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Self organization of two-dimensional and geophysical turbulent flows is of paramount importance
for atmosphere and ocean applications. Following Onsager, we explain why statistical mechanics
can explain and predict these phenomena. The most recent theoretical developments in statistical
mechanics use large deviation theory as a fundamental tool. We present large deviation results for
both equilibrium and non-equilibrium problems for two-dimensional turbulent flows.

I. INTRODUCTION

Self-organization of two-dimensional and geophysical flows

Atmospheric and oceanic flows are three-dimensional (3D), but are strongly dominated by the Coriolis
force and mainly balanced by pressure gradients (geostrophic balance). The turbulence that develops in
such flows is called geostrophic turbulence. Models describing geostrophic turbulence have the same type of
additional invariants as those of the two-dimensional (2D) Euler equations. As a consequence, energy flows
backward and the main phenomenon is the formation of large scale coherent structures (jets, cyclones and
anticyclones). One such example is the formation of Jupiter $s$ Great Red Spot, Fig. 1.
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FIG. 1. Picture of Jupiter‘s Great Red
FIG. 2. Figure taken from [1] showing random transitions$d$ it.Spot - a large scale vortex situated between
between meta-stable orientations $0$ te magnetic $e$ $\ln$$f$ the ma netic field $i$

bands of atmospheric jets. Photo courtesy of
an experimental turbulent dynamo. $e$ main azimut abulent $d$ namo. The main azimuthalNASA: http://photojournal.jpl.nasa.gov/catalog
component of the magnetic field is shown in red./PIA00014.

The analogy between $2D$ turbulence and geophysical turbulence is further emphasized by the theoretical
similarity between the $2D$ Euler equations, describing $2D$ flows, and the layered quasi-geostrophic or shallow
water models, describing the largest scales of geostrophic turbulence: both are transport equations for a
scalar quantity by a non-divergent flow, conserving an infinite number of invariants.

The formation of large scale coherent structures is a fascinating problem and an essential part of the
dynamics of Earth $s$ atmosphere and oceans. This is the main motivation for setting up a theory for the
self-organization of $2D$ turbulence.
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Statistical mechanics of the self-organization of two-dimensional and geophysical flows: Onsager’s
route

Any turbulence problem involves a huge number of degrees of freedom coupled via complex nonlinear
interactions. The aim of any theory of turbulence is to understand the statistical properties of the velocity
field. It is thus extremely tempting to attack these problems from a statistical mechanics point of view.

Statistical mechanics is indeed a very powerful theory that allows us to reduce the complexity of a sys-
tem down to a few thermodynamic parameters. As an example, the concept of phase transition allows us
to describe drastic changes of the whole system when a few external parameters are changed. Statistical
mechanics is the main theoretical approach we develop in this proceeding. It succeeds in explaining many of
the phenomena associated with $2D$ turbulence [2].

This may seem surprising at first, as it is a common belief that statistical mechanics is not successful in
handling turbulence problems. The reason for this belief is that most turbulence problems arc intrinsically
far from equilibrium. For instance, the forward energy cascade in $3D$ turbulence involves a finite encrgy
dissipation, no matter how small the viscosity (anomalous dissipation) (see for instance Onsager $s$ insightful
consideration of the non-conservation of energy by the $3D$ Euler equations [3] $)$

As a result of the finite energy flux, the flow cannot be considered close to some equilibrium distribution.
By contrast, $2D$ turbulence does not suffer from the anomalous dissipation of the energy, so equilibrium
statistical mechanics, or close to equilibrium statistical mechanics makes sense when small fluxes are present.

The first attempt to use equilibrium statistical mechanics ideas to explain the self-organization of $2D$

turbulence arise from Onsager in 1949 [4] (see [3] for a review of Onsager $s$ contributions to turbulencc
theory). Onsager worked with the point-vortex model, a model made of singular point vortices, first uscd by
Lord Kelvin and which corresponds to a special class of solutions of the $2D$ Euler equations. The equilibrium
statistical mechanics of the point-vortex model has a long and very interesting history, with wonderful pieces
of mathematical achievements [4-11].

The generalization of Onsager $s$ ideas to the $2D$ Euler equations with a continuous vorticity field, tak-
ing into account all invariants, has been proposed in the beginning of the $1990s[12-15]$ , leading to the
$Robert-Sommeria$-Miller theory (RSM theory). The RSM theory includes the previous Onsager theory and
determines within which limits the theory will give relevant predictions and results.

Over the last fifteen years, the RSM equilibrium theory has been applied successfully to a large class of
problems, for both the $2D$ Euler and quasi-geostrophic equations. This includes many interesting applications,
such as the predictions of phase transitions in different contexts, a model for the Great Red Spot and other
Jovian vortices, and models of ocean vortices and jets. A detailed description of the statistical mechanics of
$2D$ and geophysical flows and of these applications is presented in the review [2].

For statistically stationary turbulent flows, power input through external forces balance energy dissipation
on average. In the limit of very small forces and dissipation, compared to conservative terms of the dynamics,
it is expected to find a strong relation between these non-equilibrium flows and some of the states predicted
by equilibrium statistical mechanics. In order to give a precise meaning to this general idea, and to deal
with far from equilibrium situations, it is essential to develop a non-equilibrium statistical mechanics. As we
discuss below, this has been the subject of recent key advances in the applications of statistical mechanics to
turbulent flows.

A contemporary approach to statistical mechanics: large deviation theory

At the time he was scientifically active, Onsager made a large number of decisive contributions to statistical
mechanics theory: solutions of the $2D$ Ising model, reciprocity relations, contributions to the statistical
mechanics of electrolytes and turbulence, and so on. Since that time the theoretical approaches for treating
statistical mechanics problems have been completely renewed. One of the main changes has becn the use of
the language of large deviation theory in more than 20 years. For instance, recent results in the understanding
of equilibrium statistical mechanics problems, proving fluctuations theorems (Onsager $s$ reciprocity relations
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generalized far from equilibrium), and in dealing with non-equilibrium statistical mechanics problems, are all
large deviation results.

Interestingly, as is discussed in this proceeding, the route proposed by Onsager in his 1949 paper [4], in
order to understand the self-organization of two-dimensional flows, lcd a few decades later to some of the
first applications of large deviation theory to equilibrium statistical mechanics problems.

The theory of large deviations concerns itself with the asymptotic behaviour of the exponcntial decay of
the probabilities of rare or extreme events. The associated limiting parameter is usually taken to be thc
number of observations or particles, but can be other parameters, such as vanishing noise or the temperaturc
of a chemical reaction, or large time. Large deviation theory can be considered a generalization of thc
central limit theorem, but with the refinement of including information about the behaviour of the tails of
the probability density. The main result of large deviation theory is the large deviation principle, a result
describing the leading asymptotic behaviour of the tails or large deviations of the probability distribution in
the limit $Narrow\infty$ . For instance, the large deviation principle for a random variable $S_{N}$ is

$\lim_{Narrow\infty}-\frac{1}{N}\log[P(X_{N}=x)]=I(x)$ , (1)

where $P$ is the probability density for the random variable $X_{N}$ , and $I(x)$ is called the rate function. For
instance, if $X_{N}=(1/N) \sum_{i=1}^{N}x_{i}$ , where $x_{i}$ are independent identically distributed random variables then
$I(x)$ is given by Cram\’er $s$ theorem.

