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KHOVANOV-LAUDA-ROUQUIER ALGEBRAS AND CRYSTAL BASES
FOR FINITE CLASSICAL TYPE

EUIYONG PARK

ABSTRACT. We present a crystal basis theoretic construction of irreducible modules over
Khovanov-Lauda-Rouquier algebras and their cyclotomic quotients of finite classical type.

INTRODUCTION

The Khovanov-Lauda-Rouquier algebras (or Hecke quiver algebras) were introduced in-
dependently Khovanov-Lauda [11, 12] and Rouquier [16] for providing a categorification of
quantum groups associated with symmetrizable Cartan data. Let U,(g) be a quantum group
and let R(a) be the corresponding Khovanov-Lauda-Rouquier algebra of weight « € Q*. For
a dominant integral weight A € P*, the algebra R(a) has a special quotient R*(a), which
gives a categorification of the irreducible highest weight U,(g)-module V()\) with highest
weight A [4, 18]. The crystal structures of U, (g) and V()) also were interpreted in [14] in
terms of irreducible modules over R(a) and R*(a). The Khovanov-Lauda-Rouquier algebras
were generalized to the quantum generalized Kac-Moody algebras [5, 7] and, when the Cartan
datum is symmetric, geometric realizations of the Khovanov-Lauda-Rouquier algebras were
given in [6, 17] via quiver varieties.

In this paper, we announce the main result of our previous work [1, 8], which is an ex-
plicit construction of irreducible modules over R(a) and R*(a) of finite classical type. This
construction differs from the one given in [2, 13] and is based on the theory of crystal bases.
Though this paper is rely on [1], the description of irreducible modules in this paper is
different and more combinatorial than the description given in [1].

Let us explain more precisely. Let B(oco) (resp. B(A)) be the set of all isomorphism
classes of irreducible graded R(a)-modules (resp. R*(a)-modules) for « € Q*. It is shown
in [14] that there exists an crystal isomorphism B(co) ~ B(co) (resp. B(\) ~ B())). We
first define segments s to be unordered pairs of comparable elements in the basic crystals
Bx (X = A, B,C, D) given in Section 3 and give a partial order < to them. Then we set
multisegments m of Bx to be multisets of segments satisfying the conditions (3.1). Proposition
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3.1 says that the set My of multisegements is in a 1-1 correspondence T to the crystal B(co).
For each segment s, we define 1 or 2-dimensional module V(s) out of the crystal Bx. Then
a multisegment m = {s; < 59 < s3 < ---} of Bx gives the outer tensor product

V(m) = V(s1) ¥ V(s2) B V(s3) & --- .

It follows from [1] that
hdIndV(m) = :f; (m) ':;(m)l

for m € My and the map ¥ : Mx — B(00) defined by
¥(m) = hdIndV(m) forme Mx

is bijective (Theorem 3.2). Hence it can be deduced from Proposition 2.3 that the composition
VoY !: B(oco) — B(oo) is a crystal isomorphism. In the cyclotomic cases, using the
crystal embedding B(A) — B(o0) ® Th ® C, we obtain the same results; i.e., the composition
T2 o Y11 : B(A) — B()) is a crystal isomorphism (Corollary 3.4).

This paper is organized as follows. Section 1 contains a brief review of the crystal basis
theory for quantum generalized Kac-Moody algebras. In Section 2, we give the definition of
Khovanov-Lauda-Rouquier algebras which is the most general version given in [6] associated
with a Borcherds-Cartan datum (or a quiver positively with loops), and introduce some
results of Khovanov-Lauda-Rouquier algebras on crystal bases. In Section 3, we restrict to
the case of finite classical types and present a crystal basis theoretic construction of irreducible
modules over Khovanov-Lauda-Rouquier algebras and their cyclotomic quotients in terms of

segments.

