On categoricity of atomic AEC

前園 久智 (Hisatomo MAESONO) 早稲田大学メディアネットワークセンター (Media Network Center, Waseda University)

Abstract

In recent years, the results about atomic abstract elementary class were summarized by J.T.Baldin [1]. In that book, categoricity problem of atomic AEC is discussed mainly under the assumption of atomic ω -stability (or *-excellence). I tried the argument around the problem under some weaker conditions.

1. Atomic AEC and splitting

We recall some definitions.

Definition 1 A class of structures $(\mathbf{K}, \prec_{\mathbf{K}})$ (of a language L) is an *abstract elementary class* (*AEC*) if the class **K** and class of pairs satisfying the binary relation $\prec_{\mathbf{K}}$ are each closed under isomorphism and satisfy the following conditions;

A1. If $M \prec_{\mathbf{K}} N$, then $M \subseteq N$.

A2. $\prec_{\mathbf{K}}$ is a partial order on **K**.

A3. If $\{A_i : i < \delta\}$ is a $\prec_{\mathbf{K}}$ -increasing chain :

(1) $\bigcup_{i<\delta} A_i \in \mathbf{K}$

(2) for each $j < \delta$, $A_j \prec_{\mathbf{K}} \bigcup_{i < \delta} A_i$

(3) if each $A_i \prec_{\mathbf{K}} M \in \mathbf{K}$, then $\bigcup_{i < \delta} A_i \prec_{\mathbf{K}} M$.

A4. If $A, B, C \in \mathbf{K}$, $A \prec_{\mathbf{K}} C$, $B \prec_{\mathbf{K}} C$ and $A \subseteq B$, then $A \prec_{\mathbf{K}} B$.

A5. There is a Löwenheim-Skolem number $LS(\mathbf{K})$ such that if $A \subseteq B \in \mathbf{K}$, there is an $A' \in \mathbf{K}$ with $A \subseteq A' \prec_{\mathbf{K}} B$ and $|A'| \leq |A| + LS(\mathbf{K})$.

Definition 2 We say an AEC $(\mathbf{K}, \prec_{\mathbf{K}})$ is *atomic* if \mathbf{K} is the class of atomic models of a countable complete first order theory and $\prec_{\mathbf{K}}$ is first order elementary submodel.

In the following, K denotes an atomic AEC.

Definition 3 Let T be a countable first order theory.

A set A contained in a model M of T is *atomic* if every finite sequence in

A realizes a principal type over the empty set.

Let A be an atomic set.

 $S_{at}(A)$ is the collection of $p \in S(A)$ such that if $a \in \mathcal{M}$ realizes p, Aa is atomic (where \mathcal{M} is the big model).

We refer to a $p \in S_{at}(A)$ as an *atomic type*.

We consider the notion of stability for atomic types.

Definition 4 The atomic class **K** is λ – stable if for every $M \in \mathbf{K}$ of cardinality λ , $|S_{at}(M)| = \lambda$.

Example 5 ([1]) 1. Let \mathbf{K}_1 be the class of atomic models of the theory of dense linear order without endpoints. Then \mathbf{K}_1 is not ω -stable.

2. Let \mathbf{K}_2 be the class of atomic models of the theory of the ordered Abelian group of rationals. Then \mathbf{K}_2 is ω -stable.

The notion of independence by splitting is available in this context.

Definition 6 A complete type p over B splits over $A \subset B$ if there are $b, c \in B$ which realize the same type over A and a formula $\phi(x, y)$ such that $\phi(x, b) \in p$ and $\neg \phi(x, c) \in p$.

Let A, B, C be atomic.

We write $A \downarrow_C B$ and say A is *independent from B over* C if for any finite sequence $a \in A$, $\operatorname{tp}_{at}(a/B)$ does not split over some finite subset of C.

Fact 7 ([1]) Under the atomic ω -stable assumption of $(\mathbf{K}, \prec_{\mathbf{K}})$ (and some assumption of parameters), the independence relation by splitting (over models) satisfies almost all forking axioms.

Theorem 8 ([1]) If K is ω -stable and has a model of power \aleph_1 , then it has a model of power \aleph_2 .