The aim of this proceeding is to explain and derive heuristically large deviation results for the equilibrium
statistical mechanics of the $2D$ Euler equations (equilibrium) and for the $2D$ Navier-Stokes equations with
stochastic forces (non-equilibrium). In the equilibrium case, the large deviation results provide an explanation
of the mean field variational problem that has been extensively discussed during the RIMS-workshop hcld in
Kyoto in 2011. In this case, the rate function is then related to the entropy of the macrostates.

Large deviation theory in $2D$ turbulence, the equilibrium mean fleld variational problem, and the
probability of rare events for non-equilibrium situations

The first large deviation results in $2D$ turbulence have been obtained in the context of the RSM theory
for the $2D$ Euler equations. Michel and Robert [16] have studied the large deviation of Young measures and
have suggested that the entropy of the RSM theory is the analogue of a large deviation rate function. By
considering a prior distribution for the vorticity invariants, in a framework where the invariants are considered
in a canonical ensemble rather than in a microcanonical one, Boucher and collaborators [17] have given a
derivation of a large deviation result based on finite dimensional approximations of the vorticity field.

We present in section III a heuristic construction of microcanonical invariant measures for the $2D$ Euler
equations. This construction primarily follows the initial ideas of the previous works [16, 17], but is much
more simplified. Moreover, for pedagogical reasons, the reading of this heuristic presentation does not imply
any knowledge of large deviation theory and avoids any technical discussion. These measures are constructed
using finite dimensional approximation of the vorticity field, where $N^{2}$ is the number of degrees of freedom.
$N^{2}$ is then the large deviation parameter and the entropy appears as the analogue of the large dcviation rate
function, defined up to a constant.

In order to state the main result discussed in section III, let us define $p(x, \sigma)$ as the local probability to
observe vorticity values equal to $\sigma$ at point $x:p(x, \sigma)=(\delta(\omega(x)-\sigma))$ , where $\delta$ is the Dirac delta function.
We consider averaging $\langle\cdot\rangle$ over the microcanonical measure. Then the large deviation rate function for $p(x, \sigma)$

is $S(E_{0})-S\lceil p,$ $E_{0}]$ where

$S|p,$ $E_{0}]=\{\begin{array}{ll}\ovalbox{\tt\small REJECT}|p]\equiv \int_{9} dx \sum_{k}p_{k}\log p_{k} if \mathcal{N}[p]=1, \forall kA[\rho_{k}]=A_{k}, and \mathscr{E}[\overline{\omega}]=E_{0}-\infty otherwise,\end{array}$ (2a)

and

$S(E_{0})=$ $\sup$ $\{\ovalbox{\tt\small REJECT}[\rho]|\mathscr{E}[\overline{\omega}]=E_{0}, \forall kA[p_{k}]=A_{k}\}$ , (2b)
$\{p|N[p]=1\}$
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with $E_{0},A_{k}$ and $\mathcal{N}$ , the energy, the vorticity distribution, and the probability normalization defincd in section
III respectively.

The interpretation of this result is that the most probable value for the local probability is the maximizer
of the variational problem (2b), and that the probability to observe a departure from this most probable
state is exponentially large, with parameter $N^{2}$ and rate function (2a). Furthermore, the classical mean field
equation for the streamfunction $\psi$ can be derived from (2a), as discussed in reference [18].

From a historical perspective, it is interesting to note that Onsager considered the point vortex model
rather than the $2D$ Euler equations, in order to properly define the microcanonical measurc without having
to deal with the mathematical aspects of defining measures over functional spaces. Large deviation results
for equilibrium measures have also been derived recently for the point vortex model. Starting from either
canonical measures, or approximate microcanonical measures for the system of $N$ point vortices, a series of
mathematical papers have proven that when $Narrow\infty$ , the one particle distribution function converges to thc
solution of a mean-field variational problem [6, 7, 10], as was first guessed by physicists [5]. This type of
mean field variational problem was one of the main subjects of the RIMS-workshop held in Kyoto in 2011.
The rate of this convergence, and the study of the probability of departures from this mean field equilibrium
is given by a large deviation result proven in [19].

The current perspective of the statistical mechanics of $2D$ turbulent flows is to develop a non-equilibrium
statistical mechanics theory. As a major progress in this direction, we discuss in section IV the application of
large deviation theory to the $2D$ stochastically forced Navier-Stokes equations. In this situation, we consider,
as an example, the large deviation approach to the stationary probability $P_{s}$ of observing a state $\omega$ . In this
case, we can derive a large deviation result which describe the probability of large energy states. The encrgy
$E$ is then the large deviation parameter

$\lim_{Earrow\infty}-\frac{1}{E}1og(P_{s})=\alpha\int_{9}$ dx $\omega_{1}^{2}$ . (3)

The right-hand side of Eq. (3) is proportional to the enstrophy of the final state, and is analogous to the ratc
function $I(x)$ .

The article is laid out as follows: In section II, we state the equations of motion and discuss the basic
properties associated to them. In section III, we construct microcanonical invariant measures for the $2D$ Eulcr
equations and discuss the entropy maximization problem in predicting the most probably steady states on
the $2D$ Euler equation. In section IV, we discuss large deviations for non-equilibrium problems and illustrate
this using a simple academic example followed by the application to the $2D$ Navier-Stokes equations.

II. THE $2D$ EULER AND STOCHASTIC NAVIER-STOKES EQUATIONS

Equations of motion

The aim of this section is to present the equations of motion for describing $2D$ and geophysical turbulent
flows, described by the $2D$ Navier-Stokes equations with stochastic forcing. In the limit when forcing and
dissipation goes to zero, the $2D$ Navier-Stokes equations reduce to the $2D$ Euler equations. We will give some
details on the special properties that both of these equations have and how they influence the dynamics.

Equilibrium statistical mechanics can be used to predict the most probable macrostate in which the flow
will self-organize for the $2D$ Euler equations. This form of equilibrium statistical mechanics is known as
the RSM theory [13, 15]. Unfortunately, this theory cannot be applied for non-equilibrium systems where
forcing and dissipation are present. Instead, we plan on utilizing large deviation theory to gain insight into
the non-equilibrium behaviour of these systems.

We are interested in the non-equilibrium dynamics associated to the $2D$ stochastically forced Navier-Stokes
equations on a periodic domain $\mathscr{D}=[0,2\delta\pi)\cross[0,2\pi)$ with aspect ratio $\delta$ :

$\frac{\partial\omega}{\partial t}+v\cdot\nabla\omega=-\alpha\omega+\nu\Delta\omega+\sqrt{2\alpha}\eta$ , (4a)

$v=e_{z}\cross\nabla\psi$ , $\omega=\Delta\psi$ , (4b)
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where w, v and $\psi$ are respectively the vorticity, the non-divergcnt velocity and the streamfunction defined
up to a constant, which is set to zero without loss of generality. We have included an addition linear friction
$term-\alpha\omega$ to describe large scale dissipation. We consider non-dimensional equations, where a typical energy
is of order 1 (see [2]) such that $\nu$ is the inverse of the Reynold $s$ number and $\alpha$ is the inverse of a Reynold $s$

number based on the large scale friction. We assume that the Reynold $s$ numbers satisfy $\nu\ll\alpha\ll 1$ . In the
limit of weak forcing and dissipation: $\lim_{\alphaarrow 0}\lim_{\nuarrow 0}$ , the $2D$ Navier-Stokes equations converge to the $2D$

Euler equations for finite time, but the type of forcing and dissipation determines to which set of attractors
the dynamics evolve to over a very long time. The curl of the forcing $r,(x.t)$ is a white in time Gaussian
field defined by $\langle\eta(x, t)\eta(x’, t’)\rangle=C(x-x’)\delta(t-t’)$ , where $C$ is the correlation function of a stochastically
homogeneous noise.