1. QUANTUM GENERALIZED KAC-MOODY ALGEBRAS

Let I be an index set. A square matrix A = (a;;); jer is called a symmetrizable Borcherds-
Cartan matriz if it satisfies (i) a; = 2 or a; € 2Z<q for i € I, (ii) aij € Z<o for 7 # j, (iii)
a;; =0 if aj; = 0 for ¢,j € I, (vi) there is a diagonal matrix D = diag(d; € Z-¢ | i € I) such
that DA is symmetric. Let I™ = {i € I | a;; = 2} and I'™ = I \ I"®.

A Borcherds-Cartan datum (A, P,II,IIV) consists of

(1) a symmetrizable Borcherds-Cartan matrix A,

(2) a free abelian group P, called the weight lattice,

(3) the set I = {a; | i € I} C P of simple roots,

(4) the set IV = {h; | i € I} C PV := Hom(P, Z) of simple coroots,
which satisfy the following properties:

(i) (h,;,aj> = a,-(hi) = a;j forall 4,5 €1,

(ii) II C b* is linearly independent, where § := C ®z PV,
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(iii) for each i € I, there exists A; € P such that (hj, A;) = 6;; for all j € I.
We denote by P = {A € P | A(h;) € Z>0, i € I} the set of dominant integral weights. The
free abelian group Q = @;¢; Zoy; is the root lattice, and QT = 3°,.; Z>ow is the positive
root lattice. For oo = Y ;1 kia; € QT the height of o is |a| := >, ki. There is a symmetric
bilinear form ( | ) on h* such that

(a4]oy) = dsay; for 4,5 € 1, (hi, A) = for Aeh*and i€ I.

Let ¢ be an indeterminate and m,n € Zx¢. For i € I'®, let ¢; = ¢% and

1= 1+ (Mt = 1) = .
g —q; ! 1 Y oln . [m — nj;![n];!
Definition 1.1. The quantum generalized Kac-Moody algebra U,(g) associated with a Borcherds-
Cartan datum (A, P,II,IIV) is the associative algebra over Q(g) with 1 generated by e;, f;
(i € I) and ¢g" (h € PV) satisfying following relations:
(1) ¢® =1,¢"¢" = ¢"*" for bW € PV,
(2) gheig™ = g™2ide;, ghfig™ =g~ f for he PV i€,

K- K1 v
(3) eif; — fiei = 51‘]'%:——}1—, where K; = qzh*,
1-ai, . ) ] b
(4) Z [ kazg] 63~aij—k6jef -0 ifieI" and i # j,
k=0 '
P P s
(5) Z k 1] fil—aij—kfjfik — 0 ifl € Ire and i 75 j,

k=0 i
(6) e,-ej - eje,- = 0, fzfJ - fjfi =0 if aij = 0.
Note that, if all diagonal entries of A are 2, then A is a generalized Cartan matrix and
U,(g) is the usual quantum group associated with A.
Let U, (g) (resp. Uy (9)) be the subalgebra of U,(g) generated by the elements e; (resp.
fi) for i € I. For n € Z~o, set

(n) S e ) e

n K] * n N ?

e;” = ¢ [nli! £V ={ [nli! _
er if i € I'™, fr if i € I'™,

For an element u € U, (g), u can be expressed uniquely as

(1.1) u=Y fPu,

k>0
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where uy, € ker e/ and ui = 0 for k > 0. Here, €; is the endomorphism U (g) = U, (9) given
in [3, Section 6] and [9, Section 3.3]. The Kashiwara operators &, f; (i € I) of U; (g) are

defined b;
y - (k-1) o (k+1)
eiu = E i Vuk,  fiu= E 57wk

k>1 k>0

Let Ao = {f/g9 € Q(q) | f,9 € Qlq],9(0) # 0}.

Definition 1.2. A crystal basis of U, (g) is a pair (L, B) satisfying the following conditions:

(1) L is a free Ag-module of U; (g) such that U; (g) = Q(q) ®a, L and L = @Ppeq+ L-a;
where L_4 := LNU; (8)-a>

(2) B is a Q-basis of L/qL such that B = | |,co+ B—q, where B_q := BN (L-a/qL—q),

(3) Bc BU{0}, iBC Bforalliel,

(4) For b,b/ € Band i € I, ¥ = f;b if and only if b = &?¥'.