2. Atomic AEC without infinite splitting chain

In Baldwin's book [1] they argue the categoricity of atomic AEC under ω -stability assumption of atomic types. I considered the same problem under some weaker conditions.

Definition 9 Let **K** be an atomic AEC and $M \in \mathbf{K}$.

M has no infinite splitting chain if for any nonalgebraic $p \in S_{at}(M)$, there is no increasing sequence $\{A_i\}_{i < \omega} (\subset M)$ such that $p \upharpoonright A_{i+1}$ splits over A_i for all $i < \omega$.

We can prove the next facts.

Fact 10 If K is ω -stable, then no model of K has infinite splitting chain.

Fact 11 Under the assumption that $(\mathbf{K}, \prec_{\mathbf{K}})$ has no infinite splitting chain, the independence relation by splitting (over models) satisfies almost all forking axioms.

3. Existence of pregeometry

In [1], categoricity of atomic AEC are proved by means of the fact that every model is prime and minimal over a basis of some pregeometry given by a quasi-minimal set. So I tried to define pregeometry in the present context.

At first we prove the next proposition which is some modification of Theorem 8 above.

Proposition 12 If there are $N \in \mathbf{K}$ with $|N| > \aleph_0$ and a nonalgebraic type $p(x) \in S^1_{at}(N)$ such that N has no infinite splitting chain.

Then there are $M \in \mathbf{K}$ with $|M| = \aleph_2$ and a nonalgebraic type $q(x) \in S^1_{at}(M)$ such that M has no infinite splitting chain and q does not split over some $b \in M$, and $q \upharpoonright b$ has a Morley sequence I in M with $|I| = \aleph_2$. Moreover if $|N| = \aleph_1$, then we can take M such that $N \prec M$.

In this note, Morley sequence means the sequence constructed by nonsplitting extensions. Thus Morley sequences are indiscernible.

Lemma 13 Let $M \in \mathbf{K}$ and $p(x) \in S_{at}(M)$.

Suppose that M has no infinite splitting chain and p does not split over some $b \in M$.

And let $I = \{a_i : i < \alpha\}$ be a Morley sequence of $p \upharpoonright b$ in M. Then I is totally indiscernible.

In [8], they characterized generically stable types. We try to modify the notion in this context.

Definition 14 Let $M \in \mathbf{K}$.

A nonalgebraic type $p(x) \in S_{at}(M)$ is generically stable in M if for some $A \subset M$, p does not split over A and if $I = \{a_i : i < \alpha\}$ is a Morley sequence of $p \upharpoonright A$ in M, then for any $\phi(x) \in L(M)$ -formula, $\{i : M \models \phi(a_i)\}$ is either finite or co-finite.

We can prove the next lemma.

Lemma 15 Let $M \in \mathbf{K}$ and $q(x) \in S^1_{at}(M)$ be in Proposition 12.

Then q is generically stable in M.

Moreover if q does not split over b, then q is definable over b and $q \upharpoonright b$ is stationary w.r.t. nonsplitting extension.

We recall the definition of pregeometry.

Definition 16 Let X be an infinite set and cl a function from $\mathcal{P}(X)$ to $\mathcal{P}(X)$ where $\mathcal{P}(X)$ denotes the set of all subsets of X. If the function cl satisfies the following properties, we say (X, cl) is pregeometry.

(I) $A \subset B \Longrightarrow A \subset \operatorname{cl}(A) \subset \operatorname{cl}(B)$,

- (II) $\operatorname{cl}(\operatorname{cl}(A)) = \operatorname{cl}(A),$
- (III) (Finite character) $b \in cl(A) \implies b \in cl(A_0)$ for some finite $A_0 \subset A$,
- (IV) (Exchange axiom)

 $b \in cl(A \cup \{c\}) - cl(A) \implies c \in cl(A \cup \{b\}).$

We define big type which is a modified notion in [1].

Definition 17 Let $a \in M$ and $A \subset M \in \mathbf{K}$.