The $2D$ Euler equations are given by Eq. (4) with forcing and dissipation set to zero, i.e. when $\alpha=\nu=0$ .
The kinetic energy of the flow is given by

$\mathscr{E}[\omega]=\frac{1}{2}\int_{\mathscr{D}}$ dx $v^{2}=\frac{1}{2}\int_{\mathscr{D}}$ dx $( \nabla\psi)^{2}=-\frac{1}{2}\int_{\mathscr{D}}$ dx $\omega\psi$ ,

where the last equality is obtained with an integration by parts. The energy is conserved, i.e. $d\mathscr{E}/dt=0$ ,
and is one of the invariants of the $2D$ Euler equations. The equations also conserve an infinite number of
functionals, named Casimirs. They are related to the degenerate structure of the infinite-dimensional Hamil-
tonian system and can be understood as invariants arising from Noether‘s theorem [20]. Thesc functionals
are of the form

$\mathscr{G}_{s}[\omega]=\int_{\mathscr{D}}$ $dx$ $s(\omega)$ , (5)

where $s$ is any sufficiently regular function. We note that 011 a doubly-periodic domain the total circulation
is zero:

$\Gamma=\int_{\mathscr{D}}$ $dx$ $\omega=0$ . (6)

These infinite number of conserved quantities are responsible for the equations having an infinite (continuous)
set of steady states (see section 2 in [2]). Physically, these states are important because some of them act as
attractors for the dynamics. Any of the infinite number of steady states of the $2D$ Euler equation satisfy

$v\cdot\nabla\omega=0$ .

For instance, there is a functional relation between the vorticity and the streamfunction, i.e. $\omega=\Delta\psi=f(\psi)$ ,
where $f$ is any continuous function then $v\cdot\nabla\omega=0$ . The specific function $f$ that is reached after a complex
evolution can be predicted in certain situation using equilibrium statistical mechanical arguments presented
in the next section (see [2] for more details).

III. EQUILIBRIUM STATISTICAL MECHANICS AND THE MEAN FIELD VARIATIONAL
PROBLEM AS A LARGE DEVIATION RESULT

In this section, we define precisely the macrocanonical measure for the $2D$ Euler equations and prove that
the entropy $S\lceil p,$ $E_{0}]$ is a large deviation rate function for $p$ . This justifies the mean field variational problem
(2b).

The conservation of the vorticity distribution

Due to the infinite number of conserved Casimirs, the $2D$ Euler equations conserve the distribution of
vorticity, i.e. the total area of a specific vorticity level set is conserved. We will begin by showing that this
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is indeed the case by considering a special class of Casimir (5):

$C( \sigma)=\int_{9}$ dx $H(-\omega+\sigma)$ , (7)

where $H(\cdot)$ is the Heaviside step function. The function $C(\sigma)$ returns the area occupied by all vorticity levels
smaller or equal to $\sigma$ . $C(\sigma)$ is an invariant for any $\sigma$ and therefore any derivative of $C(\sigma)$ is also conserved.
Therefore, the distribution of vorticity, defined as $D(\sigma)=C’(\sigma)$ , where the prime denotes a derivation with
respect to $\sigma$ , is also conserved by the dynamics. The expression $D(\sigma)d\sigma$ is the area occupied by the vorticity
levels in the range $\sigma\leq\omega\leq\sigma+d\sigma$ .

Moreover, any Casimir can be written in the form

$C_{f}[ \omega]=\int_{\mathscr{D}}d\sigma f(\sigma)D(\sigma)$ .

The conservation of all Casimirs, Eq. (5), is therefore equivalent to the conservation of $D(\sigma)$ .
The conservation of the distribution of vorticity levels, as proven above, can also be understood from the

equations of motion. We find that $D\omega/Dt=0$ , showing that the values of the vorticity field are Lagrangian
tracers. This means that the values of $\omega$ are transported through the non-divergent velocity field, thus
keeping the distribution unchanged.

Rom now on, we restrict ourselves to a K-level vorticity distribution. We make this choice for pedagogical
reasons, but generalization to a continuous vorticity distribution is straightforward. The K-level vorticity
distribution is defined as

$D( \sigma)=\sum_{k=1}^{K}A_{k}\delta(\sigma-\sigma_{k})$ , (8)

where $A_{k}$ denotes the area occupied by the vorticity value $\sigma_{k}$ . The areas $A_{k}$ are not arbitrary, their sum is
the total area $\sum_{k=1}^{K}A_{k}=|\mathscr{D}|$ . Moreover, the constraint (6), imposes the constraint $\sum_{k=1}^{K}A_{k}\sigma_{k}=0$ .

Microcanonical measure

In order to properly construct a microcanonical measure, we discretize the vorticity field on a uniform grid,
define a measure on the corresponding finite-dimensional space and take the limit $Narrow\infty$ . A uniform grid
has to be chosen in order to comply with a formal Liouville theorem for the $2D$ Euler equations [21, 22].

We denote the lattice points by $x_{ij}=(\frac{i}{N},N\perp)$ , with $0\leq i,$ $j\leq N-1$ and denote $\omega_{ij}\equiv\omega(x_{ij})$ to be the
vorticity value at point $x_{ij}$ . The total number of points is $N^{2}$ .

As discussed in the previous section, we assume $D( \sigma)=\sum_{k=1}^{K}A_{k}\delta(\sigma-\sigma_{k})$ . For this finite-N approximation,
our set of microstates (configuration space) is then

$X_{N}=\{’\cdot J^{N}=(\omega_{ij})_{0\leq i,j\leq N-1}|\forall i,j\omega_{ij}\in\{\sigma_{1},$
$\ldots,$

$\sigma_{K}\}$ , and $\forall k\#\{\omega_{ij}|\omega_{ij}=\sigma_{k}\}=N^{2}A_{k}\}$ .

Here, $\#(A)$ is the cardinal of set $A$ . We note that $X_{N}$ depends on $D(\sigma)$ through $A_{k}$ and $\sigma_{k}$ (see (8)).
Usil$lg$ the above expression we define the energy shell $\Gamma_{N}(E, \Delta E)$ as

$\Gamma_{N}(E, \triangle E)=\{\omega^{N}\in X_{N}|E_{0}\leq \mathscr{E}_{N}[\omega^{N}]\leq E_{0}+\triangle E\}$ ,

where

$\mathscr{E}_{N}=\frac{1}{2N^{2}}\sum_{i,j=0}^{N-1}v_{ij}^{2}=-\frac{1}{2N^{2}}\sum_{i,j=0}^{N-1}\omega_{ij}\psi_{ij}$ ,
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is the finite-N approximation of the system energy, with $v_{ij}=v(x_{ij})$ and $\psi_{ij}=\psi(x_{ij})$ being the discrctized
velocity field and streamfunction field, respectively. $\Delta E$ is the width of the energy shell. Such a finite width
is necessary for our discrete approximation, as the cardinal of $X_{N}$ is finite. Then the set of accessible energies
on $X_{N}$ is also finite. Let $\Delta_{N}E$ be the typical difference between two successive achievable energies. We then
assume that $\Delta_{N}E\ll\Delta E\ll E_{0}$ . The limit measure defined below is expected to be independent on $\Delta E$ in
the limit $Narrow$ oo.