Let L(co) be the free Ag-module of U, (g) generated by {fi,--- fi,1|7>0,i € I} and let
B(oo) = {fia -+ fi:1 + qL(00) | 7 2 0,4 € I} \ {0}
Then, it is proved in [3, 9] that the pair (L(co), B(00)) is a unique crystal basis of U, (g).
Let M be a Uy(g)-module in the category O;ns defined in [3. Definition 3.1]. For any i € 1,
any element u € M), can be expressed uniquely as

=) FFug,

k>0

where ux € M), q; Nkere;. The Kashiwara operators é;, fi (i € I) are defined by

&iu = Z fi(k_l)uk._ fiu= Z fi(kH)uk.
k>1 k>0

Definition 1.3. A crystal basis of U,(g)-module M is a pair (L, B) satisfying the following
conditions:

(1) L is a free Ag-module of M such that M = Q(q) ®a, L and L = @,cp L, where

Ly := LN M,,

(2) B is Q-basis of L/qL such that B =| Jycp By, where By := BN Ly/qLy,

(3) &Bc BU{0}, fiBCc BU{0} forall i € I,

(4) For b,¥ € Band i € I, b/ = f;b if and only if b = &b'.

For a dominant integral weight A € P+, we denote by V() the irreducible highest weight
U,(g)-module with highest weight A\. Note that V() is contained in Ojn. Let L(A) be the
free Ag-module of V(X) generated by {f;, --- fi,ua | 7 > 0,4k € I'} and let

B(A\) = {fiy - foox +qL(N) | 7 > 0,4k € I} \ {0}.
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Then the pair (L(A), B(\)) is a unique crystal basis of V() [3, 9].

2. KHOVANOV-LAUDA-ROUQUIER ALGEBRAS

Let k = @nEZ k, be a commutative graded ring such that kg is a field and k, = 0 for
n < 0. For o € Q* with |a| = m, let

Iaz{yz(ule-‘-»'/m)ejmlaw+"'+a"m:a}'

Note that the symmetric group S,, = (sx | £k = 1,...m — 1) acts naturally on I*. For

t=1,...,m— 1, we define the operator d; on k[z1,...,zm] by
stf — f
o(f) = ———,
1 (f) P
where wf(z1,...,Zm) = f(Zya),---» Twm)) for w € Sy, and f(z1,...,2m) €K[z1,... . Tm].

For each i € I, we choose a polynomial P;(u,v) € k[u.v] of the form

Pi(u,v) = Y pieau,
k1>0
where pixi € Ky, (2-qi)—2d;k—2d4, and Pia-i 00 Pio1-2 € k. We also take a matrix
(Qsj(u, U))z’,jel in k{u,v] such that Q;;(u,v) = Qji(v,u) and Q;;(u,v) has the form

0 ifi =3,

Q' '(u, ’U) = o :
7 > kuso GigikauFvt if i #£ g,

X
where ¢; ki € K_2(q,a,)-2dik—2d,1 80d Giji—a,;.0 € Ky -

Definition 2.1. Let (A, P,II,1IV) be a Borcherds-Cartan datum and o € Q* with height m.
The Khovanov-Lauda-Rouquier algebra R(ca) of weight o associated with the data (A, P, I, ITV),
(Py)ier and (Qi;): jer is the associative graded k-algebra generated by e(v) (v = (v1....,um) €
I%), 2z (1 <k <m), s (1 <t<m—1) satisfying the following defining relations:

e(w)e(V') = b, e(v), Z e(v) =1, zre(v) = e(v)zk, Tz = T1Tk,
vele
Tie(v) = e(s:(v)) 7, 11 = s if |t — 8| > 1,
2e(v) = 0; Py, (2t, xt41)TE(V) ff Vi = Vi,
QVtVt-i-l(wt’ wt+1)e(l’) if vy # viqa,
~Pu(zt, Tt41)e(v) if k=t and v = veq1,

