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The purpose consists in construction of a mathematical model that describes the host-defense mech-
anism against cancer. Roughly speaking, there are two distinct methods in mathematical modelling
for cancer cells, such as the method by a deterministic model and the method by a stochastic model.
In this article, based upon the latter method, we propose an immune response model against cancer
as a mathematical model of branching particle system, and grasp the effects of immunity as the
reflective extinction of a superprocess arising by taking the limit of the system. Ordinarily, normal
cells are transformed into irregular ones by some reasons, and the tumorigenic process proceeds. In
concord with that, a group of immune cells invoke immune response, and in so doing they accomplish
their important errand of host-defense mechanism. We forcus our mind especially on the immune
response both in the transformation period of cell and in the proliferation period of cancerated cell,
and propose a stochastic model that is able to describe the cytotoxic actions of effectors against can-
cer cells. Those effectors are supposed to be NK (natural killer) cells, cytotoxic $T$ cells, and activated
macrophages, etc. Analyzing the model mathematically, we study the qualitative properties of the
biological phenomena related to immune response, and we are aiming at explaining an extraordinary
phenomenon such as the suturation of immune effectiveness, from the viewpoint of model theory.
In our previous research [6] we introduced the immigration rate $q>0$ (a positive constant) as the
cytotoxic intensity of effectors against cancer. In the present paper we improve this point and propose
a more elaborate model that can describe the effects by those effectors, depending on the location
in accordance with the environmental changes. We finally consider the extinction property of the
proposed model, which corresponds to a key physiological phenomenon of immune response relative
to the effectors.

本研究の目的はがん細胞に対する免疫反応を記述する数理モデルの構築にある．がん細胞に対する数理モ
デリングの手法は，大雑把に言って確定モデルか確率モデルによる記述の 2つに大別される．ここではが
ん細胞の免疫応答を後者の立場に基づき分枝粒子系の数理モデルとして提案し，免疫能の働きをその極限
の超過程の消滅性の反映として捉える．通常細胞が何らかの要因で形質転換して細胞のがん化過程が進行
する．それに対して免疫細胞群は免疫応答作用することで，生体防御の重要な役割を担っている．細胞の
形質転換期及びがん化細胞の無秩序増殖期における免疫応答に焦点を当て，NK 細胞，キラー T細胞，マク
ロファージなどのエフェクターによるがん細胞に対する細胞障害性の働きを記述する確率モデルを提案し，
そのモデルを数理的に解析することにより，免疫作用に関わる現象の定性的性質や特異現象に対するモデ
ル論的な説明を補助的に提供することを目指す．前研究 [6] においては，エフェクターのがんへの細胞障害
性の強さを移入率 $q>0$ (正定数) として導入した．本研究ではこの点を改良して，場所ごとに異なり個
体ごとの環境変化に応じたエフェクター効果を記述出来るモデルに関して，キーとなる生理現象に対応す
る消滅性について考察する．

1 Introduction
We are aiming at mathematically modelling the immune resonse against cancer cells. Ordinarily, some

of normal cells are transformed into irregular ones by several reasons, such as chemicals, carcinogens, car-
cinogenic virus and bacteria, DNA replication error, DNA repair disorder, chromosomal end centromere
disorder, radiation and so on, and the tumorigenic process proceeds. In concord with that, a group of
immune cells invoke the immune response against canceration, accomplishing an important errand of
host-defense mechanism in the living body. The effectors are supposed to be NK (naturak killer) cells,
cytotoxic $T$ cells, and activated macrophages, etc. We focus especially on the immune response both in
the transformation period of cell and in the proliferation period of cancerated cell, and propose a random
model that is able to describe the cytotoxic effects by a bunch of effetors against cancer cells. Analyzing
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the model mathematically, we provide with a complementary explanation of qualitative properties and
peculiar phenomena relative to immune actions from the viewpoint of modelling theory.
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図 1: A group of effectors

Recently the system biological researches on cancer have made a remarkable progress, cf. Wang (2010)

[16]. Accompanying this rapid progress, the modelling theoretical researches, simulation and numerical
analysis have become in full activity now, that are driving for illuminating the biological dynamism of
cancer cells and mechanism of cancer-specific phenomena, based upon the standpoint of mathematical
physiology, cf. Wodarz and Komarova (2005) [18]. In this paper we may adopt stochastic modelling ap-
proach [14] to grasp the immune response against cancer as a mathematical model of branching particle
system, and to consider the effectiveness of immunity as a reflection of extinction property on superpro-
cesses. In [1] we considered a formulation of catalytic processes applicable to filaments and catalysts in
physiology and biochemistry, and studied asymptotic behaviours of solutions to related equations. While,

in [2] we investigated a special class of stochastic processes related to chemical reaction of the medicinal,

and proved the existence and uniqueness theorem for measure-valued processes which is able to describe
the increase or decrease of a branching particle system in number according to whether the environment
is good or not.