The fundamental assumption of statistical mechanics states that each microstate in the configuration space
is equi-probable. By virtue of this assumption, the probability to observe any $nl$ ] $cros\cdot tate$ is $tl_{N}^{-1}(E0, \triangle E)$ ,

where $\Omega_{N}(E_{0}, \Delta E)$ is the number of accessible lnicrostates, is the cardinal of the set $\Gamma_{N}(E_{0}, \triangle E)$ . The
finite-N specific Boltzmann entropy is defined as

$S_{N}(E_{0}, \Delta E)=\frac{1}{N^{2}}\log\Omega_{N}(E_{0}, \Delta E)$ . (9)

The microcanonical measure is then defined through the expectation values of any observables $A$ . For any
observable $A[\omega]$ (for instance a smooth functional of the vorticity field), we define its finite-dimensional
approximation by $A_{N}[\omega^{N}]$ . The expectation value of $A_{N}$ for the microcanonical measure reads

$\langle\mu_{N}(E_{0}, \Delta E),$ $A_{N}[ \backslash \prime v^{N}]\rangle_{N}\equiv\langle A_{N}[\omega^{N}]\rangle_{N}\equiv\frac{1}{\Omega_{N}(E_{0},\Delta E)}\sum_{\omega^{N}\in\Gamma_{N}(E_{0},\Delta E)}A_{N}[\omega^{N}]$
.

The microcanonical measure $\mu$ for the $2D$ Euler equation is defincd as a limit of the finite-N measure:

$\langle\mu(E_{0}),$ $A[ \omega]\}\equiv\lim_{Narrow\infty}\langle\mu_{N}(E_{0}, \Delta E),$
$A_{N}[\omega^{N}]\rangle_{N}$ .

The specific Boltzmann entropy is then defined as

$S(E_{0})= \lim_{Narrow\infty}S_{N}(E_{0}, \Delta E)$ . (10)

The mean field variational problem as a large deviation result

Computing the Boltzmann entropy by direct evaluation of Eq. (10) is usually an intractable problem.
However, we shall proceed in a different way and show that this alternative computation yields the sal $Y1e$

entropy in the limit $Narrow\infty$ . We give heuristic arguments in order to prove that the computation of the
Boltzmann entropy Eq. (10) is equivalent to the maximization of the constrained variational problem (2b)
(called a mean field variational problem). This variational problem is the foundation of the RSM approach to
the equilibrium statistical mechanics for the $2D$ Euler equations. The essential message is that the entropy
computed from the mean field variational problem (2b) and from Boltzmann‘s entropy definition (10) arc the
equal in the limit $Narrow\infty$ . The ability to compute the Boltzmann entropy through this type of variational
problems is one of the cornerstones of statistical mechanics.

Our heuristic derivation is based on the same type of combinatorics arguments as the ones used by Boltz-
mann for the interpretation of its $H$ function in the theory of relaxation to equilibrium of a dilute gas. This
derivation doesn $t$ use the technicalities of large deviation theory. The aim is to actually obtain the large
deviation interpretation of the entropy and to provide a heuristic understanding using basic mathematics
only. The modem mathematical proof of the relationship between the Boltzmann entropy and the mean field
variational problem involves Sanov theorem.

Macrostates are set of microscopic configurations sharing similar macroscopic behaviors. Our aim is to
properly identify macrostates that fully describe the main features of the largest scales of $2D$ turbulent flow,

and then to compute their probability or entropy.
Let us first define macrostate through local coarse-graining. We divide the $N\cross N$ lattice into $(N/n)\cross(N/n)$

non-overlapping boxes each containing $n^{2}$ grid points ($n$ is an even number, and $N$ is a multiple of $n$). These
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boxes are centered on sites $(i,j)=(In, Jn)$ , where integers $I$ and $J$ verify $0\leq I,$ $J\leq N/n-1$ . The indices
$(I, J)$ label the boxes.

For any microstate $\omega^{N}\in I_{N}^{\urcorner}$ , let $f_{IJ}^{k}$ be the frequency to find the value $\sigma_{k}$ in the box $(I, J)$

$F_{IJ}^{k}( \omega^{N})=\frac{1}{n^{2}}\sum_{i=I-n/2+1}^{I+n/2}\sum_{J=J-n/2+1}^{J+n/2}\delta_{d}(\omega_{ij}-\sigma_{k})$ ,

where $\delta_{d}(x)$ is equal to one whenever $x=0$ , and zero otherwise. We note that for all $(I, J),$ $\sum_{k=1}^{K}F_{IJ}^{k}(\omega^{N})=$

1.
A macrostate $p_{N}=\{p_{IJ}^{k}\}_{0\leq I,J\leq N/n-1,1\leq k\leq K}$, is the set of all microstates $of_{\backslash }v^{N}\in X_{N}$ such that $F_{IJ}^{k}(\omega^{N})=$

$p_{IJ}^{k}$ for all $I,$ $J$ , and $k$ (by abuse of notation, and for simplicity, $p_{N}=\{p_{IJ}^{k}\}_{0\leq I,J\leq N/n-1,1\leq k\leq K}$ refers to
both the set of values and to the set of microstates having the corresponding frequencies). The entropy of
the macrostate is defined as the logarithm of the number of microstates in the macrostate

$S_{N} \lceil p_{N}]=\frac{1}{N^{2}}\log$ $(\#\{\omega^{N}\in X_{N}| for all I, J, and k, F_{IJ}^{k}(\omega^{N})=p_{IJ}^{k}\})$ . (11)

Following an argument by Boltzmann, it is a classical exercise in statistical mechanics, using combinatorics
and the Stirling formula, to prove that in the limit $N\gg n\gg 1$ , without taking into account of the area
constraints $A_{k}$ , the entropy of the macrostate would converge to

$S_{N}\lceil p_{N}]N\gg n\gg 1\sim\{\begin{array}{ll}\ovalbox{\tt\small REJECT}_{N}\lceil p_{N}]=- za \sum_{I,J=0}^{N/n1}\sum_{k=1}^{K}p_{IJ}^{k}\log p_{IJ}^{k} if \forall I, J, \mathcal{N}[p_{IJ}]=1-\infty otherwise,\end{array}$

where $\mathcal{N}\lceil p_{IJ}]\equiv\sum_{k}p_{IJ}^{k}$ . The area constraints are easily expressed as constraints over $p_{N}:A_{N}[p_{N}^{k}]\equiv$

$\frac{n^{2}}{N^{2}}\sum_{I,J=0}^{N/n-1}p_{IJ}^{k}=A_{k}$ and $\forall I,$ $J,$ $\mathcal{N}[p_{IJ}]=1$ . An easy generalization of the above formula gives