A nonalgebraic atomic type $tp_{at}(a/A)$ is *big* if there is an atomic model $N \in \mathbf{K}$ such that $A \subset N$ and $tp_{at}(a/A)$ has a nonalgebraic atomic extension over N.

In the following we argue under the existence of uncountable model $M \in \mathbf{K}$ and a nonalgebraic type $p(x) \in S^1_{at}(M)$. We may assume that p has what is called a minimal U-rank, or U-rank = 1.

Lemma 18 Let K has no infinite splitting chain and $M \in K$. And let $p(x) \in S_{at}^1(M)$ be nonalgebraic and p does not split over b for some $b \in M$. Then $p \mid b$ has an extension $q(x) \in S_{at}^1(c)$ such that

 $b \in c \in M$ and q is big, but any splitting extension of q is not big.

We may assume that the type q in Proposition 12 above has such property.

We define some closure operator.

Definition 19 Let $M \in \mathbf{K}$ and $p(x) \in S^1_{at}(M)$. And let p does not split over \emptyset (or some finite parameter) and $p \upharpoonright \emptyset$ is stationary.

The operator cl_p is defined by ;

 $cl_p^{\hat{0}}(X) = X$ and $cl_p^{n+1}(X) = \{ a \in (p \upharpoonright \emptyset)(M) \mid a \notin (p \upharpoonright cl_p^n(X))(M) \}$, and $cl_p(X) = \bigcup_{n < \omega} cl_p^n(X)$ for any $X \subset (p \upharpoonright \emptyset)(M)$.

We can prove the next fact.

Theorem 20 Let **K** has no infinite splitting chain and $M \in \mathbf{K}$ (with $|M| > \aleph_0$).

And let $p(x) \in S_{at}^1(M)$ be a nonalgebraic type such that p does not split over \emptyset and $p \upharpoonright \emptyset$ has no big splitting extension (or p has a minimal U-rank among such types).

Then $((p \upharpoonright \emptyset)(M), cl_p)$ is pregeometry.

4. Constructible sequence of atomic types

In the argument of categoricity for *-excellent AEC, prime models play a crucial role. Now we do not assume the existence of prime models. We try the analogous argument of $F^a_{\kappa(T)}$ -prime models in some large atomic model.

First we check the next lemma.

Lemma 21 (K has no infinite splitting chain.)

Let $M \in \mathbf{K}$. And let $A \subset B \subset M$ and a be such that $\operatorname{tp}_{at}(a/A)$ has a nonsplitting extension over B (or $A \leq_{TV} B$) and $\operatorname{tp}_{at}(a/A)$ is stationary.

Then the following are equivalent ;

(i) $\operatorname{tp}_{at}(a/A) \vdash \operatorname{tp}_{at}(a/B)$

(ii) For any a' such that $tp_{at}(a'/A) = tp_{at}(a/A)$, $tp_{at}(a'/B)$ does not split over A.

I define some isolation of atomic types.

Definition 22 Let $a \in M \in \mathbf{K}$ and $A \subset M$.

A type $\operatorname{tp}_{at}(a/A)$ is quasi-isolated if there is $b \in M$ such that $\operatorname{tp}_{at}(a/b) \vdash \operatorname{tp}_{at}(a/A)$.

A sequence $\{c_i : i < \alpha\} \subset M$ is quasi – constructible over A if, for any $\beta < \alpha$, $\operatorname{tp}_{at}(c_{\beta}/A \cup \{c_i : i < \beta\})$ is quasi-isolated.

M is quasi – constructible over A if $M \setminus A$ can be written as a quasiconstructible sequence.

We can prove the next proposition by using Lemma 21 above.

Proposition 23 Let **K** has no infinite splitting chain and $N \in \mathbf{K}$ (with $|N| > \aleph_0$).

And let a nonalgebraic $p(x) \in S^1_{at}(N)$ be such that p does not split over \emptyset and p has no big splitting extension (or p has a minimal U-rank among such types).

(Suppose that $p \upharpoonright \emptyset$ has a Morley sequence I with $|I| > \aleph_0$ in N.)

Then for any basis J of $((p \upharpoonright \emptyset)(N), cl_p)$, there is a quasi-constructible model over J in N.