(Texk — ZoyTe)e(V) = P (@, ze41)e(v)  ifk=t+1and vy = vgq,
0 otherwise,
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(Te4172Te4+1 — TeTe+172)e(V)

Pm (-'L'ta xt+2)§u:.lft+1(1't»$t+la zt+2)e(u) if v, = Vi+2 # Vet
p— <4 .
= P;,(xz,$t+1,zt+2)ne(l’) + P (@t T4, Teg2)Tere(v) if vy = vig1 = i,
0 otherwise,
where

— _ Pi(v.u)Pi(u,w)  Pi(u,w)Pi(v,w) Pi(u, v)Pi(v, w)

Piluvw) = o umw) T w-w-w)  (@-o)m-w)’

. P v)Pi(uw)  Piu.w)Pi(w,v) | Pi(u,v)Pi(v,w)

’Pi(U,U,’U)) = (u—’U)(U"‘w) (u_w)(v—w) + ('u.—’U)('U—’W) ’

Q;j(u,v,w) == Qij(w,v) — Qi’j(w’v).

u-—-w

The algebra R(a) has the Z-grading given by
deg(e(v)) =0, deg(zk(v)) =2dy,, deg(n(v)) = —(anlan,,,),

where 7 (v) = zxe(v) and 1 (v) = re(v) for v € I*. A diagrammatic presentation of R(a)
using planar diagrams with dots and strands is given in {7, 11, 12].
For A € P* and i € I, let us fix a polynomial a(u) of the form

A(hi)

a}(w) = ) e’ ™7,
k=0
where ¢, € kaq,x and ¢ = 1. Set a*(z) = 3, a), (z)e(v). Then the cyclotomic Khovanov-
Lauda-Rouquier algebra R*(a) is defined to be the quotient algebra

R*(a) = R(a)/R(a)a*(z)R().

Let R(a)-mod (resp. R*(a)-mod) be the category of finite-dimensional graded left R(c)-
modules (resp. finite-dimensional graded left R*(a)-modules). For a Z-graded module M =
@iz M and t € Z, let M (t) = Pz M(t)r be the Z-graded module obtained from M by
setting M (t)x := M;,x. The g-character chy(M) and character ch(M) of M are defined by

chy(M) = Y dimg(e(v)M) v,  ch(M) =) dim(e(v)M) v,
vele vele
where dimg(N) := Y, 5(dimN;)q* for any graded module N = @,z N;.

For M,N € R(a)-mod, let Hom(M, N) be the set of homogeneous homomorphisms of

degree 0, and let HOM(M, N) = @z Hom(M, N(k)). For By,...,Bm € Q*, we define

e(Br-- Bm) = Y evi %% vm),

I/jGIﬁj
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where vy *- - - ¥y, is the concatenation of v;’s. The natural embedding R(51)®- - -® R(Bm) —
R(B1 + -+ + Bm) gives the functors

Indg,, . g, : R(51)® - ® R(Bm)-mod — R(B1 + -+ + Bm)-mod,
bt R(B1+ -+ Bm)-mod = R(B1) ® - - - ® R(Bm)-mod

.....

defined by Indg, ...
for Le R(B1) ® --- ® R(Bm)-mod and M € R(B1 + - - - + Bm)-mod.

Let B(oco) (resp. B(A)) be the set of all isomorphism classes of irreducible graded R(f3)-
modules (resp. R*(8)-modules) for all 8 € Q*. Set 1 to be the 1-dimensional trivial R(0)-
module. For M € R()-mod, we define

€;(M) = soc(Resq, g—a, M) € R(S — a;)-mod
fi(M) = hdInd,, (L(i) ® M) € R(B + a;)-mod,

I b if M € R(8)-mod,
" IA-8  if MeRMB)-mod,

ei(M)=max{k > 0| &M £ 0}, @i(M) = e;(M) + wt(M)(h;),

where L(i) is the 1-dimensional R(a;)-module with dimgL(i) = 1. Here, for an R(a)-module
N, soc(N) (resp. hd(N)) is the maximal completely reducible submodule (resp. the maximal
completely reducible quotient) of N. Then, when a;; # 0 for all i € I, the sets B(oo0) and
B(A) with the above maps have crystal structures [7, 14].