$S_{N}|p_{N}]_{N\gg n\gg 1}\sim\{\begin{array}{ll}\ovalbox{\tt\small REJECT}_{N}\lceil p_{N}] if \forall kA_{N}[p_{N}^{k}]=A_{k}-\infty otherwise.\end{array}$

In the theory of large deviation, this result could have been obtained using Sanov $s$ theorem. We now consider
a new macrostate $(p_{N}, E_{0})$ which is the set of microstates $\omega^{N}$ with energy $\mathscr{E}_{N}[\omega^{N}]$ verifying $E_{0}\leq \mathscr{E}_{N}[\prime v^{N}]\leq$

$E_{0}+\triangle E$ (the intersection of $\Gamma_{N}(E,$ $\Delta E)$ and $p_{N}$ ). For a given macrostate $p_{N}$ , not all microstates have the
same energy. The constraint on the energy thus can not be recast as a simple constraint on the macrostatc
$p_{N}$ . Then one has to treat the energy constraint in a more subtle way. The energy is

$\mathscr{E}_{N}[\omega^{N}]=-\frac{1}{2N^{2}}\sum_{i,j=0}^{N-1}\omega_{ij}^{N}\psi_{ij}^{N}$ .

The streamfunction $\psi_{ij}^{N}$ is related to $\omega^{N}$ through

$\psi_{ij}=\frac{1}{N^{2}}\sum_{i’,j’=0}^{N-1}G_{ij,i’j’}\omega_{ij’}^{N}$ ,

where $G_{ij,i’j’}$ is the Laplacian Green function in the domain $\mathscr{D}$ . In the limit $N\gg n\gg 1$ , the variations
of $G_{ij,i}$ ノ $j’$ for $(i’,j’)$ running over the small box $(I, J)$ are vanishingly small. Then $G_{ij,i’j’}$ can be well
approximated by their average value over the boxes $G_{IJ,I’J’}$ . Then

$\psi_{ij}\simeq\psi_{IJ}\equiv\frac{1}{N^{2}}\sum_{I,J=0}^{N/n-1}G_{IJ,I’J’}\sum_{i’=I-n/2+1}^{I+n/2}\sum_{j’=J-n/2+1}^{J+n/2}\omega_{ij’}^{N}=\frac{n^{2}}{N^{2}}\sum_{I’,J’=0}^{N-1}G_{IJ,I’J’}\overline{\omega_{IJ}^{N}}$ ,
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where the coarse-grained vorticity is defined as

$\overline{\omega_{IJ}^{N}}=\frac{1}{n^{2}}\sum_{\iota’=I-n/2+1}^{I+n/2}\sum_{j’=J-n/2+1}^{J+n/2}\omega_{i^{l}j’}^{N}$.

We note that, over the macrostate $p_{N}$ , the coarse-grained vorticity depends on $p_{N}$ only:

$\overline{\omega_{IJ}^{N}}=\sum_{k=1}^{K}p_{IJ}^{k}\sigma_{k}$ for $\omega^{N}\in p^{N}$ .

Using similar arguments, it is easy to conclude that in the limit $N\gg n\gg 1$ the energy of any microsate of
the macrosate $p_{N}$ is well approximated by the energy of the coarse-grained vorticity

$\mathscr{E}_{N}[’.0^{N}]N\gg n\gg 1\sim \mathscr{E}_{N}[\overline{\prime v_{IJ}^{N}}]=-\frac{n^{2}}{2N^{2}}\sum_{I,J=0}^{N/n-1}\overline{\omega_{IJ}^{N}}\psi_{IJ}^{N}$ .

Then the Boltzmann entropy of the macrostate is

$S_{N}|p_{N},$ $E_{0}]N\gg n\gg 1\sim\{\begin{array}{ll}\ovalbox{\tt\small REJECT}_{N}[\rho_{N}] if \forall k\mathcal{N}[p_{N}^{k}]=1,A_{N}[p_{N}^{k}]=A_{k} and g_{N}[\overline{\omega_{IJ}^{N}}]=E_{0}-\infty otherwise.\end{array}$ (12)

Consider $P_{N,E_{0}}(p_{N})$ to be the probability density to observe the macrostate $p_{N}$ in the finite-N micro-
canonical ensemble with energy $E_{0}$ . By definition of the microcanonical ensemble of the entropy $S_{N}(E_{0})$ (see
Eq. (9) and the preceding paragraph), we have

$P_{N,E_{0}}(p_{N})=\exp\{N^{2}[S_{N}\lceil p_{N}, E_{0}]-S_{N}(E_{0})]\}$ . (13)

From the general definition of a large deviation result given by Eq. (1), we clearly see that formula (12) is a
large deviation result for the macrostate $p_{N}$ in the macrocanonical ensemble. The large deviation parameter
is $N^{2}$ and the large deviation rate function $is-S_{N}\lceil p_{N},$ $E_{0}]+S_{N}(E_{0})$ .

We now consider the continuous limit. The macrostates $p_{N}^{k}$ are now seen as the finite-N approximation of
$p_{k}$ , the local probability to observe $\omega(x)=\sigma_{k}:p_{k}(x)=\langle\delta(\omega(x)-\sigma_{k}))$ . The macrostate is then characterized
by $p=\{p_{1}, \ldots,p_{K}\}$ . Taking the limit $N\gg n\gg 1$ allows us to define the entropy of the macrostate $(p, E)$ as

$S \int p,$ $E_{0}]=\{\begin{array}{ll}\ovalbox{\tt\small REJECT}[p]\equiv \sum_{k}\int_{\mathscr{D}} dx p_{k}\log p_{k} if \forall k\mathcal{N}[p_{k}]=1, A\lceil p_{k}]=A_{k} and \mathscr{E}[\overline{\omega}]=E_{0}-\infty otherwise.\end{array}$ (14)

In the same limit, it is clearly seen from definition (11) and result (14) that there is a concentration of
microstates close to the most probable macrostate. The exponential concentration close to this most probable
state is a large deviation result, where the entropy appears as the opposite of a large deviation rate function
(up to an irrelevant constant).

The exponential convergence towards this most probable state also justifies the approximation of the
entropy with the entropy of the most probable macrostate. Thus, in the limit $Narrow\infty$ we can express the
Boltzmann entropy, Eq. (10), as

$S(E_{0})=$ $\sup$ $\{\ovalbox{\tt\small REJECT}[\rho]|\mathscr{E}[\overline{\omega}]=E_{0}, \forall kA[p_{k}]=A_{k}\}$ , (15)
$\{p|N[p]=1\}$

where $p=\{p_{1}, \ldots,p_{K}\}$ and $\forall x,$ $\mathcal{N}[\rho](x)=\sum_{k=1}^{K}p_{k}(x)=1$ is the local normalization. Furthermore, $A\lceil p^{k}]$

is the area of the domain corresponding to the vorticity value $\omega=\sigma_{k}$ . The fact that the Boltzmann entropy
$S(E_{0})$ Eq. (10) can be computed from the variational problem (15) is a powerful non-trivial result of large
deviation theory.
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IV. NON-EQUILIBRIUM PHASE TRANSITIONS

Many turbulent flows can evolve and self-organize towards two or more very different states. In sorne of
these systems, the transition between two of such states is rare and occur relatively rapidly. Such systems
include magnetic field reversals in the Earth or in MHD experiments (e.g. the von K\’arm\’an Sodium (VKS)
turbulent dynamo in Fig. 2) [1], Rayleigh-B\’enard convection cells [24-27], $2D$ turbulence [23, 28, 29] (see
Fig. 3), $3D$ flows [30] and for ocean and atmospheric flows [31, 32]. The understanding of these transitions is
an extremely difficult problem due to the large number of degrees of freedoms, large separation of timescales
and the non-equilibrium nature of these flows. It is important to develop a non-equilibrium theory in order
to understand this phenomena.