5. Categoricity in some large atomic model

At first we recall the definition of Vaughtian triple from [1]. Note that the notion *big* is modified here.

Definition 24 A triple (M, N, ϕ) is called a Vaughtian triple if $\phi(M) = \phi(N)$ where $M \prec N \in \mathbf{K}$ with $M \neq N$ and L(M)-formula ϕ is big.

In this chapter, we assume that K has no infinite splitting chain where K is an atomic AEC. Under this condition we can prove some results about the two cardinal problem.

I tried the argument of categoricity in this context by means of quasiconstructible model. But I do not have the settled result yet. At present I can prove the next theorem by the properties of generically stable types.

If we try to extend the categoricity result to the whole \mathbf{K} , we need some additional conditions, such as amalgamation property of models, and any atomic set is included in an atomic model, and so on.

In the next Theorem 25, $p \upharpoonright \emptyset$ has a Morley sequence I in N with |I| = |N|.

Theorem 25 Let **K** has no infinite splitting chain and $N \in \mathbf{K}$ such that $(|N| > \aleph_0 \text{ and })$ there is no Vaughtian triple in N.

And let $p(x) \in S_{at}^1(N)$ be nonalgebraic such that p does not split over \emptyset and $p \upharpoonright \emptyset$ has no big spitting extension (or p has a minimal U-rank among such types).

Then for $M_i \prec N$ (i < 2) with $|M_0| = |M_1|, M_0 \cong M_1$.

6. Example of Shelah et al.

Shelah's original work ([4],[5]) showed that categoricity up to \aleph_{ω} of a sentence in $L_{\omega_1,\omega}$ implies categoricity in all uncountable cardinalities. Shelah and Hart showed the necessity of the assumption by constructing some example ([6]). This example is adapted by Baldwin and Kolesnikov ([1],[2]).

We can not recall the definition of it and details here.

Theorem 26 ([1],[2]) For each $k < \omega$, there is a $L_{\omega_1,\omega}$ -sentence ϕ_{k+2} such that :

 ϕ_{k+2} is categorical in μ if $\mu \leq \aleph_k$, and ϕ_{k+2} is not categorical in any μ with $\mu > \aleph_k$.

And they proved the next proposition in [2].

Proposition 27 ([2]) Let M be the standard model of ϕ_{k+2} of size \aleph_k . Then there are 2^{\aleph_k} Galois types over M.

This structure is expanded to be an atomic model. And we can check the next fact.

Fact 28 Let M and ϕ_{k+2} be the $L_{\omega_1,\omega}$ -sentence in the Proposition 27 above. Then M has an infinite splitting chain (in the expanded language).

References

[1] J.T.Baldwin, *Categoricity*, University lecture series vol. 50, AMS, 2009 [2] J.T.Baldwin and A.Kolesnikov, *Categoricity*, *amalgamation*, *and tameness*, Israel J. of math, to appear

[3] J.T.Baldwin and S.Shelah, *The stability spectrum for classes of atomic models*, preprint

[4] S.Shelah, Classification theory for nonelementary classes. I. the number of uncountable models of $\psi \in L_{\omega_1,\omega}$ part A, Israel J. of math, vol.46, pp. 212-240, 1983

[5] S.Shelah, Classification theory for nonelementary classes. I. the number of uncountable models of $\psi \in L_{\omega_1,\omega}$ part B, Israel J. of math, vol.46, pp. 241-271, 1983

[6] B.Hart and S.Shelah, Categoricity over P for first order T or categoricity for $\phi \in L_{\omega_1,\omega}$ can stop at \aleph_k while holding for $\aleph_0, \dots, \aleph_{k-1}$, Israel J. of math, vo.70, pp. 219-235, 1990

[7] O.Lessmann, Categoricity and U - rank in excellent classes, J. Symbolic Logic, vol.68, no.4, pp. 1317-1336, 2003

[8] A.Pillay and P.Tanović, Generic stability, regularity, quasi-minimality, preprint

[9] S.Shelah, Classification theory, North-Holland, 1990

[10] A. Pillay, Geometric stability theory, Oxford Science Publications, 1996