2 Prerequisite from immunobiology

2.1 Network of immune system

The immune system in the living body is regulated by the effector-induction protocol. It is known that
various kind of effectors (such as $T$ cells, $B$ cells, NK cells, NKT cells, dendritic cells, and macrophages,

etc.) form a very complicated network, and that there is a possibility that it provokes a positive and$/or$

negative immune response for/against cancer cells. Our main concern is antitumor immune response,

and NK cells, NKT cells and $T$ cells have to do with the immune surveillance for cancerated cells. On
the other hand, the same bunch of immune cells reveal antitumor immune effects against swollen cancer
cells. The dendritic cell works as an antigen-presenting cell (APC) in the living body, that is to say, it
processes a tumor antigen, activates an antitumor $T$ cell, and plays an important role in urging a CTL
to propagate. The macrophage is an immune cell which possesses a strong cytotoxicity, however in the
living body with a kind of cancer it works as an immune suppressor or as an antitumor effector according

to the physiological situation there. More precisely, in the network of immune system, first of all a cancer
cell with tumor antigen is taken in by a professional APC with phagocytosis, then the APC presents a
cancer antigen to a CD$8+T$ cell via a co-stimulatory molecule with the help of CD$4+$ helper $T$ cell, while
the CD$8+T$ cell will be able to recognize the antigen via conjugation with co-receptor, being urged to

specialize into a CTL by a small cloud of cytokines emitted by a CD$4+$ helper $T$ cell. When the specified
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CD$8+T$ cell next encounters a cancer cell with the same antigen, then the CTL may recognize it as a
target and executes a killing of the cancer cell by cytotoxicity [13].
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図 2: Induction and effectual phase of CTL

2.2 Monoclonal antibody and antitumor immune response

Generally, the monoclonal antibody is produced by an immortalized hybridoma $(=$ a sort of hybrid
cell) which is an antibody-forming cell ( $=B$ cell) of target antigen-immunized mouse, amalgamated with
a special myeloma cell. The monoclonal antibody is much more specific than the blood serum antibody
(or polyclonal antibody), moreover there is a merit that it is possible to produce largely uniform and
identically specific antibodies. This cell fusion technique applied to this production of hybridoma was
established in 1975 by G. K\"ohler and C. Milstein, and they won the Nobel Prize in Physiology and
Medicine in 1984 for this exploit. Recently plenty of attempts have been made that the human-type
monoclonal antibody produced from human cells is used to the cure for cancer. For instance, outstanding
antitumor effects have been recently confirmed for two exceptional antibodies among monoclonal anti-
bodies produced from human-cancer-cell-immunized animals of different species, such as the antibody of
Her2 of breast cancer and antibody of CD20 of lymphoma, see e.g. the report of JACI (2011) [11].

The elucidation of molecular biological mechanism for antitumor immune response has been rapidly
promoted in these days. However, it is certain that the actual situation is really complicated, and also
that the unknown parts are not few. A group of immune cells (such as dendritic cells, NK cells, NKT
cells, and macrophages) carries the innate immune response on its back in the early stage, and induces
the acquired (adaptive) immune response of $T$ cells and $B$ cells being a system with high output rate
by antigen-specified proliferation, through the secretion of cytokines and the presentation of antigen.
Although the antitumor effect is observed in the administration of monoclonal antibody via mouse, it
is not clear unexpectedly what the antitumor immunity via antibodies produced by the patient means
in fact. The $T$ cell plays an extremely important role for tumor rejection in plenty of animal tumor
models and human malignant melanoma [15]. In the immune response of $T$ cell, the $T$ cell receptor
specifically recognizes the tumor antigen peptide-MHC complex on the cancer surface, and the $T$ cell
secretes cytokines and injures the cancer cell directly. There are two kinds of $T$ cells in the class of
tumor-reactive $T$ cells; one is the CD$8+T$ cell that recognizes the MHC class I-peptide complex, and
the other is the CD$4+T$ cell that recognizes the MHC class II-peptide complex. The CD$8+T$ cell has
to do directly with the recognition of cancer cell. On the other hand, the CD$4+T$ cell has to do with
the induction and maintenance of CD$8+T$ cell, and is also concerned with the effector-activation of
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macrophage and the collection or wandering interception of antitumor CD$8+T$ cell within the tumor

area, see also e.g. Murphy et al. (2008) [12].
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図 3: Antitumor cytotoxicity of $T$ cell