However, for forced-dissipated turbulent systems it is unclear how to define the set of attractors for the
dynamics. Although, in the limit of weak forcing and dissipation, one would expect that the set of attractors
would converge to the ones of the deterministic equation. In the case of the $2D$ Euler equations, equilibrium
statistical mechanics in the form of the RMS theory allows for the prediction set of attractors for the dynamics.
Those attractors are a subsets of the steady states of the $2D$ Euler equations.

Moreover, simulations of the $2D$ Navier-Stokes equations in the weak force and dissipation limit showcd
that the dynamics actually concentrate around precisely the set attractors for the $2D$ Euler equations [23].
Interestingly, the same simulation showed sporadic non-equilibrium phase transitions, where thc system
spontaneously switched between two apparently stable steady states resulting in a complete change in the
macroscopic behaviour. If the forcing and dissipation is weak, then these transitions are actually extremely
rare, occurring on a timescale much longer than the dynamical timescale.

In this section we will discuss how large deviation theory can explain these non-equilibrium phasc tran-
sitions. With large deviation theory, we can compute the transition probability of observing such a rare
transition and furthermore compute the most probable trajectory (instanton) between two sets of attractors.
These results are of fundamental importance as the transition probability contains a vast amount of informa-
tion, for instance, one can estimate the timescale of observing such a trajectory and compute the rcaction rate
of the transition- a key quantity used in the field of transitions in chemical reactions. Moreover, most rare
transitions are situated around the same transition path, which can be computed using large deviation theory.

The main objective of this section is to present the initial applications of large deviation theory to non-
equilibrium phase transitions in the $2D$ Navier-Stokes equations, where we wish to predict the transition
probability and instanton for transitions between two steady states of the $2D$ Euler equations. The motivation
for this was the observation of rare transitions in the numerical simulation of the $2D$ Navier-Stokes equations
in [23]. Fig. 3 shows bistability and rare transitions between two attractors in a numerical simulation of the
stochastically forced $2D$ Navier-Stokes equation in a periodic rectangular box taken from [23]. Thc system
has evolved to an apparent non-equilibrium steady state, in which most of the time, the system $s$ dynamics is
concentrated around two sets of attractors, namely the vortex dipole and parallel flow. However, at long time
intervals, the system sporadically switches between these two large scale attractors. Our aim is to understand
this switching behaviour with large deviation theory.

As preliminary results, we prove that there is no large deviation result in the weak forcing-dissipation limit
for the $2D$ Navier-Stokes equations with non-degenerate noise. In this case, the transition between two types
of equilibria is not a rare event-a consequence of the fact that there are no two well-defined sets of attractors
in the $2D$ Navier-Stokes equations. Independently of this transition problem, we can derive a non-trivial large
deviation result for transitions to high energy steady states of the $2D$ Navier-Stokes equations. For this, the
energy of the states $\mathscr{E}[\omega]=E$ has the role of the large deviation parameter in the limit as $Earrow\infty$ .

Large deviation theory

The application of large deviation theory to non-equilibrium problems has been extensively studied in
gradient dynamics of Brownian particles in a potential and in weakly perturbed Hamiltonian systems with
weak forcing and dissipation. The large deviation properties of both of these systems can be solved either by
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$\delta=1.02$ $6=1.04$

FIG. 3. Figure taken $kom[23]$ showing rare transitions (illustrated by the Fourier component of the largest $y$ mode)
between two large scale attractors of the periodic $2D$ Navier-Stokes equations. The system spends the majority of its
time close to the vortex dipole and parallel flows configurations.

using saddle-point approximations to path integrals or more rigorously, from a mathematical point of view,
using the theory developed by Freidlin and Wentzell [33]. Both cases consider a diffusion process described
by an It\^o stochastic differential equation (SDE)

$\dot{x}_{i}=-F_{t}(x)+\sqrt{2\alpha}\eta_{i}$ , (16)

where $?li,$ $1\leq i\leq n$ are independent Gaussian white noises with $\langle\eta_{i}(t)\eta_{j}(t’)\}=\delta_{i,j}\delta(t-t’),$ $\alpha$ is the noise
amplitude and $F$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}$ is a uniformly Lipschitz function. Then one can represent the transition
probability for observing a trajectory between two states, $x(O)=x_{0}$ and $x(T)=x_{T}$ , in time $T$ as

$P( x_{T}, T;x_{0},0)=\int \mathscr{D}[x]e^{-\frac{1}{2\alpha}A[x]}$ . (17)

Formula (17) is a path integral for the transition probability of observing a trajectory from state $x_{0}$ at time
$t=0$ to state $x_{T}$ at time $t=T$. The right-hand side represents a summation over all possible paths linking
the two states which have some probability distribution represented by the exponential. The action $\mathcal{A}$ of the
SDE (16) is given by $\mathcal{A}[x]=(1/2)\int_{0}^{T}dt[\dot{x}+F(x)]^{2}$ . The quadratic form of the action $\mathcal{A}$ is a consequence
of the Gaussian statistics of the noises $\eta_{i}$ .

A large deviation result can be derived in the limit of vanishing noise $\alphaarrow 0$ by application of the saddle-
point approximation of the path integral, which states that in the limit of $\alphaarrow 0$ , the main contribution to
the path integral will arise from the trajectory that globally minimizes the action $\mathcal{A}(x)$ . This leads to the
large deviation principle

$\lim_{\alphaarrow 0}-\alpha\log(P)=\frac{1}{2}A[x_{0}, x_{T},T]$ , (18)

where $A[x_{0}, x_{T}, T]=\mathcal{A}[x^{*}]$ is the minimum of the action $\mathcal{A}[x]$ with $x$ satisfying the boundary conditions
$x(O)=x_{0}$ and $x(T)=x_{T}$ . The minimizer $x^{*}$ in known as the instanton. In systems that contain disjoint well-
defined attractors, formula (18) coincides with the large deviation result obtained by Freidlin and Wentzell
[33]. However, as it will be shown later, this is not the case for the stochastically forced $2D$ Navier-Stokes
equations in the weak forcing-dissipation limit.

The double-well potential

We wish to give a pedagogical description of large deviation theory to non-equilibrium systems. Therefore,
we will begin by applying large deviation theory to a simple academic example of an over-damped particle
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in a double-well potential where a large deviation result exists. We will show that we can compute the
transition probability for the transition of a particle from one well to the other and that it is proportional
to the exponential of the energy barrier height between the two wells. In fact, this is a large deviation result
and is precisely the Arrhenius formula for the reaction rate in a chemical reaction described by a double-well
potential.

