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Let $R$ be a real closed field and assume an o-minimal structure over $R$ . Between
the last century, topology of real manifolds (R-manifolds) was vastly and profoundly
investigated. We consider manifolds over $R$ with the o-minimal structure (called de-
finable manifolds). I will explain whether known important results on R-manifolds
$1_{1}old$ and what properties definable manifolds have but $R-r\iota lanifolds$ do not neces-
sarily have.

There are three kinds of R-manifolds: $C^{0}$ R-manifolds, PL R-manifolds and $C^{r}$

R-manifolds $(r=1, \ldots, \omega)$ . A $*R$-manifold $(*=C^{0}$ , PL or $C^{r})$ is defined by a
local $*$ coordinate system, and a PL homeomorphism between polyhedra means a
homeomorphism which is linear on each simplex of some simplicial decomposition
of the domain of definition. It is easy to imbed a PL R-manifold into a Euclidean
space by a PL imbedding so that the image is a polyhedron. Hence we regard a
PL R-manifold as a polyhedron in some Euclidean space. Since there is not a large
difference between topology of $C^{1}$ R-manifolds and topology of $C^{r}$ R-manifolds
$(r=2, \ldots)$ , we consider $C^{1}$ R-manifolds only.

A non-compact $C^{0}$ PL or $C^{1}$ R-manifold is called compactifiable if it is home-
oiiiorphic, PL homeomorphic or $C^{1}diffeomoi\cdot pllic$ , respectively, to the irlterior of
a compact $C^{0}$ , PL or $C^{1}$ , respectively, R-manifold with boundary. The simplest
example of a non-compactifiable connected R-manifold is $R^{2}-Z\cross\{0\}$ . Note only
that there are non-compactifiable contractible $C^{0}$ , PL or $C^{1}$ R-manifolds and, even if
compactifiable, compactifications are not necessarily unique up to homeomorphisms,
PL homeomorphisms or $C^{1}$ diffeomorphisms, respectively.

1. $C^{1}R$-MANIFOLDS AND PL $R$-MANIFOLDS

In the following sense we can regard a $C^{1}$ R-manifold as PL R-manifold.
Cairns-Whitehead Theorem (see [5]). Given a $C^{1}$ R-manifold $M$ , there exist a
$PL$ R-manifold $M^{PL}$ , a simplicial decomposition $K$ of $M^{PL}$ and a homeomorphism
$\pi$ : $M^{PL}arrow M$ such that $\pi|_{\sigma}$ : $\sigmaarrow\pi(\sigma)$ is a $C^{1}$ diffeomorphism for each $\sigma\in K$ .
Such $M^{PL}$ is unique, $i.e$ . if there is another $M_{1}^{PL}$ of the same properties then $M^{PL}$

and $M_{1}^{PL}$ are $PL$ homeomorphic.
Hence the correspondence $Marrow M^{PL}$ induces a well-defined map $\Pi$ from the $C^{1}$

diffeomorphism classes of $C^{1}$ R-manifolds to the PL homeomorphism classes of PL
R-manifolds. We call $M^{PL}$ a $C^{1}$ triangulation of $M$ . Then a natural questions is
whether $\Pi$ is bijective, which was posed by Thom. Namely, is any PL R-manifold a
$C^{1}$ triangulation of some $C^{1}$ R-manifold? If $C^{1}$ triangulations of two $C^{1}$ R-manifolds
are PL homeomorphic, are the $C^{1}$ R-manifolds $C^{1}$ diffeomorphic? Milnor, Munkres,
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Hirsch et al. studied the problems and obtained many results. For example, a PL R-
nianifold of dirnension $\leq 7$ and a contractiblc PL R-manifold arc $C^{1}$ triangulations
of some $C^{1}$ R-manifolds: there are multi $C^{1}$ R-manifolds whose $C^{1}$ triangulations
are PL homeomorphic to a PL R-spherc (thc boundary of a simplex) of dimension
$\geq 7$ (we call such $C^{1}$ R-manifolds exotic spheres); the restriction of $\Pi$ to manifolds
of dimension $\leq 3$ is bijective (we say that a PL R-manifold of dimension $\leq 3$ admits
a unique $C^{1}$ R-manifold structure).