2.3 Tumor escape mechanism

It is reported that the cancer cell possesses the so-called escape mechanism $hom$ various kinds of

immune responses. Since the cancer cell has malfunction in the molecule that is concerned directly with

antigen recognition by $T$ cell, the cancer cell is capable to escape $hom$ the immune surveillance without

recognition by $T$ cell. For example, the malfunction in the molecule can be found in tumor antigen,

MHC, $\beta 2$ micro-globulin, and various molecules related to the antigen processing.
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Furthermore, the cancer cell is able to intercept the action of immunity by promoting the secretion of
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immune suppressors. Those suppressors are, for instance, $TGF-\beta$ and IL-10 secreted from the cancer,
and IL-6 and PGE2 emitted from the macrophage (which is urged to secrete by the cancer cell). Except
the above avoidance, we can list below some other factors: weakening of Thl response by Th2 displace-
ment, signal transduction disorder of $T$ cell, induction of tumor-antigen-specific immunological tolerance,
induction of antitumor immune suppressive $T$ cell, $T$ cell apoptosis induction by $FasL$ appearance on a
cancer cell, local environment that intercepts collection of $T$ cells in the tumor tissue, and so on. See e.g.
Weinberg (2007) [17]; see also [15].
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図 4: Mechanism of antitumor effectors

3 Random model for immune response
3.1 Proliferation process of cancer cells

When the tumorigenic process proceeds, normal cells are transformed into irregular ones by some
reasons and are cancerated, and they repeat disorder proliferation peculiar to the cancer because of
continual emission of false proliferation signals by malfunctioned oncogenes and tumor suppressor genes.
On the other hand, the cancer cell is preyed or destroyed by effectors (a group of immune cells such as
NK cells and so on) by virtue of the immune surveillance mechanism in a living body. Then, taking them
all into consideration, we introduce the natural number valued random variable $N_{n}$ : $\Omegaarrow \mathbb{N}$ for each $n$ ,
which means the total number of cancer cells in the n-th generation. We assume that there is a sequence
$\{\gamma_{n}\}_{n}$ of positive numbers such that

$\gamma_{n}arrow\gamma\in \mathbb{R}+$ $(narrow\infty)$

and also that
$E[ \xi_{n}]=1+\frac{\gamma_{n}}{n}$ , $Var(\xi_{n})=\sigma_{n}^{2}arrow\sigma^{2}$ $(narrow\infty)$

where $\xi_{n}$ is the number of offsprings generated by the n-th generation. This implies that the branching
particle system has a clear tendency to increase in number. When we suppose that for each cell, the
proliferation or division occurs independently at a random time, we introduce the branching rate $n\lambda$

$(\lambda>0)$ , which means the accelerated increase rate for the number of cancer cells. We adopt a model by
a branching particle system as a proliferation process for cancer.
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図 5: hajectories of branching process

3.2 Spatial movement of cancer

Since we have only to describe the immune response in a locally limited tissue, the region in question

is restricted to a comparatively small area. So that, it suffices to consider the model in a bounded domain
$D\subset \mathbb{R}^{d}$ with $d=3$ . For $N_{n}$ pieces of cancer cells in the n-th generation, each cancer cell is sopposed to

start at the initial point $x_{i}^{(n)}\in \mathbb{R}^{d}(i=1,2, \ldots, N_{n})$ . While, it is considered that the target cell $(=$ the

cancer cell) moves little in the early stage, namely in the transformation period of cell, and also that in

the proliferation period of cancerated cell it may diffuse and expand as if the liquid should seep through

a leather bag because of a superfluity of proliferated cancer cells. Hence, we regard it as a diffusion with

diffusion coefficient $k(\epsilon)$ depending on a small parameter $\epsilon(>0)$ . The diffusion operator is defined as $L_{\epsilon}$

$=k(\epsilon)\Delta$ , where $\Delta$ is the Laplacian.