We consider a single over-damped particle in a lD double-well potential $V(x)$ . The motion of a particle
can be defined in terms of its position $x(t)$ by the SDE

$\dot{x}=-\frac{dV}{dx}+\sqrt{2\alpha}\eta$ ,

where $\eta$ is a Gaussian white noise defined by $\{\eta(t)\eta(t’)\}=\delta(t-t’),$ $V(x)=(x^{2}-1)^{2}/4$ (see Fig. 4), and $\alpha$ is
a parameter for the amplitude of the noise. In the deterministic situation, when $\alpha=0$ , the particle relaxes to
one of the two stable steady states of the potential $V$ , i.e. it goes to either $x=-1$ or $x=1$ . In the presence
of forcing, the particle may gain enough momentum to jump the potential barrier at $x=0$ and settle in the
other potential well. If the forcing is weak, i.e. $\alpha\ll\triangle V$ , then the jump between wells will be a rare event
and one can apply the theory of large deviations.

$\overline{>\vee x}$

$-2$ $-1.5$ $-1$ $-0.5$ $0$ 0.511.5 2
$x$

FIG. 4. Graph of the double well potential $V(x)=(x^{2}-1)^{2}/4$ . We observe two stable steady states at $x=\pm 1$ and
a saddle at $x=0$ with height $\triangle V=1/4$ .

In the case of the double-well potential, one can derive the action $\mathcal{A}$, which can be written as the time
integral of a Lagrangian $\mathcal{L}$ , as

$\mathcal{A}[x]=\int_{0}^{T}dt\mathcal{L}[x,\dot{x}]=\frac{1}{2}l_{0}^{T}dt(\dot{x}+\frac{dV}{dx}I^{2}$ (19)

We observe from the definition of the action (19) that the deterministic motion of the particle, defined by
$\dot{x}=-dV/dx$ , gives $A=0-$ an intrinsic property of the action. This is because the deterministic motion
does not require any input from the forcing. However, a deterministic trajectory cannot connect the two
attractors. This is because the particle must gain momentum (from the forcing) to pass the potential barrier
at $x=0$ .

The dynamics of the instanton is a solution to the Euler-Lagrange equations derived from the Lagrangian
$\mathcal{L}$ given in Eq. (19). One can then solve the boundary value problem associated to the minimization of the
action $\mathcal{A}$ with $x(O)=-1$ and $x(T)=1$ .

Moreover, we observe that there exists no explicit time-dependence in the Lagrangian, and therefore, one
can apply Noether $s$ theorem [34] to derive the formula for the instanton energy $H$ , an energy conserved by
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the dynamics of the instanton trajectory. For the double-well potential this gives

$H= \frac{\dot{x}^{2}}{2}-\frac{1}{2}(\frac{dV}{dx})^{2}$ (20)

For a transition that occurs within an infinitely long time $(Tarrow\infty)$ , the instanton has zero encrgy $H=0$ .
This is because at thc end points $\dot{x}=0$ and $dV/dx=0$ . In this case, we observe from (20) that the trajectory
must satisfy $\dot{x}=\pm dV/dx$ . Here, the negative signed solution $(\dot{x}=-dV/dx)$ corresponds to the detcrministic
trajectory, and simply implies that the particle rolls down the from the top of the potential barrier at $x=0$

to the bottom of one of the wells, which produces a zero contribution to the action. The other solution,
with the positive sign $(\dot{x}=dV/dx)$ corresponds to the optimum trajectory escaping from the initial well
and traveling to the top of the potential barrier at $x=0$ . It is this part of the trajectory that leads to a
contribution to the action. This contribution can be computed by substituting $\dot{x}=dV/dx$ into Eq. (19):

$A_{\infty}=2 \int_{0}^{\infty}dt\dot{x}\frac{dV}{dx}=2\Delta V$

The resulting large deviation principle (18) is

$\lim_{\alphaarrow 0}-\alpha\log(P_{s})=\Delta V$ . (21)

Formula (21) states that the transition probability for observing the rare transition between the two potential
wells, in the limit of the weak noise limit, is proportional to the exponential of the barrier height $\Delta V$ . This
is precisely the Arrhenius formula $k=A$ $\exp(\triangle E/k_{B}T)$ , where $k$ is transition rate of a chemical reaction
$(\sim 1/P_{s}),$ $\Delta E$ is the energy barrier height and $k_{B}T$ is the noise amplitude due to thermal excitations.

We have shown in this section how the large deviation theory can be applied to a the simple example
of an over-damped particle in lD double-well potential, and how the large deviation result (21) coincides
precisely with the Arrhenius formula for the rate of transition of a chemical reaction. We now procecd onto
the application of large deviation theory to the $2D$ stochastically forced Navier-Stokes equations.

The $2D$ Navier-Stokes action

In this subsection, we discuss the application of large deviation theory to the $2D$ Navicr-Stokes equations
(4). We extend the description outlined for the double-well potential to the vorticity field of the $2D$ Navier-
Stokes equations. The initial step is the construction of the action functional associated to Eqs. (4). The
action functional is given by

$\mathcal{A}[\omega]=\frac{1}{2}\int_{0}^{T}dt\int_{9}$ dx dx’ $[di +v\cdot\nabla\omega+\alpha\omega-\nu\Delta\omega](x)C(x-x’)[\dot{\omega}+v\cdot\nabla\omega+\alpha\omega-\nu\triangle\omega](x’)$

$= \frac{1}{2}l_{\mathscr{D}}dt\mathcal{L}[\omega,\dot{\omega}]$, (22)

where $\mathcal{L}$ is the Lagrangian associated to the action $\mathcal{A}$ .
If a large deviation result exists, then departure from the optimal trajectory is rare and the optimal action

$\mathcal{A}[\prime w’]$ gives the large deviation result. The minimizer, or instanton, $\omega^{*}$ satisfies the Euler-Lagrange equations
associated to the Lagrangian (22). Specifically, this instanton trajectory is a solution of

$\dot{q}+v\cdot\nabla q=\Delta^{-1}(e_{z}\cdot[\nabla\omega\cross\nabla q])+\alpha q-\nu\Delta q$, (23a)

$q( x)=\int_{\mathscr{D}}$ $dx$’ $p(x’)C(x-x’)$ , (23b)

$p=\dot{\omega}+v\cdot\nabla\omega+\alpha\omega-\nu\Delta\omega$ , (23c)

subject to the boundary conditions $\omega(0)=\omega_{0}$ and $\omega(T)=\omega\tau$ . The Euler-Lagrange equations (23) are
usually ill-posed for initial value problems. However, they should be verified by all critical points of $\mathcal{A}$ which
correspond to a special set of initial conditions that solve the boundary value problem.
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Transitions between steady states

We have already mentioned that the $2D$ Navier-Stokes equations with weak forcing and dissipation evolves
towards steady states, which are attractors of the $2D$ Euler dynamics. Rare transitions have been numerically
observed between a vortex dipole and a parallel flow (see Fig. 3 and [23]). We present in the following
subsections several simplified cases of transitions in the $2D$ Navier-Stokes equations that can be trcated
analytically [35].