2. PL $R$-MANIFOLDS AND $C^{0}R$-MANIFOLDS

A $C^{0}$ R-manifold of dimension $\leq 3$ admits a unique PL R-manifold structure (i.e.
a $C^{0}$ R-manifold of dimension $\leq 3$ is homeomorphic to some PL R-manifold and
such PL R-manifolds are PL homeomorphic each other). However the relation of
$C^{0}$ R-manifolds and PL R-manifolds of dimension 4 is very complicated. On the
other hand, tlie relation of rilanifolds of dimension $\geq 5$ is clarified by Kirby and
Siebenmann.
Kirby-Siebenmann Theorem (see [3]). Given a compact $C^{0}$ R-manifold $M$ of
dimension $\geq 5$ , there is a well-defined obstruction $\tau(M)$ in $H^{4}(M, Z_{2})$ such that $M$

admits a $PL$ R-manifold structure if and only if $\tau(M)=0$ . Given a compact $PL$ R-
manifolds $M$ of dimension $\geq 5$ , there is one-to-one correspondence from $H^{3}(M_{1}, Z_{2})$

to isotopy classes of $PL$ R-manifold structures on $C^{0}$ R-manifold $M$ .
Consequently, there exists a compact $C^{0}$ R-manifold $M$ of dimension $\geq 5$ which

does not admit a PL R-manifold structure; there exist compact PL R-manifolds
$M_{1}$ and $M_{2}$ of dimension $\geq 5$ which are homeomorphic but not PL homeomorphic;
a compact $C^{0}$ R-manifold $M$ of dimension $\geq 5$ admits a PL R-manifold structure
if $H^{4}(M, Z_{2})=0$ ; compact PL R-manifolds $M_{1}$ and $M_{2}$ of dimension $\geq 5$ are PL
homeomorphic if they are homeomorphic and $H^{3}(M_{1}, Z_{2})=0$ .

3. O-MINIMAL STRUCTURES OVER A REAL CLOSED FIELD

An o-minimal structure over $R$ is a sequence $\{S_{n} : n\in N\}$ such that for each
$n\in N$ ,
(i) $S_{n}$ is a boolean algebra of subsets of $R^{n}$ ,
(ii) if $X\in S_{n}$ , then $R\cross X$ and $X\cross R$ are elements of $S_{n+1}$ ,
(iii) every algebraic set in $R^{n}$ is an element of $S_{n}$ ,
(iv) if $X\in S_{n+1}$ , then the image of $X$ under the projection of $R^{n+1}$ onto the first $n$

coordinates is an element of $S_{n}$ , and
(v) an element of $S_{1}$ is a finite union of points and open intervals $(a, b)=\{x\in R$ :
$a<x<b\}(a, b\in R\cup\{\pm\infty\})$ .

An element of $S_{n}$ is called definable, and a map between definable sets is called
definable if its graph is definable. We call a definable set in $R^{n}$ compact if it is closed
and bounded in $R^{n}$ . There are two fundaments on topology of definable sets.

Triangulation Theorem. A definable set is definably homeomorphic to a finite
union of open simplexes. $\mathcal{A}$ compact definable set is definably homeomorphic to a
finite union of simplexes.

Uniqueness Theorem. Two definable polyhedm are definably $PL$ homeomorphic
if they are definably homeomorphic.
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We naturally define a definable $C^{0}$ , PL or $C^{1}$ manifold. Then an immediate
corollary is

Corollary. A compact definable $C^{0}$ manifold is definably homeomorphic to a com-
pact definable $PL$ manifold, and a non-compact definable $C^{0}$ manifold is definably
homeomorphtc to the interior of a compact dcfinable $PL$ rnanifold with boundary,
i. e., a non-compact definable $C^{0}$ or $PL$ manifold is compactifiable. Moreover these
compact definable $PL$ manifolds possibly with boundary are unique up to $PL$ home-
omorphisms.

Thus there is no difference between definable $C^{0}$ manifolds, definable PL mani-
folds and their compactifications. This is the difference between R-manifolds and
definable manifolds.

The triangulation theorem is proved in the same way as triangulations of semian-
alytic sets by Lojasiewicz [4] (see [7] and [9]). However the proof of the uniqueness
theorem is very complicated [8]. It requires knowledge of PL topology, stratification
theory and model theory.

4. COMPACT DEFINABLE PL MANIFOLDS POSSIBLY WITH BOUNDARY

It is not easy to study definable $C^{0}$ manifolds directly. However, by the above
corollary it suffices to consider compact definable PL manifolds possibly with bound-
ary, which are easy to treat as follows.

We naturally define a Q-polyhedron and a PL Q-manifold in $Q^{n}$ . Note that a
compact Q-polyhedron is a finite union of Q-simplexes but an R-polyhedron closed
and bounded in $R^{n}$ is not necessarily a finite union of R-simplexes if $R$ is non-
Archimedean. For a Q-simplex $\sigma$ in $Q^{n}$ , let $\sigma_{R}$ denote the simplex in $R^{n}$ spanned
by the vertices of $\sigma$ . For a compact Q-polyhedron $X$ in $Q^{n}$ , we define $X_{R}$ to be
$\bigcup_{\sigma\in K}\sigma_{R}$ for a simplicial decomposition $K$ of $X$ . It is easy to see that if $M$ is a
compact PL Q-manifold possibly with boundary then $M_{R}$ is a compact definable
PL marlifold possibly with boundary.

