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On categoricity of atomic AEC
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Abstract

In recent years, the results about atomic abstract elementary class
were summarized by J.T.Baldin [1]. In that book, categoricity prob-
lem of atomic AEC is discussed mainly under the assumption of atomic
w—stability (or *—excellence ). I tried the argument around the prob-
lem under some weaker conditions.

1. Atomic AEC and splitting

We recall some definitions.

Definition 1 A class of structures (K, <k) (of a language L) is an
abstract elementary class (AEC) if the class K and class of pairs satis-
fying the binary relation <k are each closed under isomorphism and satisfy
the following conditions ;
Al.If M < N, then M C N.
A2. <k is a partial order on K.
A3.If { A;: i < 6} is a <k-increasing chain :

(1) Ui<6 A; e K

(2) for each j <4, A; <k U5 4i

(3) if each A; <k M € K, then Ui<5 A; <x M.
A4 If A B,CecK, A< C, B=<x C and A C B, then A <k B.
A5. There is a Lowenheim-Skolem number LS(K) such that if A C B € K,
there is an A’ € K with A C A’ <k B and |4'| < |A| + LS(K).

Definition 2 We say an AEC (K, <k) is atomic if K is the class of
atomic models of a countable complete first order theory and <k is first
order elementary submodel.

In the following, K denotes an atomic AEC.

Definition 3 Let T be a countable first order theory.
A set A contained in a model M of T is atomic if every finite sequence in
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A realizes a principal type over the empty set.
Let A be an atomic set.
Sat(A) is the collection of p € S(A) such that if a € M realizes p, Aa is

atomic ( where M is the big model ).
We refer to a p € S,:(A) as an atomic type.

We consider the notion of stability for atomic types.

Definition 4 The atomic class K is A — stable if for every M € K of
cardinality A, |Se:(M)| = A.

Example 5 ([1]) 1. Let K; be the class of atomic models of the theory
of dense linear order without endpoints. Then K; is not w—stable.

2. Let K2 be the class of atomic models of the theory of the ordered
Abelian group of rationals. Then Kj is w—stable.

The notion of independence by splitting is available in this context.

Definition 6 A complete type p over B splits over A C B if there are
b, c € B which realize the same type over A and a formula ¢(z,y) such that
¢(z,b) € p and —¢(z,c) € p.

Let A, B, C be atomic.

We write A-Lc B and say A is independent from B over C if for any
finite sequence a € A, tp,;(a/B) does not split over some finite subset of C.

Fact 7 ([1]) Under the atomic w—stable assumption of (K,<k) (and
some assumption of parameters ), the independence relation by splitting ( over
models ) satisfies almost all forking azioms.

Theorem 8 ([1]) If K is w—stable and has a model of power X1, then it
has a model of power Ns.

2. Atomic AEC without infinite splitting chain

In Baldwin’s book [1] they argue the categoricity of atomic AEC under
w—stability assumption of atomic types. I considered the same problem
under some weaker conditions.

Definition 9 Let K be an atomic AEC and M € K.

M has no infinite splitting chain if for any nonalgebraic p € Sg:(M),
there is no increasing sequence {A;};<.,(C M) such that p | A;;; splits over
A; for all i < w.

We can prove the next facts.



Fact 10 IfK isw—stable, then no model of K has infinite splitting chain.

Fact 11  Under the assumption that (K, <k) has no infinite splitting
chain, the independence relation by splitting (over models ) satisfies almost
all forking axioms.

3. Existence of pregeometry

In [1], categoricity of atomic AEC are proved by means of the fact that
every model is prime and minimal over a basis of some pregeometry given by
a quasi-minimal set. So I tried to define pregeometry in the present context.

At first we prove the next proposition which is some modification of
Theorem 8 above.

Proposition 12  If there are N € K with | N| > g and a nonalgebraic
type p(z) € SL(N) such that N has no infinite splitting chain.

Then there are M € K with | M| = Ry and a nonalgebraic type q(x) €
Sx:(M) such that M has no infinite splitting chain and q does not split over
some b€ M, and q [ b has a Morley sequence I in M with |I| = X,.

Moreover if | N | = Wy, then we can take M such that N < M.

In this note, Morley sequence means the sequence constructed by non-
splitting extensions. Thus Morley sequences are indiscernible.

Lemma 13 Let M € K and p(z) € Su:(M).

Suppose that M has no infinite splitting chain and p does not split over
some be M.

And let I = {a; : i < a} be a Morley sequence of p | b in M.

Then I is totally indiscernible.

In [8], they characterized generically stable types. We try to modify the
notion in this context.

Definition 14 Let M € K.

A nonalgebraic type p(z) € S,:(M) is generically stable in M if for some
A C M, p does not split over A and if I = {a; : i < o} is a Morley sequence
of p| Ain M, then for any ¢(z) € L(M)—formula, {i: M |= ¢(a;)} is either
finite or co-finite.

We can prove the next lemma.

Lemma 15 Let M € K and q(z) € SL,(M) be in Proposition 12.

Then q is generically stable in M.

Moreover if q does not split over b, then q is definable over b and q | b is
stationary w.r.t. nonsplitting extension.
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We recall the definition of pregeometry.

Definition 16 Let X be an infinite set and cl a function from P(X) to
P(X) where P(X) denotes the set of all subsets of X. If the function cl
satisfies the following properties, we say (X, cl) is pregeometry.
() Ac B= AC cl(A) C cl(B),
(I1) cl(cl(A)) =cl(A),
(IIT) (Finite character) b €cl(A) = b €cl(Ap) for some finite Ay C A,
(IV) (Exchange axiom)

becl(AU {c})—cl(A) = cecl(AU {b}).