Theorem 2.2 ([7, 14]). Ifa; # 0 for alli € I, then the crystal (B(co), wt, &, fi, €, @i) (resp.
(B(N), wt, &, fi,ei,cpi)) is isomorphic to the crystal B(oo) (resp. B())).

We now assume that a; # 0 for all i+ € I. Let n = |I| be the rank of Uy(g), and let
Iy C I (k=1,...,n) besubsets of I = I(,,1) such that [(x) C I(x11) and |I )| = k for all .
Let Uy denote the subalgebra of U,(g) generated by e;, f; (i € I(xy) and ¢" (h € PY) and let
B be the crystal obtained from B(co) by forgetting the i-arrows for ¢ ¢ I(y). Then By can
be understood as a Ug-crystal and every connected component of By has a unique highest

weight vector [1, Lemma 1.9].
Take an element v € B(oo). Let ug = v and let u; be the highest weight vector of the

connected component Cy of By containing v for k = 1,...,n. By construction, there is a
chain of injective maps

Ci —>C— -+ = Cpho1 — B(oo).
Fork=1,...,n,let

(2.1) Ne() = oy Fu 1 € B(00),

ﬂmL = R(B1+' ) +Bm)®R(ﬂ1)®®R(ﬂm)L a'nd R3551 aaaaa ,BmM = 6(51’ e Bm)M

169



170

EUIYONG PARK

where vy = (Vk,1,...,Vky,) is a sequence of I such that uy_; = f,,k‘l "'fuk,tkuk-

Hence, for each v € B(0o), we obtain the corresponding n-tuple (N (v), Na(v). ..., Np(v))
of irreducible modules in B(0o). Then, using the same argument as in [1, Proposition 1.10},
one can obtain the following proposition.

Proposition 2.3. [1, Proposition 1.10]

(1) For v € B(co), hd Ind (X}_,Ni(v)) is irreducible.
(2) The map @ : B(oo) — B(00) defined by

®(v) = hd Ind (Ki_ Ni(v)) for v € B(0)

is a crystal isomorphism.

3. CRYSTAL BASES AND IRREDUCIBLE REPRESENTATIONS

In this section, we give a crystal basis theoretic construction of irreducible modules over
Khovanov-Lauda-Rouquier algebras and their cyclotomic quotients for finite classical types.
Though this section is based on our previous work [1], the description of irreducible modules in
this section is different and more combinatorial than the description given in [1]. Throughout
this section, we assume that k = C and A is a generalized Cartan matrix of finite classical
type An, Bn, C, and D,,.

Let I = {1,2,...,n} and let I" be the following Dynkin diagram:

(An) O 0 ——,——— %

1 2 n—1 n
B f'o M ; SRR ——————0
(Br) 1 2 n—1 n
C OO e —_—ee—————0
(Cn) 1 2 n—1 n
O O n
(Dn) 1 2 n—
n—1

We set Bx (X = A, B.C, D) to be the crystal defined by

(An) 1 2 . ‘"‘1 n

(Bn) L "‘1 n @ n n—l R

(Chn) <1——<'i__2_ n—1 n n—l (_’i(_l_
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/\

(Dy) (1_..."-2 (1—_2.61_

\/

with the entries ordered by

(An) I>2>--->n+1,

(Bn) 12> »A>=0>n>--->2>1,

(Cy) 12> ->n—1>=A>=n=n—1= =1,
(Dn) 12> >n—1-An>n—1% -1

For v = (1,...,um) € I™ and k = (ki,....ky) € (Zso)™, let fX = Z“ll e ~,’fg (resp.

=ék1... ékm). If k = (1,...,1), then we write f, (resp. &,) for f¥ (resp. &k).