One of the key properties of the $2D$ Euler equations is that the ensemble of steady states are connectcd.
This is readily seen by the fact that any steady state $\omega_{T}$ (such that $v_{T}\cdot\nabla_{\backslash }\prime 0_{T}=0$ ) is connected to zero
through the path $\omega(x, t)=\gamma(t)\omega_{T}$ with $\gamma(0)=0$ and $\gamma(T)=1$ . This places the $2D$ Navier-stokes equations
(in the limit of weak forcing and dissipation) outside the scope of applying Freidlin-Wentzell theory. The
consequence of this, is that for large times the minimum of $\mathcal{A}$ is of order $\alpha$ . Therefore, transitions from one
state to another are not rare events and there is no large deviation result. We will not present a simple
example to illustrate this.

Instanton from $0$ to $\omega_{T}$ with zero viscosity and Gaussian white noise forcing

We will consider an instanton trajectory starting at zero and going to a final steady state $\omega_{T}$ such that
$v_{T}\cdot\nabla\omega_{T}=0$. This example is one of the simplest and most important to be considered as it corresponds
to considering a large deviation result for the stationary probability P., defined as the infinite transition
time limit $(Tarrow\infty)$ of the transition probability $P:P_{s}= \lim_{Tarrow\infty}P$ . More precisely, for the $2D$ Navier-
Stokes equations (with finite non-zero dissipation), any instanton with a transition time larger than the
dissipation timescale $(T\gg 1/\alpha)$ , from an arbitrary steady state $\omega_{0}$ , will (deterministically) relax to zcro
before transitioning to $djT$ . Therefore, as we shall see, the stationary probability will only depend on the fin \‘al
state $\omega_{T}$ and not the initial state $\omega_{0}$ , so for simplicity it is sufficient to consider $\omega_{0}=0$ .

In order for us to obtain an explicitly solvable solution, we consider the $2D$ Navier-Stokes action with a
forcing profile corresponding to white in space noise: $C(x-x’)=\delta(x-x’)$ . A further simplification we
consider is to set viscosity to zero: $\nu=0$ , this is to ensure that the dissipation for any arbitrary state remains
uniform on all the modes [36]. For Gaussian white noise, the Euler-Lagrange equations (23) simplify to

$\dot{p}+v\cdot\nabla p=\Delta^{-1}(e_{z}\cdot[\nabla\omega\cross\nabla p])+\alpha p$ , (24a)
$p=\dot{\omega}+v\cdot\nabla\omega+\alpha\omega$ . (24b)

We m\‘ake an ansatz for the instanton trajectory, and show that this satisfies the Euler-Lagrange equations
(24). We consider the ansatz:

$\omega(x, t)=\gamma(t)\omega_{T}(x)$ , then $p(x, t)=[\dot{\gamma}(t)+\alpha\gamma(t)]\omega\tau(x)$ , (25)

where $\gamma$ parametrizes the path and has the following boundary conditions: $\gamma(0)=0$ and $\gamma(T)=1$ . The
ansatz states that the instanton will diffuse through the continuous set of steady states. Substitution of the
ansatz (25) into the Euler-Lagrange equations (24), we find that Eq. (25) is an instanton (solution to the
Euler-Lagrange equation) if

$\ddot{\gamma}=\alpha^{2}\gamma$ , with $\gamma(0)=0,$ $\gamma(T)=1$ . (26)

We can solve the evolution equation (26) subject to the boundary conditions to determine the instanton
trajectory. The instanton trajectory is then given by

$\omega^{*}(x, t)=\frac{\sinh(\alpha t)}{\sinh(\alpha T)}\omega_{T}(x)$ . (27)

We remark, that by showing the instanton solves the Euler-Lagrange equation, we have only proved that the
trajectory (27) is a critical point of the action, and not the global minimizer.
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Now that we have the formula for the instanton, Eq. (27), we can compute the action corresponding to
the instanton trajectory (27)

$A[ \omega_{T}, T]=\mathcal{A}[\omega^{*}]=\frac{\alpha e^{\alpha T}}{2\sinh(\alpha T)}\int_{\mathscr{D}}$ dx $\omega_{T}^{2}$ . (28)

In the limit of any infinitely long transition time $(Tarrow\infty)$ , which corresponds to the minimum of (28) ovcr
all $T\in(0, \infty)$ , the action equals

$\lim_{Tarrow\infty}A[\omega\tau,T]=A_{\infty}[\omega\tau]=\alpha\int_{\mathscr{D}}$ dx $\omega_{T}^{2}$ . (29)

We observe that the action is proportional to the enstrophy of the final steady state $\omega\tau$ , and moreover, that
it is proportional to $\alpha$ . The fact that the action is proportional to $\alpha$ implies that there is no large deviation
result in the limit of vanishing forcing-dissipation $(\alphaarrow 0)$ as $\mathcal{A}[\omega^{*}]$ will be everywhere zero. We expect to
observe a similar result for any non-degenerate force correlation $C(x-x’)$ , non-degenerate in the sense that
the force acts over all modes of $\omega$ . This is because the optimum transition trajectories will correspond to the
diffusion across continuous sets of steady states via an Ornstein-Uhlenbeck process linking two states. These
types of transitions are not rare events. We expect a large deviation result to exist when the saddle-point
approximation is valid, i.e. there exists a large parameter corresponding to a rare trajectory.

We conjecture, that if there are degeneracies in $C(x-x’)$ , i.e. such that the forcing does not directly
influence the modes in which the transition must occurs (i.e. zero forcing on these modes), then we expect
that other modes must be excited, via the nonlinear term $v\cdot\nabla\omega$ , in order to influence the modes involved in
the transition. In this case, it should produce a non-trivial transition trajectory that isn $t$ simply described
by an Ornstein-Uhlenbeck process through a continuous set of steady states. Subsequently, a large deviation
result consistent with formula (18) should exist.

Large deviations for high energy states

In the previous subsection, we showed an example of a transition between zero and an arbitrary steady
states will not produce a large deviation result in the vanishing forcing-dissipation limit $\alphaarrow 0$ . However, by
considering another large deviation parameter, namely the energy $E$ , we can derive a large deviation principlc
for a rare transition between zero and a high energy steady state.

To show the large deviation result, we are required to parametrize a steady state with respect to its energy
$\mathscr{E}(\omega)=E$ . For any given steady state $\omega(x)$ , we can parametrize it such that $\omega(x)=\sqrt{E}\omega_{1}(x)$ , where $\omega_{1}$ is
the corresponding steady state that has unit energy $\mathscr{E}(’.(,1)=1$ .

By considering the result from the previous subsection, namely Eq. (29), then for an instanton trajectory
starting at zero, one can derive a large deviation result for transitions to final states with $Earrow$ oo, i.e.

$\lim_{Earrow\infty}-\frac{1}{E}\log(P_{s})=\alpha\int_{9}$ $dx$ $\omega_{1}^{2}$ , (30)

for finite $\alpha$ . Eq. (30) states that in the limit of large energy states, the logarithm of the transition probability
is proportional to the energy $E$ times the enstrophy of the state. Physically, this implies that the most
probable rare transitions will occur between attractors which have minimum enstrophy. The above result can
be generalized to a force defined by an arbitrary correlation $C(x-x’)$ for several types of transitions, i.e. the
rare transitions between two parallel flows or between two vortex steady states with the same eigenmodes in
both spatial dimensions [35].
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