図 6: Various kinds of cancer cells

3.3 Cytotoxicity of effectors

In our model the effectors are supposed to be NK cells, killer $T$ cells, macrophages among a group
of immune cells, and we will take the cytotoxicity of these effectors against cancer into account. In the

previous paper [6], the previous report [4] or the previous announcements [3] (see also [5]), we introduce
a deterministic emigration rate $q(>0)$ (a positive constant) in the terminology of the theory of stochastic
processes, which expresses the intensity of cytotoxicity by effectors against cancer. Although one may find

it interesting as the first random model, it is not necessarily desirable to treat it like a simple and poor

model, in order to imitate the effects of immune response by effectors against cancer from the viewpoint

of the modelling theory as well as $hom$ the standpoint of future simulation analysis. In this article we
improve this point and propose a more elaborate model, which can describe the effects by those effectors,
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depending on the location in accordance with the environment changes. There are three methods in the
improvement. That is, it means that instead of the positive constant $q$ , we adopt a (random) function $q$

like:
(i) $q(x),$ $x\in D$ ; (ii) $q(\omega)$ or $q(\omega, x),\omega\in\Omega$ ; (iii) $q(t, \omega),$ $\omega\in\Omega$ .

In the model (i) the intensity of cytotoxicity $q$ depends on the location $x\in D$ , which means that the
intensity $q(x)$ varies as the environment changes, and it strengthens or weakens according to the good
or bad environment. In the second new model the parameter $\omega$ expresses the environmental change
independent of the sample $\omega’$ which comes $hom$ the original stochasticity of the branching model. The
latter case $q(\omega, x)$ just corresponds to the case $q(\omega)$ depending on the location. In the model (iii) the time
evolution of $q(\omega)$ can also be described. As a matter of fact, we can realize it as the choice of branching
rate $\alpha(x)$ and branching mechanism $\beta(x)$ depending on the location $($or $\omega,$ $t)$ , for example.

3.4 Superprocess under the limiting procedure

Under the above-mentioned settings, we propose a random model for the target cancer cells:

$X_{t}^{(n)}= \frac{1}{n}.\sum_{i=1}^{N_{n}(t)}\delta_{x_{t}^{(n)}(t)}$ (1)

where $x_{i}^{(n)}(t)$ is the location of the i-th cancer cell in the n-th generation at time $t$ , and $N_{n}(t)$ denotes
the total number of cancer cells alive at time $t$ . Eq.(l) is the quantity related to an empirical measure,
expressing the state of the cancer at time $t$ . For instance, the qualitative property of a random walk is
well reflected by its limiting process, say, the Brownian motion. Likewise, the qualitative property of an
aggregate of cancer cells can be thought to be reflected by its limiting process $X_{t}$ . On this account, we
will analyze the superprocess $X_{t}$ in what follows.

4 Analysis on the limiting process
Let $C=C(\mathbb{R}^{d})$ be the space of continuous functions on $\mathbb{R}^{d}$ . When $C_{b}$ denotes the set of bounded

continuous functions on $\mathbb{R}^{d}$ , then $C_{b}^{+}$ is the set of positive members $g$ in $C_{b}$ . Let $\langle\mu,$ $f \rangle=\int fd\mu$ ,
and $M_{F}=M_{F}(\mathbb{R}^{d})$ is the space of finite measures on $\mathbb{R}^{d}$ . We denote an $L_{\epsilon}$-diffusion process by $\Xi=$

$\{\xi, \Pi_{s,a}, s\geq 0, a\in \mathbb{R}^{d}\}$ . Then $K\equiv K(dr)$ is the associated continuous additive functional (CAF),
and we assume that $K$ lies in the Dynkin locally admissible class of CAF, and we write it as $K\in$ IK$\eta$

(some $\eta>0$). Then a superprocess $X=\{X, P.,\mu, S\geq 0, \mu\in M_{F}\}$ with branching rate functional $K$ (
or $(L, K, \mu)$-superprocess) can be characterized as a continous $M_{F}$-valued time-inhomogeneous Markov
process $X=\{X_{t}\}$ with Laplace functional

$\mathbb{P}_{s,\mu}e^{-\langle X_{t},\varphi\rangle}=e^{-(\mu,v(s,t)\rangle}$ , $0\leq s\leq t$ , $\mu\in M_{F}$ , $\varphi\in C_{b}^{+}$ .

Here the function $v$ is uniquely determined by the log-Laplace equation

$\Pi_{s,a}\varphi(\xi_{t})=v(s, a)+\Pi_{s,a}\int_{s}^{t}v^{2}(r, \xi_{r})K(dr)$ , $0\leq s\leq t$ , $a\in \mathbb{R}^{d}$ .