A segment s of the crystal Bx is a subset s = {a,b} C Bx such that the two elements a
and b of s are distinct and comparable. Note that any distinct two elements {a, b} of Bx
except the case {a,b} = {n,A} (X = D) can be viewed as a segment of Bx. For a segment
s = {a,b} with a > b, set h(s) = a and t(s) = b, respectively. We define a partial order > on
the set of segments of Bx as follows: for two segments s and s’ of By,

s>s ifandonly if (h(s) > h(s')) or (h(s) = h(s) and (t(s') > t(s))

For b€ Bx and X = B, C, D, we set b¥ to be a unique element in By such that wt(b¥) =
~wt(b). Let by =7 (X = A,B,C), bx = n—1 (X = D). A multisegment m of Bx is a
multiset of segments of the crystal Bx such that

(i) h(s) = bx for s € m,
(3.1) (ii) t(s) = h(s)V if X = B,C, D,
(iii) any two segments in m are comparable.

When no confusion can arise, we write m = {s1 <59 <s3 <---}. Fori=1,...,n, we set
m(i) = {s € m | &(h(s)) # 0}.

Let Mx be the set of all multisegments of Bx. We will show that M x parameterizes the
crystal B(co). Let £y =n, g =flc =2n—1, {p = 2n — 2 and let vx be the sequence of the
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colors over the arrows of By, i.e.,

va=(12,...,n—-1.n),
vg=vc=(1,2,....n—1Lnn-1,...,21),
vp=(1.2,....n-1lnn-2,...,21).

For a segment s, let e(s) = (e1,...,e¢) € Z'x be the ¢x-tuple of Z defined by

h(s) = ff,(f)t(s), e; # 0 for some 1 < j < n.
ith

{
Here we consider Z¢* as an abelian group. Let ¢; = (0,...,0,1,0,...,0) fori=1,...,¢x.
Proposition 3.1. Let T : Mx — B(oco) be the map defined by
T(m) = foy®.. fgm1

> sem(n+1—i)&(8) if either X = A,B,C ori# 1,2 (X = D),
where e;(m) = { #m(n — 1)en—_3 ifi=2 (X = D),
#m(n)e, ifi=1(X=D).
Then the map T is bijective.

Proof. We focus on the case X = D since the remaining cases can be proved in a similar

manner. Let S be the set of t = (t4,...,t,) € Z;(Oz"_z) such that

(a) t; = (tj,l’ ces ,t]',2n_2) € Z(Zzg-m forj=1,...,n,

(b) tjn+1—j = tint2—j = - 2 tin-1,tjn = tjns1 = -+ 2 tjn—24j for j =3,....m,

(c)ifj=3,...,n,thent;y =0 foreitherk<n+1-jork>n—-2+j,

(d) togx=0fork#n—1and ty =0 for k #n.
It follows from [15, Section 7] that the map S — B(oo) mapping t = (t1,...,t,) € S to

4 ... ftn1 € B(oo) is bijective.
Let m € Mx and write e;(m) = (ej,1,...,€j2n—2) for j = 1,...,n. By (ii) and (iii) of (3.1),

the sequences e;(m) satisfy the above condition (b), (c) and (d). Hence the map ¢ : Mx = S
given by

¢(m) = (e1(m),...,en(m)) (m€ Mx)

is well-defined.
On the other hand, let

1=

i ifl1<i<n,
2n+1—-i ifn+1<i<2n.
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and, for a segment s and a multisegment m € My, let us denote by o(m,s) the multiplicity
of s inm. Let v : S - Mx be the map mapping t € S to the multisegment ¥ (t) € Mx
such that, ifi =1,...,n — 2, then

([ tnt1-ij — tnti-ug+1 if j <n-3,
tht1—in—2 — MaX{tnti-in-1,tnti—in} if j=n-2,
ol(t), G 7Y = | MO triin s~ triiin) £ g=n-1
max{0, tn+1-in — tnt1-im-1} if j=mn,
min{tni1-in-1rtnt1-in} — tnti-in+1 if j=n+1,
| tn+1-ij-1 = tnt1-ij if j>n+2,

and, if i =n — 1, then

max{O, tg,n__l — tl,n} if ] =n—- ].,

U("/)(t)v {"/—\1]/‘*'\1}) = max{O, tyn — t2.n—1} if j=n,
min{t1 n.t2.n-1} ifj=n+1.
Then it is straightforward to verify that ¢ o9 =ids and ¢ o ¢ = idaq- ]

We now return to the Khovanov-Lauda-Rouquier algebras. Let 1 be the trivial R(0)-
module. For a segment s. we define

V(s) = f591 € B(0).

vx

We give a explicit description of the module structure of V(s) as follows.