Theorem. The correspondence $Marrow M_{R}$ is a bijection from the $PL$ homeomor-
phism classes of compact $PL$ Q-manifolds possibly with boundary to the definably $PL$

homeomorphism classes of compact definable $PL$ manifolds possibly with boundary.
Thus we regard a compact definable PL manifolds possibly with boundary as a

compact PL ( $Q$ or) R-manifold possibly with boundary. The proof of the theorem
is short but requires some elementary knowledge of PL topology arld model theory
[8].

5. DEFINABLE $C^{1}$ MANIFOLDS

We will reduce problems on definable $C^{1}$ manifolds to the R-case. There are
many o-minimal structures over fixed $R$ . A PL manifold is definable if and only if
it is a finite union of open simplexes. Hence definability of a PL manifold does not
depend on the choice of an o-minimal structure. However this is not the case for
a $C^{1}$ manifold. Indeed there is a $C^{1}$ manifold which is definable in an o-minimal
structure but not so in another. Hence we need to introduce an o-minimal structure
such that a $C^{1}$ manifold definable in this special structure is definable in any 0-
minimal structure. That is the semialgebraic structure. A semialgebmic set is a
subset of $R^{n}$ of the form $\cup\cap\{x\in R^{n} : f_{i}(x)*i0\}$ , where $f_{i}$ are a finite number
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of polynomial functions on $R^{n}$ and $*i$ means $=$ or $>$ . An equivalent definition is
that a semialgebmic set is a subset of $R^{n}$ definable in any $0-mi\iota$ 1$iIllal$ structurc. A
semialgebmic map between semialgebraic sets is a map with semialgebraic graph.
If follows that a semialgcbraic $C^{1}$ manifold and a semialgebraic $C^{1}$ map between
semialgebraic $C^{1}$ manifolds are definable in any o-minimal structure.

By the following theorem we can reduce problems on definable $C^{1}$ manifolds to
the semialgebraic $C^{1}$ case.
Theorem [2]. A definable $C^{1}$ manifold is definably $C^{1}$ diffeomorphic to a semialge-
bmic $C^{1}$ manifold.

Next we will reduce to the R-case. Let $R_{alg}$ denote the real algebraic numbers,
which is the smallest real closed field. For a polynomial function $f$ on $R_{alg}^{n}$ , let $f_{R}$

denote the polynomial function on $R^{n}$ naturally extended from $f$ . For a semialge-
braic set $X=\cup\cap\{x\in R_{alg}^{n}:f_{i}(x)*i0\}$ , define $X_{R}$ to be $\cup\cap\{x\in R^{n} : f_{iR}(x)*i0\}$ .
Then we easily see that $X$ is a semialgebraic $C^{1}$ Q-manifold if and only if $X_{R}$ is a
semialgebraic $C^{1}$ manifold.

Theorem [1]. The correspondence $Marrow M_{R}$ is a bijection from the semialgebmic
$C^{\infty}$ diffeomorphrsm classes of semialgebmic $C^{\infty}R_{alg}$ -manifolds to the semialgebraic
$C^{1}$ diffeomorphism classes of semialgebmic $C^{1}$ R-manifolds.

Thus it suffices to consider semialgebraic $C^{\infty}R-(orR_{alg^{-}})$manifolds. Compacti-
fication of a semialgcbraic $C^{\infty}$ R-manifold is always possible as follows.

Theorem [6]. A non-compact semialgebmic $C^{\infty}$ R-manifold is semialgebmically
$C^{\infty}$ diffeomorphic to the interior of a compact semialgebmic R-manifold with bound-
ary. Such a compact semialgebmic R-manifold with boundary is unique up to semi-
algebraically $C^{\infty}$ diffeomorphisms.

The proof of the first theorem is the same as the proof of the second. The proof
of the second is based on the Morse theory over $R$ . The proof of the third uses the
Artin-Mazur theorem and the Hironaka desingularization theorem.

Thus the facts shown in section 1 hold for definable $C^{1}$ manifolds and definable
PL manifolds. However, the original proofs of the Cairns-Whitehead theorem and
the facts that a PL R-manifold of dimension $\leq 7$ and a compact PL R-manifold ad-
$nl]tC^{1}$ R-manifold structures are false for non-Archimedean $R$ . We can prove them
using the above theorems. A typical example of a theorem which holds for $R$ but
not for non-Archimedean $R$ is the simplicial approximation theorem. The simplicial
approximation theorem states that any $C^{0}$ function on an R-polyhedron is approxi-
mated by a PL function in the $C^{0}$ topology. However, if $R$ is non-Archimedean, then
the function $R\supset[0,1]\ni xarrow x^{2}\in R$ cannot be approximated by a PL function
(see [8]).
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