^{t_{2}}\{\xi_{\lambda}(t), u_{\lambda}(t)\}_{V}dt$

$- \int_{t_{1}}^{t_{2}}\{\eta_{\lambda}(t), J_{\lambda}u_{\lambda}(t)\}_{X}dt=$ : RHS.

Besides, we firld that

RHS $arrow\epsilon\langle\xi(t_{2}),$ $u(t_{2}) \rangle_{V}-\epsilon\{\xi(t_{1}), u(t_{1})\}_{V}-\int_{t_{1}}^{t_{2}}\langle\xi(t),$ $u(t) \rangle_{V}dt-\int_{t_{1}}^{t_{2}}\{\eta(t),$ $u(t)\rangle_{X}dt$

$=\langle\langle\epsilon\xi’,$ $u \rangle\}_{L_{X}^{m}\cap L_{V}^{p}(t_{1},t_{2})}+\int_{t_{1}}^{t_{2}}\{\epsilon\xi(t), u’(t)\}_{V}dt$

$- \int_{t_{1}}^{t_{2}}\langle\xi(t),$ $u(t) \}_{V}dt-\int_{t_{1}}^{t_{2}}\langle\eta(t),$ $u(t) \rangle_{X}dt=\int_{t_{1}}^{t_{2}}\langle\epsilon\xi(t),$ $u’(t)\rangle_{V}dt$ ,

which yields

$\lim_{\lambdaarrow}\sup_{0}\int_{t_{1}}^{t_{2}}\langle\epsilon\xi_{\lambda}(t),u_{\lambda}’(t)\}_{V}dt\leq\int_{t_{1}}^{t_{2}}\langle\epsilon\xi(t),$ $u’(t)\}_{V}dt$ .

Consequently, we obtain $\xi(t)=d_{V}\psi(u’(t))$ for a.a. $t\in(0, T)$ from the arbitrariness of
$0<t_{1}<t_{2}<T$ (see [3] for more details). Furthermore, energy inequalities of Theo-
rem 4.3 also follows from energy inequalities and limiting procedures for approximate
solutions. Thus we have proved Theorem 4.3. $\square$

5 Minimization of WED functionals and causal
limit

Now, we are ready to solve the causal limit problem for (TS). The next theorem is
concerned with a relation between solutions for (EL) and minimizers of the WED
functional $I_{\epsilon}$ .

Theorem 5.1 (Existence and uniqueness of minimizers of $I_{\epsilon}$ ). Assume (Al)$-(A4)$

and let $u_{0}\in D(\phi)$ . Then the stmng solution $u_{\epsilon}$ of (EL) obtained in Theorem 4.3
minimizes the WED functional I.. In addition, if either $\phi$ or $\psi$ is strictly convex,
then the minimizer of $I_{\epsilon}$ is unique.

As for the causal limit, we have:

Theorem 5.2 (Convergence of minimizers of $I_{\epsilon}$ ). Assume that $(A1)-(A4)$ hold and
either $\phi$ or $\psi$ is strictly convex. Let $u_{0}\in D(\phi)$ . For each $\epsilon>0$ , let $u_{\epsilon}$ denote the
unique minimizer of the WED functional I.. Then for any sequence $\epsilon_{n}\searrow 0$ there
$st$ a subsequenoe $(\epsilon_{n’})$ and the limit $u$ such that

$u_{\epsilon_{n}},$ $arrow u$ stmngly in $C([0, T];V)$ ,

weakly in $W^{1,p}(0, T;V)\cap L^{m}(0, T;X)$ .

Moreover, the limit $u$ is a strong solution of the target system (TS).
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5.1 Sketch of proof for Theorem 5.1
Let $v\in D(I_{\epsilon})$ and let $u_{\epsilon,\lambda}$ be a minimizer of $I_{\epsilon,\lambda}$ . Then it follows that

$I_{\epsilon,\lambda}(u_{\epsilon,\lambda})\leq I_{\epsilon,\lambda}(v)$,

since $D(I_{\epsilon})\subset D(I_{\epsilon,\lambda})$ . By using Lebesgue‘s dominated convergence theorem, we
deduce that

$I_{\epsilon,\lambda}(v)arrow I_{\epsilon}(v)$ as $\lambdaarrow 0$ .