Let I = |wt(h(s)) — wt(t(s))|. If one of the following holds: h(s) > t(s) (An,Ch), either
t(s) = 0 or 0 = h(s) (B,), either t(s) > n—1orn—1 > h(s) (D), then the module V(s)
is the 1-dimensional module Cv given by

v if v =wv(s),

zv =0 7v =0 eljv= { 0 otherwise,

where v(s) € I' such that h(s) = f,,(s)t(s).
If h(s) > 0 > t(s) for type By, then V(s) is the 2-dimensional module Cu @ Cv with

v ifj=d, e(y)u:{u if v = v(s),

ziu=0 Tiu =
¢ ' J { 0 otherwise, 0 otherwise,

U if i =d, i
g 0 ) u if v =p(s),
iy — _ — = elviju =
TV u ifd +1, TjU ’ 0 otherwise,
0 otherwise

where v(s) € I' such that h(s) = f,,(s)t(s), and d is an integer such that sq(v(s)) = v(s).
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If h(s) > n—1and n — 1 > t(s) for type D,, then the module V(s) is the 2-dimensional
module Cu ® Cv defined by

T 0 v if] = d, e(y)u Qn—l,n(xn—lswn)u if v= V(5)+’
u =0, T:U = =
: J 0 otherwise, 0 otherwise,

ar: 0. u if j=d, () v ifv=uv(s)",
v =0, ) = =
: I 0 otherwise, 0 otherwise,

where v(s)*, v(s)~ € I' such that v(s)* # v(s)” and h(s) = f,(5)+t(s) = fu(s)-t(s), and
d is an integer such that sy(v(s)*) = v(s)”. Note that Qn_1,(Zn—1,2Zn) € C*. For the
description above, the character chV(s) is given as follows

v(s)T +v(s)” ifh(s)=n—1.n—1>t(s) (D),
(3.2) chV(s) = ¢ 2u(s) if h(s) > 0> t(s) (Bn),
v(s) otherwise.

For a multisegment m = {s; < 52 <53 <X---}, we define
V(m) = V(s1) R V(s2) ®V(s3) K- - .
Then we have the following theorem.
Theorem 3.2. (1, Theorem 3.2
(1) For a multisegment m, we have
hdIndV(m) = fo1(®) . fenlm)y

Y sem(nt1-i)&(8) if either X = A.B,C ori#1,2 (X = D),
where e;(m) = ¢ #m(n — 1)en_1 ifi=2 (X = D),
#m(n)e, ifi=1(X=D).
(2) Let ¥ : Mx —> B(0c0) be the map defined by
¥(m) = hdIndV(m) forme Mx.
Then the map ¥ is bijective.

Proof. We give a sketch of the proof of [1, Theorem 3.2]. When X = D, without loss of
generality, we may assume that
o(m, {R=1,7}) > o(m, {n=1,n}),
where o(m, s) is the multiplicity of s in m. Note that Zsem(n-—l) e(s) = #m(n — ey +
#m(n)e, if X = D. It follows from [1, Lemma 4.3] and the definition of m(k) that
(a) €i(IndV(m(k))) =0fori=n+1-kn+2-k,...,n,
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fon-e®y itk =1,...,n (X =A,B,0),
(b) hdIndV(m(k)) = k=1,....,n—2(X = D),
mEmL ifk=n-1(X =D),
Let Iy = {n+1—k,...,n} and let N} be the module given in (2.1). Then, by the crystal
description given in [15], we have
Novi—k ifk=1,...,n (X =A4,B,0),
k=1,...,n-2 (X = D),
Ind(NM; BA) ifk=n—1(X = D).
Combining Proposition 2.3 and [1, Lemma 1.8] with the above conditions (a) and (b), we
obtain