We define big type which is a modified notion in [1].

Definition 17 Leta€ M and AC M € K.

A nonalgebraic atomic type tp,;(a/A) is big if there is an atomic model
N € K such that A C N and tp,(a/A) has a nonalgebraic atomic extension
over N.

In the following we argue under the existence of uncountable model M €
K and a nonalgebraic type p(z) € S.,(M). We may assume that p has what
is called a minimal U-rank, or U-rank = 1.

Lemma 18 Let K has no infinite splitting chain and M € K. And let
p(x) € Sk (M) be nonalgebraic and p does not split over b for some b€ M.
Then p | b has an extension q(z) € S,(c) such that
b€ ce€ M and q is big, but any splitting extension of q is not big.

We may assume that the type ¢ in Proposition 12 above has such prop-
erty.
We define some closure operator.

Definition 19 Let M € K and p(z) € S%,(M). And let p does not split
over () (or some finite parameter ) and p | ) is stationary.
The operator cl, is defined by ;
df(X) = X and cm*(X) = {a € (p [ O)(M) |a ¢ (p I cl3(X))(M)},
and cly(X) =, c2(X) for any X C (p [ 0)(M).

n<w P

We can prove the next fact.

Theorem 20 Let K has no infinite splitting chain and M € K ( with
M| > ).

And let p(z) € S, (M) be a nonalgebraic type such that p does not split
over O and p | O has no big splitting extension ( or p has a minimal U-rank
among such types ).

Then ((p | 0)(M), clp) is pregeometry.
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4. Constructible sequence of atomic types

In the argument of categoricity for *—excellent AEC, prime models play
a crucial role. Now we do not assume the existence of prime models. We
try the analogous argument of F :(T)—prime models in some large atomic
model.

First we check the next lemma.

Lemma 21 (K has no infinite splitting chain. )

Let M € K. Andlet A C B C M and a be such that tp,(a/A) has a
nonsplitting extension over B (or A <ty B ) and tp,,(a/A) is stationary.

Then the following are equivalent ;

(1) tpgt(a/A) F tp,(a/B)

(i1) For any o' such that tpy(a’/A) = tpy,(a/A), tpe(a’/B) does not split
over A.

I define some isolation of atomic types.

Definition 22 Letae M € K and A C M.

A type tp,;(a/A) is quasi —isolated if there is b € M such that tp,,(a/b) -
tpat(a‘/A)'

A sequence {¢; : i < a} C M is quasi — constructible over A if, for any
B < a, tpy(cs/A U {c; : i < B}) is quasi-isolated.

M is quasi — constructible over A if M \ A can be written as a quasi-
constructible sequence.

We can prove the next proposition by using Lemma 21 above.

Proposition 23 Let K has no infinite splitting chain and N € K ( with
|N|>Ro ).

And let a nonalgebraic p(z) € S.,(N) be such that p does not split over
0 and p has no big splitting extension ( or p has a minimal U-rank among
such types ).

( Suppose that p [ O has a Morley sequence I with |I| > Yo in N.)

Then for any basis J of ((p | 0)(N), clp), there is a quasi-constructible
model over J in N.

5. Categoricity in some large atomic model

At first we recall the definition of Vaughtian triple from [1]. Note that
the notion big is modified here.

Definition 24 A triple (M, N, ¢) is called a Vaughtian triple if (M) =
¢(N) where M < N € K with M # N and L(M)—formula ¢ is big.
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In this chapter, we assume that K has no infinite splitting chain where
K is an atomic AEC. Under this condition we can prove some results about
the two cardinal problem.

I tried the argument of categoricity in this context by means of quasi-
constructible model. But I do not have the settled result yet. At present I
can prove the next theorem by the properties of generically stable types.

If we try to extend the categoricity result to the whole K, we need some
additional conditions, such as amalgamation property of models, and any
atomic set is included in an atomic model, and so on.

In the next Theorem25, p [ @ has a Morley sequence I in N with

[I]=|N].

Theorem 25 Let K has no infinite splitting chain and N € K such that
(| N| > Rg and ) there is no Vaughtian triple in N.

And let p(x) € SL,(N) be nonalgebraic such that p does not split over 0
and p | O has no big spitting extension ( or p has a minimal U-rank among

such types ).
ThenforMi-<N (l<2) Mth,M()I:IMII, My = M,.

6. Example of Shelah et al.

Shelah’s original work ( [4],[5]) showed that categoricity up to R, of a
sentence in L, ., implies categoricity in all uncountable cardinalities. Shelah
and Hart showed the necessity of the assumption by constructing some ex-
ample ([6]). This example is adapted by Baldwin and Kolesnikov ([1},(2]).

We can not recall the definition of it and details here.

Theorem 26 ([1],[2]) For each k < w, there is a L, ., —sentence ¢p o
such that :

dryo is categorical in p if p < Wi, and

dr+2 18 not categorical in any p with p > Ni.

And they proved the next proposition in [2].

Proposition 27 ([2]) Let M be the standard model of ¢ri2 of size .
Then there are 2% Galois types over M.

This structure is expanded to be an atomic model. And we can check
the next fact.

Fact 28 Let M and ¢i+2 be the L, ,—sentence in the Proposition 27
above. Then M has an infinite splitting chain ( in the expanded language ).
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