We need Dynkin’s Historical Superprocess. $\mathbb{C}=C(\mathbb{R}_{+}, \mathbb{R}^{d})$ denotes the space of continuous paths on $\mathbb{R}^{d}$

with topology of uniform convergence on compact subsets of $\mathbb{R}+\cdot$ To each $w\in \mathbb{C}$ and $t>0,$ $w^{t}\in \mathbb{C}$

expresses the stopped path of $w$ , and $\mathbb{C}^{t}$ is the totality of all these paths stopped at time $t$ . To every
$w\in \mathbb{C}$ , putting $\tilde{w}_{t}=w^{t}$ , $t\geq 0$ , we associate the corresponding stopped path trajectory $\tilde{w}$ . The
image of L.-diffusion $w$ under the map : $w\mapsto\tilde{w}$ is called the $L\epsilon$-diffusion path process. We define
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$\mathbb{C}_{R}^{\cross}\equiv \mathbb{R}+\cross \mathbb{C}\wedge=\{(s, w) : s\in \mathbb{R}_{+}, w\in \mathbb{C}^{\epsilon}\}$ . We consider the set $M(\mathbb{C}_{R}^{x})\equiv M(\mathbb{R}+\cross \mathbb{C})\wedge$ of measures $\gamma$ on
$\mathbb{R}+\cross \mathbb{C}\wedge$ which are finite, if restricted to a finite time interval. Suppose that $K$ is a positive CAF of $\xi$ .

Then Dynkin’s historical superprocess (1991)

$\tilde{X}=\{\tilde{X},\tilde{\mathbb{P}}_{s,\mu}, s\geq 0, \mu\in M_{F}(\mathbb{C}^{8})\}$

is defined as a time-inhomogeneous Markov process with state $\tilde{X}_{t}\in M_{F}(\mathbb{C}^{t}),$ $t\geq s$ , with Laplace

functional

$\tilde{\mathbb{P}}_{s,\mu}e^{-(\overline{X}_{l},\varphi\rangle}=e^{-(\mu,v(\epsilon,t)\rangle}$ $0\leq s\leq t$ , $\mu\in M_{F}(\mathbb{C}^{\epsilon})$ , $\varphi\in C_{b}^{+}(\mathbb{C})$

where $v$ is uniquely determined by the log-Laplace type equation

$\tilde{\Pi}_{s,w_{\delta}}\varphi(\tilde{\xi}_{t})=v(s, w_{s})+\tilde{\Pi}_{\epsilon,w_{s}}l^{t}v^{2}(r,\tilde{\xi}_{r})K(dr)$ , $0\leq s\leq t$ , $w_{8}\in \mathbb{C}^{8}$ .

Theorem 1. Let $K\in K^{\eta}$ and $\mu\in M_{F}$ with compact support. Then there enists an $(L, K, \mu)$ -superprocess

$X=\{X, \mathbb{P}_{s,\mu}, s\geq 0, \mu\in M_{F}\}$

with branching rate functional $K$ .

Theorem 2. There exests a Dynkin’s historical superprocess

$\tilde{X}=\{\tilde{X},\tilde{\mathbb{P}}_{\epsilon,\mu}, s\geq 0, \mu\in M_{F}(\mathbb{C}^{8})\}$.

In the previous work [6] (see also [3-5]) we have recognized that the extinction property of superprocesses
is very important in the model theory. Especially as far as local extinction is concerned, it is of extreme
interest and importance because it just corresponds to the situation that the cancer cells are expelled

locally from the cancerated area by the immune effects of effectors.
Since the initial measure $\mu\in M_{F}$ has a compact support, it follows from the argument of compact

support property (cf. Dawson-Mueller : Ann Prob 23 (1995)) that the range $\Re(X)$ of $X$ is compact.

Under the historical superprocess setting $\tilde{X}_{t}(dw)$ , we define

$\mathbb{C}_{M}=\{w\in \mathbb{C}:|w_{8}|<M, \forall s\geq 0\}$

for $M\geq 1$ . By the compact support property, we have

$\lim_{Karrow\infty}\inf_{t\geq 0}\tilde{\mathbb{P}}_{0,\mu}(supp(\tilde{X}_{t})\subseteq \mathbb{C}_{M})=1$ , $\mathbb{P}-$ a.a. $\omega$ .

Proposition 3. For $K\in K^{\eta}$

$\lim_{tarrow\infty}\overline{\mathbb{P}}_{0,\mu}(\tilde{X}_{t}\neq 0$, and $supp(\tilde{X}_{t})\subseteq \mathbb{C}_{M})=0$.

Finally, through the projection technique (cf. Dawson-Perkins (1991); D\^oku (2003)) we obtain

Theorem 4. (Extinction property) Let $d=1$ and $\mu\in M_{F}$ with compact support. Then

$\mathbb{P}_{0,\mu}$ ( $X_{t}=0$ for some $t>0$ ) $=1$ .
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