Moreover, we also have

$\lim_{\lambdaarrow}\inf_{0}I_{\epsilon,\lambda}(u_{\epsilon,\lambda})=\lim_{\lambdaarrow}\inf_{0}(D_{\epsilon}(u_{\epsilon,\lambda})+\mathcal{E}_{\epsilon,\lambda}(u_{\epsilon,\lambda}))$

$\geq\lim_{\lambdaarrow}\inf_{0}(D_{\epsilon}(u_{\epsilon,\lambda})+\mathcal{E}_{\epsilon}(J_{\lambda’}u_{\epsilon,\lambda}))$

$\geq D_{\epsilon}(u_{\epsilon})+\mathcal{E}_{\epsilon}(u_{\epsilon})=I_{\epsilon}(u_{\epsilon})$ .

Here we also employed the fact that $\phi(J_{\lambda}u)\leq\phi_{\lambda}(u)$ for all $u\in V$ . Thus we conclude
that $I_{\epsilon}(u_{\epsilon})\leq I_{\epsilon}(v)$ for all $v\in D(I_{\epsilon})$ . The uniqueness of minimizer follows from the
StriCt COnVexity of $I_{\epsilon}$ 口

5.2 Sketch of proof for Theorem 5.2
From the energy inequalities established in Theorem 4.3, one can obtain

$\int_{0}^{T}|u_{\epsilon}’(t)|_{V}^{p}dt\leq C$ , $\int_{0}^{T}\phi(u_{\epsilon}(t))dt\leq C$.

Here we remark that it is no longer valid for strong solutions of (EL) to directly
test equation by $u_{\epsilon}’(t)$ (see Definition 4.2). So we also established energy estimates
in the construction of strong solutions for (EL) in \S 4. Furthermore, by assumptions
$(A2)-(A4)$ ,

$\int_{0}^{T}|\xi_{\epsilon}(t)|_{V}^{p’}.dt\leq C$ , $\int_{0}^{T}|u_{\epsilon}(t)|_{X}^{m}dt\leq C$ , $\int_{0}^{T}|rl\epsilon(t)|_{X}^{m’}.dt\leq C$.

Hence one can take a sequence (non relabelled) $\epsilonarrow 0$ such that

$u_{\epsilon}arrow u$ weakly in $W^{1,p}(0, T;V)\cap L^{m}(0, T;X)$ ,
strongly in $C([0,T];V)$ ,

$\xi_{\epsilon}arrow\xi$ weakly in $L^{p’}(0, T;V^{*})$ ,

$\mathcal{T}’\epsilonarrow\eta$ weakly in $L^{m’}(0, T;X^{*})$ .

By comparison of equation, $(\epsilon j\xi_{\epsilon}^{l})$ is bounded in $If’(0, T;V^{*})+L^{m’}(0, T;X^{*})$ . Then
it follows that

$\epsilon \mathscr{F}arrow 0$ weakly in $L^{p’}(0, T;V^{*})+L^{m’}(0, T;X^{*})$ ,
$\epsilon\xi_{\epsilon}(t)arrow 0$ weakly in $X^{*}$ for all $t>0$ .
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Thus $\xi+\eta=0$ and $u(O)=u_{0}$ .
As in the proof of Theorem 4.3, one can prove

$\eta(t)\in\partial_{X}\phi_{X}(u(t))$ , $\xi(t)=d_{V}\psi(u’(t))$

for a.e. $t\in(O, T)$ . Since $\eta=-\xi\in If’(0, T;V^{*})$ , we finally conclude that

$\eta(t)\in(\prime k\phi(u(t))$ for a.a. $t\in(O, T)$

by using the following proposition:

Proposition 5.3 (Coincidence between $\partial_{X}\phi_{X}$ and $(\prime k\phi, [3])$ . Let $V$ and $X$ be normed
spaces such that $Xarrow V$ continuously. Let $\phi$ : $Varrow(-\infty, \infty]$ be a proper lower
semicontinuous and convex. Moreover, let $\phi_{X}$ be the restriction of $\phi$ onto X. If
$D(\phi)\subset X_{f}$ then

$D((\prime k\phi)=\{w\in D(\partial_{X}\phi_{X}):\partial_{X}\phi_{X}(w)\cap V^{*}\neq\emptyset\}$ ,

and moreover, ($\prime k\phi(u)=\partial_{X}\phi_{X}(u)\cap V^{*}for$ all $u\in D((\prime k\phi)$ .