1

hdIndV (m(k))

hd Ind (®}_, Nj(v)) ~ hd Ind (K} _,,, IndV(m(k)))
~ hdInd (R} _,, V(m(k)))
~ hdIndV(m),

where n’ =n (X = A,B,C) and n’ = n — 1 (X = D). Therefore, the assertion follows from
Proposition 2.3. O

From Proposition 3.1 and Theorem 3.2, we have the following corollary.
Corollary 3.3. The composition ¥ o Y~! : B(oo) — B(00) is a crystal isomorphism.

Let A € P* be the dominant integral weight and let B(\) be the crystal of the irreducible
highest weight module V()). It was shown in [10] that there is a unique strict crystal
embedding

B(A) = B(oo)Th®C, vy —1Qt)®c
where vy is the highest weight vector of B()). Here, Ty = {ta} (resp. C' = {c}) is a crystal
with Wt(t,\) = A, g(tr) = wi(ty) =0, €ty = fity = —0 (resp. wt(tx) = 0, €i(tr) = @i(ta) =
0, &ty = fitn = 0). We denote by 2, the composition of the strict embedding and the natural
projection:
B(A) < B(oo) ® T\ ® C — B(o0).

Let Mx(A) = T~ o4,(B())). By Proposition 3.1, the set B()) is in 1-1 correspondence

to Mx(A) via T~ ! o1y. Then the map Ty := (T 1 o1y)™t : Mx(A) = B(}) is give by

Ta(m) = fo® . fer®@y,  for m € Mx(N),

> sem(n1-i) &(s) if either X = A B.Cori#1,2(X=D),
where e;(m) = ¢ #m(n —1)e,—; ifi=2 (X = D),
#m(n)e, ifi=1(X=D).
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We remark that the set M x () can be described explicitly from the string parametrization
of B(\) given in [15]. By Theorem 3.2 and Corollary 3.3, we have the following Corollary.

Corollary 3.4. Let A € Pt be a dominant integral weight.
(1) Let T* : Mx(A) — B(\) be the map defined by

¥*(m) = hdIndV(m) for m € Mx()).

Then the map ¥? is bijective.
(2) The composition ¥* o T;l : B(A) — B()) is a crystal isomorphism.

Example 3.5. Let U,(g) be of type Ds. Then the crystal Bp is given as follows:
RN
DA

Note that vp = (1,2,3.4,5,3,2,1). We choose the following segments s, (k¥ = 1,...,6) of
Bx:

5

[—E-—BG—4 —[2—[]-—[]

s, = {4,5}. s9 := {3,5}, s3 = {2,4},
§4 1= {2,4}, S5 1= {T, Z}, S¢ = {T,4}
and let m = {81 < 59 < 53 < 54 < 55 < 56} be the multisegment consistingof s, (k = 1,...,6).
Note that
chV(s1) = (4), chV(sq2) = (3, 5),
chV(s3) = (2,3), chV(s4) = (2,3,4,5) + (2,3,5,4),
chV(s5) = (1,2,3), chV(ss) =(1,2,3,4,5)+(1,2,3.5,4).
Since m(1) = {s5,s6}, m(2) = {53,584}, m(3) = {s2}, m(4) = {51} and m(5) = 0, we have
ei(m) = (2,2,2,1,1,0,0,0), ez(m)=(0,2,2,1,1,0,0,0),
es(m) = (0,0,1,0,1,0,0,0), e4(m)=(0,0,0,1,0.0,0,0),
e;(m) = (0,0,0,0.,0,0,0,0).
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follows from Theorem 3.2 that

hdIndV (m) ~ hdInd (V(s1) B V(s2) ® V(s3) B V(s4) B V(s5) & V(sg))
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