This Completes Our proof. 口

6 Final remarks
(i) Theorems 4.3, 5.1 and 5.2 can be applied to the initial-boundary value problem

(MP) (see Remark 3.1). The WED functional for (MP) is the following:

$I_{\epsilon}(u)$ $:= \int_{Q}e^{-t/\epsilon}(\frac{1}{p}|’\partial_{t}u|^{p}+\frac{1}{rr\iota\epsilon}|\nabla u|^{m})dxdt$

for $u\in W^{1,p}(0, T;If(\zeta\}))\cap L^{m}(0,T;W_{0}^{1,m}(\zeta l))$ satisfying $u(O)=u_{0}$ . Then the
Euler-Lagrange equation of $I_{\epsilon}$ reads,

$\{\begin{array}{l}-\epsilon\prime\partial_{t}\alpha(\partial_{t}’u)+\alpha(\partial_{t}’u)-\Delta_{m}u=0 in Q:=fl\cross(O, T),u|_{\partial 1l}=0, u(\cdot, 0)=u_{0}, \alpha(\partial_{t}’u)(\cdot, T)=0.\end{array}$ (2)

Assume that $p<m^{*}$ . Then by Theorem 4.3, the Euler-Lagrange equation
(2) has at least one solution $u_{\epsilon}$ . Moreover, by Theorem 5.1, the solution $u_{\epsilon}$

minimizes the WED functional $I_{\epsilon}$ and it is a unique minimizer. Finally, by
Theorem 5.2, we have

$u_{\epsilon}arrow u$ weakly in $L^{m}(0, T;W_{0}^{1,m}(fl))\cap W^{1,p}(0, T;L^{p}(fl))$ ,

strongly in $C([0,T];L^{p}(fl))$ , as $\epsilonarrow 0$ ,

and moreover, the limit $u$ solves (MP).
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(ii) The convergence of a sequence of WED functionals might be one of related issues
in view of variational arialysis. Indeed, $\Gamma$-convergence of functionals generally
ensures that the limit of their minimizers also minimizes the limiting functional.
More precisely, set $I_{\epsilon,h}$ as follows:

$I_{\epsilon,h}(u)= \int_{0}^{T}e^{-t/\epsilon}(\psi_{h}(u’(t))+\frac{1}{\epsilon}\phi_{h}(u(t)))dt$

with two sequences of convex functionals $\psi_{h},$ $\phi_{h}$ : $Varrow(-\infty, \infty]$ involving an
additional parameter $h>0$ and initial constraints $u(O)=u_{0,h}\in D(\phi_{h})$ . In [3],
some sufficient condition is provided for the Mosco convergence $I_{\epsilon,h}arrow I_{\epsilon}$ as
$harrow 0$ . More precisely, it consists of sepamte $\Gamma$ -liminf conditions for $\psi_{h}$ and $\phi_{h}$

as well as a suitable joint recovery sequence condition.

(iii) Another noteworthy point of the variational approach using WED functionals
is in minimizations of convex functionals. As discussed so far, (generalized)
gradient systems are always reduced to minimizations of convex functionals via
the WED functional formalism. It would not so peculiar for gradient systems
with convex energies (see two examples in Section 1). Moreover, the WED
functional approach proposed here can be also applied to reformulate other
variational problems with possibly non-convex functionals to minimizing prob-
lems of convex fUnctionals. One c\v{c}m find such attempts for a noriinear wave
equation and Lagrange systems in [17] and [12], respectively.

Furthermore, the WED functional method seems to be applicable to numerical
analysis of nonlinear PDEs. In fact, one can numerically solve doubly nonlinear
parabolic problems such as (MP) by using various techniques accumulated so far
for minimization of convex functionals. This observation will be fully discussed
in a forthcoming report.

(iv) In [1], the WED functional formalism is extended to another type of doubly
nonlinear evolution equation,

$\frac{d}{dt}\partial\psi(u(t))+\partial\phi(u(t))\ni 0$ , $0<t<T$,

which is arising from porous medium equation, enthalpy formulation of Stefan
problem and so on. Moreover, (TS) is also treated in a more general setting
there.
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